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ABSTRACT
Network neutrality and the role of regulation on the Internet
have been heavily debated in recent times. Amongst the var-
ious definitions of network neutrality, we focus on the one
which prohibits paid prioritization of content. We develop
a model of the Internet ecosystem in terms of three primary
players: consumers, ISPs and content providers. We analyze
this issue from the point of view of the consumer, and target
the desired system state that maximizes consumer surplus.

By analyzing the various structures of an ISP market, we
obtain different conclusions on the desirability of regula-
tion. We also introduce the notion of a Public Option ISP,
an ISP that carries traffic in a network neutral manner. We
find (i) in a monopolistic scenario, network neutral regula-
tions might benefit consumers; however, the introduction of
a Public Option ISP is even better, as it aligns the interests
of the monopolistic ISP with the consumer surplus and (ii)
in an oligopolistic scenario, the presence of a Public Option
ISP is again preferable to network neutral regulations, al-
though the presence of competing non-neutral ISPs provides
the most desirable situation for the consumers.

Lastly, the ISP survivability is an orthogonal direction to-
wards the debate. Nevertheless, our findings reveal that even
ISPs can survive, network neutrality might still not be needed.

1. INTRODUCTION
Since around 2005, network neutrality has been a hotly

debated topic amongst law and policy makers. The core de-
bate has centered around the argument whether ISPs should
be allowed to provide service differentiation and/or user dis-
crimination, with the notion of “user” being either content
providers (CPs) or consumers. Proponents of network neu-
trality, mostly the CPs, have argued that the Internet has been
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“neutral” since its inception and that has been a critical fac-
tor in the innovation and rapid growth that has happened on
it. Opponents of network neutrality, mostly the ISPs, claim
that without some sort of service differentiation, ISPs will
lose the incentive to invest in the networks and the end user
experience will suffer. Both camps implicitly or explicitly
claim that their approach is beneficial for consumers. A re-
cent Federal Communications Commission (FCC) vote [1]
in the US has sided with the proponents, although the ruling
leaves some room for service differentiation in wireless net-
works. The controversy rages on though with corporations
like Verizon filing lawsuits challenging the ruling and a “toll-
tax” dispute between Level3/Netflix and Comcast being cast
as a network neutrality issue.

We study the issue explicitly from the consumer’s point
of view under both monopolistic and oligopolistic scenarios.
A lot of arguments for as well as against network neutrality
live in an idealized world where economies of scale do not
exist and monopolies cannot emerge, and therefore perfect
competition solves all problems. We believe reality is more
nuanced and hence we examine monopolistic scenarios too.
The ISP survivability is an equally important but orthogonal
aspect of the debate. We focus on the extra ISP profit gen-
erated by prioritizing content. Nevertheless, our conclusion
on the unnecessity of network neutrality do not rely on the
survivability of ISPs: if an ISP cannot survive, network neu-
trality should not be imposed; even if an ISP can survive, we
show that network neutrality is still not needed.

We use game theoretic analyses and focus on the con-
sumer surplus, i.e. the consumer utility derived from the
network minus their access costs. We model the user de-
mand for content and the rate allocation mechanism of the
network. The interplay between the two determines the rate
equilibrium for traffic flows. Our model of price discrimi-
nation is for the ISPs to offer two classes of service to CPs.
The ISP divides its capacity into a premium and an ordinary
class, and CPs get charged extra for sending traffic in the pre-
mium class, and more details are presented in Section 3.1.
We then identify and analyze the strategic games played be-
tween ISPs, CPs and consumers in Section 3 for a monop-
olistic scenario and in Section 4 for oligopolistic scenarios.
In Section 4.1, we introduce the notion of a Public Option



ISP which is neutral to all CPs. The Public Option ISP can
be implemented by processes like local loop unbundling [3]
in a monopolistic market and either government or a private
organization could run the ISP and still be profitable [12].
Under this framework, our findings include:

• The impact of network neutrality on consumer surplus
depends on the nature of competition at the ISP level.
Concretely, a neutral network might be beneficial for
consumers under a monopolistic regime (Section 3),
whereas a non-neutral network is advantageous for con-
sumers under oligopolistic scenarios (Section 4).

• Introducing a Public Option ISP is advantageous for
consumers. In a monopolistic situation, the Public Op-
tion ISP offers the best scenario for consumers (The-
orem 5), followed by network neutral regulations, and
an unregulated market being the worst.

• In oligopolistic situations, the Public Option ISP is still
preferable to network neutral regulations; however, since
the incentive for an ISP to gain market share is aligned
with maximizing consumer surplus (Theorem 6), no
regulation is needed to protect the consumers.

• Under an oligopolistic competition, any ISP’s optimal
pricing and service differentiation strategy, whether net-
work neutral or not, will be close to the one that maxi-
mizes consumer surplus (Theorem 6 and Corollary 1).
Moreover, under a probable equilibrium where ISPs
use homogenous strategies, their market shares will be
proportional to their capacities (Lemma 4), which im-
plies that ISPs do have incentives to invest and expand
capacity so as to increase their market shares.

Our paper sheds new light on the network neutrality de-
bate and concretely identifies where and how regulation can
help. Additionally, our identification of the Public Option
ISP is especially important as it provides a solution that com-
bines the best of both worlds, protecting consumer interests
without enforcing strict regulations on all ISPs. We start
with describing our model in the next section.

2. THREE-PARTY ECOSYSTEM MODEL
We consider a model of the Internet with three parties: 1)

CPs, 2) ISPs and 3) consumers. We focus on a fixed con-
sumer group in a targeted geographic region. We denote
M as the number of consumers in the region1. Each con-
sumer subscribes to an Internet access service via an ISP.
We consider the scenarios where one monopolistic ISP I or
a set I of competing oligopolistic ISPs provide the Inter-
net access for the consumers. We denote N as the set of
1M can also be interpreted as the average or peak number of con-
sumers accessing the Internet simultaneously, which will scale with
the total number of actual consumers in a region. This does not
change the nature of any of the results we describe subsequently,
but gives a more realistic interpretation of the rate equilibrium.

CPs from which the consumers request content. We define
N = |N | as the number of CPs. Our model does not include
the backbone ISPs for two reasons. First, the bottleneck of
the Internet is often at the last-mile connection towards the
consumers [9], both wired and wireless. We focus on the re-
gional or so-called eyeball ISPs that provide the bottleneck
last-mile towards the consumers. Second, the recent con-
cern on network neutrality manifests itself in the cases where
the last-mile ISPs, e.g. France Telecom, Telecom Italia and
Vodafone, intended to differentiate services and charge CPs,
e.g. Apple and Google, for service fees [5].

We denote µ as the last-mile bottleneck capacity towards
the consumers in the region. Figure 1 depicts the contention

Figure 1: Contention at the last-mile bottleneck link.

at the bottleneck among different flows from the CPs. Given
a set N of CPs, a group of M consumers and a link with
capacity µ, we denote the system as a triple (M,µ,N ). We
denote λi as the aggregate throughput rate from CP i to the
consumers. Because consumers initiate downloads and re-
trieve content from the CPs, we first model the consumer’s
demand so as to characterize the CPs’ throughput rates λis.

2.1 Consumer Throughput Demand
We denote θ̂i as the unconstrained throughput for a typi-

cal user of CP i. For instance, the unconstrained throughput
for the highest quality Netflix streaming movie is about 5
Mbps [4], and given an average query page of 20 KB and an
average query response time of .25 seconds [2], the uncon-
strained throughput for a Google search is about 600 Kbps,
or just over 1/10th of Netflix. We denote αi ∈ (0, 1] as
the percentage of consumers that ever access CP i’s content,
which models the popularity of the content of CP i. We de-
fine λ̂i = αiMθ̂i as the unconstrained throughput of CP i.
Without contention, CP i’s throughput λi equals λ̂i. How-
ever, when the capacity µ cannot support the unconstrained
throughput from all CPs, i.e. µ <

∑
i∈N λ̂i, two things will

happen: 1) a typical user of CP i obtains throughput θi < θ̂i
from CP i, and 2) some active users might stop download-
ing content from CP i when θi goes below certain threshold,
e.g. users of streaming content like Netflix. We denote θi
as the achievable throughput for the consumers download-
ing content from CP i. We define a demand function di(θi)
which represents the percentage of consumers that still de-
mand content from CP i under the achievable throughput θi.

Assumption 1. For any CP i, the demand di(·) is a non-
negative, continuous and non-decreasing function defined on
the domain of [0, θ̂i], and satisfies di(θ̂i) = 1.



We define the aggregate throughput of a set N of CPs as
λN =

∑
i∈N λi, where each CP i’s rate λi is defined as:

λi(θi) = αiMdi(θi)θi. (1)

2.2 Rate Allocation Mechanism
When multiple flows share the same bottleneck link, they

compete for capacity. The rates allocated to the flows depend
on the rate allocation mechanism being used in the system.

Definition 1. A rate allocation mechanism is a function that
maps any fixed demand profile {di : i ∈ N}2 to an achiev-
able throughput profile {θi : i ∈ N}.

A rate allocation mechanism can be a flow control mech-
anism, e.g. CBR and VBR mechanisms, under which the
bottleneck link decides the rates for each flow in a central-
ized manner, or a window-based end-to-end congestion con-
trol mechanism, e.g. TCP, under which each flow maintains
a sliding window and adapts the its size based on implicit
feedback from the network, e.g. the round-trip delay. We
consider generic rate allocation mechanisms and assume that
the resulting rate allocation obeys the physical constraints of
the system and satisfies some desirable properties.

Axiom 1. θi ≤ θ̂i for all i ∈ N .

Axiom 2. λN = min
{
µ,
∑
i∈N λ̂i

}
.

The above axioms characterize the feasibility of an alloca-
tion: the aggregate rate cannot exceed the capacity and the
individual rate cannot exceed unconstrained throughput. It
also characterizes a work-conserving property: if congestion
can be alleviated without increasing capacity µ, the alloca-
tion would do so by fully utilizing the capacity.

Axiom 3 (MONOTONICITY). A rate allocation is mono-
tonic if for anyM > 0 and capacity µ1 < µ2, the achievable
throughput θi for any i ∈ N satisfies

θi(M,µ2,N ) ≥ θi(M,µ1,N ).

The Monotonicity axiom implies that if a flow gets an
achievable throughput in one system, it will get at least that
amount of throughput under a less congested system.

Axiom 4 (INDEPENDENCE OF SCALE). A rate allocation
is independent of scale if for any ξ > 0, the achievable
throughput θi for any i ∈ N satisfies

θi(M,µ,N ) = θi(ξM, ξµ,N ).

The Independence of Scale axiom states that if the capac-
ity scales at the same rate as the consumer size, each flow’s
achievable throughput θi remains the same.

Assumption 2. The network system implements a rate allo-
cation mechanism that satisfies Axiom 1 to 4.
2Without a bracket, we use di as a fixed demand.

2.3 Rate Equilibrium
The demand functions map the achievable throughput to

a level of demand; the rate allocation mechanisms map fixed
demands to achievable throughput. The interplay between a
rate allocation mechanism and the demand functions deter-
mines the system rate equilibrium as the following theorem.

Theorem 1. A system (M,µ,N ) has a unique rate equilib-
rium {θi : i ∈ N} under Assumption 1 and Axiom 1 to 3.

We define ν = µ/M as the per capita capacity of the
system. By using Axiom 4, we further characterize the rate
equilibrium {θi : i ∈ N} as follows.

Lemma 1. Under Assumption 1 and 2, for all i ∈ N , θi in
equilibrium can be expressed as θi(M,µ,N ) = θi(ν,N ),
which is a non-decreasing and continuous function in ν.

Lemma 1 states that when ν increases, users’ achievable
throughput θi would not be worse off for any CP i.

We define the consumer surplus as CS =
∑
i∈N φiλi,

where φi denotes the per unit traffic surplus (utility minus
cost) that the consumers obtain by receiving content from
CP i. This surplus can be derived from communicating with
friends, e.g. Skype, watching movies, e.g. Netflix, and
obtaining information, e.g. Google. Notice that the sin-
gle parameter φi is a linear model for user surplus, which
might over/under-estimate the real utility; however, we can
always adjust the demand functions di(·)s, which still hold
the monotonicity property in Assumption 1, to compensate
the difference between the assumed linear utility and the real
non-linear utility. Although these utility-adjusted demand
functions would modify the real rate equilibrium, they do
not invalidate our theoretical results at a macroscopic level.
We denote Φ as the per capita consumer surplus defined as

Φ =
CS

M
=

1

M

∑
i∈N

φiλi(θi) =
∑
i∈N

φiαidi(θi)θi. (2)

Theorem 2. Under Assumption 1 and 2, the per capita con-
sumer surplus Φ can be expressed as Φ(M,µ,N ) = Φ(ν,N ),
which is non-decreasing function in ν. In particular, it strictly
increases in ν ∈ [0,

∑
i∈N αiθ̂i].

Theorem 2 states that the per capita consumer surplus will
strictly increase with the system per capita capacity ν, unless
it is already maximized when unconstrained throughput is
obtained. Notice that it does not depend on the values of φis,
but relies on the monotonic traffic demand (Assumption 1)
and the monotonic (Axiom 3) and work-conserving (Axiom
2) properties of the rate allocation mechanism.

2.4 Examples and Illustrations

2.4.1 Demand as a function of throughput sensitivity
Users often have different demand patterns for different

CPs. For example, the demand for real-time applications
decreases dramatically when their throughput drops below



certain threshold where performance cannot be tolerated by
users. We can characterize this throughput sensitivity by a
positive parameter βi and consider the demand function

di(θi) = e
−βi
(
θ̂i
θi
−1
)

= e
−βi
(

1
ωi
−1
)
, (3)

where we define ωi = θi/θ̂i as the percentage of uncon-
strained throughput achieved for CP i. The user demand de-
cays exponentially with the level of congestion (measured
by θ̂i−θi

θi
, the ratio of unsatisfied and achieved throughput)

scaled by βi. This demand function distinguishes the CPs
via their throughput sensitivity βi: larger βi indicates higher
sensitivity to throughput for CP i. Figure 2 illustrates the

Figure 2: Demand function di(ωi).

demand functions with various values of βi. To normalize
θ̂i, we plot di against ωi instead of θi. We observe that
when throughput drops linearly, the demand drops sharply
for large βi, e.g. when βi = 5, the demand is halved with a
10% drop in throughput from θ̂i. Large βis can be used to
model CPs that have stringent throughput requirements, e.g.
Netflix; while, small βis can be used to model CPs that are
less sensitive to throughput, e.g. a Google search query.

2.4.2 End-to-end congestion control mechanisms
Due to the end-to-end design principle of the Internet,

congestion control has been implemented by window-based
protocols, i.e. TCP and its variations. Mo and Walrand
[21] showed that a class of α-proportional fair solutions3

can be implemented by window-based end-to-end protocols.
Among the class of α-proportional fair solutions, the max-
min fair allocation, a special case with α = ∞, is the re-
sult of the AIMD mechanism of TCP [7]. Differing round
trip times, receiver window sizes and loss rates can result
in different bandwidths, but to a first approximation, TCP
provides a max-min fair allocation of available bandwidth
amongst flows. Although other protocols, e.g. UDP, coexist
in the Internet, recent research [15] sees a growing concen-
tration of application traffic, especially video, over TCP.

We illustrate the rate allocation under the max-min fair
mechanism using an example of three CPs with demand func-
tions of Equation (3) and parameters (α1, θ̂1, β1) = (1, 1, 0.1),
(α2, θ̂2, β2) = (0.3, 10, 3) and (α3, θ̂3, β3) = (0.5, 3, 5).

3Any α-proportional fair solution also satisfies Assumption 2.

CP 1 represents Google-type of CPs that are extensively ac-
cessed and less sensitive to throughput. CP 2 represents
Netflix-type of CPs that are more throughput-sensitive and
have high unconstrained throughput. CP 3 represents Skype-
type of CPs that are extremely sensitive to throughput and
have medium unconstrained throughput. Figure 3 illustrates

Figure 3: Throughput under max-min fair mechanism.

the rates and the corresponding demands of the three CPs un-
der a max-min fair allocation mechanism. We vary the per
capita capacity ν from 0 to 6, 000. We observe that when ν
increases from zero, the demand for Google-type content in-
creases first, followed by the demand for Skype-type content
and, the demand for Netflix-type content being the last.

3. MONOPOLISTIC ISP ANALYSIS
In this section, we start with the scenario where the last-

mile capacity is controlled by a single monopolistic ISP I .
We analyze the ISP’s strategy under which non-neutral ser-
vice differentiation is allowed, and the corresponding best
responses of the CPs. We derive the equilibria of the system
and analyze the ISP’s impact on the system congestion and
the welfare of the consumers and the ISP itself.

3.1 Non-Neutral Service Differentiation
We assume that the monopolistic last-mile ISP I has a

capacity of µ. This ISP can be a retail residential ISP, e.g.
Comcast, and Time Warner Cable, or a mobile operator, e.g.
Verizon and AT&T. Regardless being a wired or wireless
provider, it serves as the last-mile service provider for the
consumers. We assume that the ISP is allowed to allocate a
fraction κ ∈ [0, 1] of its capacity to serve premium CPs and
charge them for an extra rate c ∈ [0,∞) (dollar per unit traf-
fic), besides ordinary transit charges. For a wired ISP, κ can
be interpreted as the percentage of capacity deployed for pri-
vate peering that charge c per unit incoming traffic and 1−κ
can be interpreted as the percentage of capacity deployed for
public peering where incoming traffic is charge-free. For a
wireless ISP, κ can be interpreted as the percentage of ca-
pacity devoted for prioritized traffic. The pair of parameters
(κ, c) can also be thought of a type of Paris Metro Pricing
(PMP) [23, 24], where an ordinary and a premium class have
capacities of (1 − κ)µ and κµ and charge 0 and c respec-
tively. In reality, content might be delegated via content dis-
tribution networks (CDNs), e.g. Akamai, or backbone ISPs,
e.g. Level3 is a major tier-1 ISP that delivers Netflix traffic



towards regional ISPs. Therefore, the extra charge c might
be imposed on the delivering ISP, e.g. Level3, and then be
recouped from the CP, e.g. Netflix, by its delivering ISP. Our
model does not assume any form of the implementation.

We denoteO andP as the disjoint sets of CPs that join the
ordinary and premium class respectively. We denote vi as
CP i’s per unit traffic profit. This profit can be generated by
advertising for media clients, e.g Google, by selling online,
e.g. Amazon, or by providing online services, e.g. Netflix
and other e-commerce. Our model does not assume how the
profit is generated. We define each CP i’s utility ui as

ui(λi) =

{
viλi if i ∈ O,
viλi − cλi if i ∈ P.

(4)

We define IS = cλP as the ISP surplus (extra revenue from
CPs) and denote Ψ as the per capita ISP surplus defined as

Ψ =
IS

M
=

c

M
λP =

c

M

∑
i∈P

λi(θi) = c
∑
i∈P

αidi(θi)θi.

Notice that our focus is the additional ISP revenue earned by
providing a differentiated service. The ISP surplus does not
reflect the ISP’s normal operating costs or their core revenue
from the subscription payments from their residential users.

3.2 Content Provider’s Best Response
Given the ISP’s decision κ and c, each CP chooses the

service class, O or P , to join. We denote ρi as the per capita
throughput over CP i’s user base, i.e. αiM users, defined as

ρi(ν,N ) = di(θi(ν,N ))θi(ν,N ). (5)

Lemma 2. Given a fixed set O of CPs in the ordinary class
and a fixed set P of CPs in the premium class, a new CP i’s
optimal strategy is to join the premium service class, if

(vi − c) ρi
(
κν,P ∪ {i}

)
≥ vi ρi

(
(1− κ)ν,O ∪ {i}

)
. (6)

And with equality, both service classes gives the same utility.

Lemma 2 states that a CP will join the premium service
class if that results higher profit, which is per-unit flow profit
(vi − c for the premium class) multiplied by the per capita
throughput ρi. The above decision is clear for a CP only if all
other CPs have already made their choices. To treat all CPs
equally, we model the decisions of all CPs as a simultaneous-
move game as part of a two-stage game.

3.3 Two-Stage Strategic Game
We model the strategic behavior of the ISP and the CPs as

a two-stage game, denoted as a quadruple (M,µ,N , I ).

1. Players: The monopolistic ISP I and the set of CPsN .

2. Strategies: ISP I chooses a strategy sI = (κ, c). Each
CP i chooses a binary strategy of whether to join the
premium class. The CPs’ strategy profile can be writ-
ten as sN = (O,P), whereO∪P = N andO∩P = ∅.

3. Rules: In the first stage, ISP I decides sI = (κ, c)
and announces it to all the CPs. In the second stage,
all the CPs make their binary decisions simultaneously
and reach a joint decision sN = (O,P).

4. Outcome: The set P of the CPs shares a capacity of κµ
and the setO of the CPs shares a capacity of (1−κ)µ.
Each CP i ∈ O gets a rate λi in (M, (1− κ)µ,O) and
each CP j ∈ P gets a rate λj in (M,κµ,P).

5. Payoffs: Each CP i’s payoff is defined by the utility
ui(λi) in Equation (4). The ISP’s payoff is its surplus
IS = cλP received from the premium class.

Notice that as a consequence of service differentiation, the
original system (M,µ,N ) breaks into two independent sub-
systems (M, (1−κ)µ,O) and (M,κµ,P). In practice, if the
premium service class is under utilized, i.e. λP < κµ, and if
the ISP uses a work-conserving mechanism so that the extra
capacity κµ−λP in P would be used by ordinary class, then
equivalently, we can think of the ISP’s strategy as setting an
effective κ that equals 1− λP/µ, or virtually restricting the
domain of κ to be upper-bounded by some value less than 1.
Effectively, it limits the level of service differentiations and
avoids the ordinary class being made a damaged good [11].

If we regard the set of CPs as a single player that chooses a
strategy sN , our two-stage game can be thought as a Stackel-
berg game [20], where the first-mover ISP can take the best-
responses of the CPs into consideration and derive its op-
timal strategy sI using backward induction [20]. Given any
fixed strategy sI = (κ, c), the CPs derive their best strategies
under a simultaneous-move game, denoted as (M,µ,N , sI ).
We denote sN (M,µ,N , sI ) = (O,P) as a strategy pro-
file of the CPs under the game (M,µ,N , sI ). Technically
speaking, when κ = 0 or 1, there is only one service class.
When κ = 0, we define the trivial strategy profile as sN =
(N , ∅); when κ = 1, although there is not a physical or-
dinary class, we define the trivial strategy profile as sN =
(O,N\O), with O = {i : vi ≤ c, i ∈ N} which de-
fines the set of CPs that cannot afford to join the premium
class. Based on Lemma 2, we can define an equilibrium in
the sense of a Nash or competitive equilibrium. To break a
tie, we assume that a CP always chooses to join the ordinary
service class when both classes provide the same utility.

Definition 2. A strategy profile sN = (O,P) is a Nash
equilibrium of a game (M,µ,N , sI ), if

vi − c
vi


≤ ρi

(
(1− κ)ν,O

)
/ρi
(
κν,P ∪ {i}

)
if i ∈ O,

> ρi
(
(1− κ)ν,O ∪ {i}

)
/ρi
(
κν,P

)
if i ∈ P.

3.4 Competitive Equilibrium
Notice that a CP’s joining decision to a service class might

increase the congestion level and reduce the throughput of
flows of that service class; however, if the number of CPs in
a service class is big and no single CP’s traffic will dominate,



an additional CP i’s effect will be marginal. Analogous to
the pricing-taking assumption [20] in a competitive market,
we make a throughput-taking assumption as follows.

Assumption 3. Any CP i /∈ N makes an estimate ρ̃i(ν,N )
on its ex-post per capita throughput ρi(ν,N ∪ {i}) in the
decision-making under a competitive equilibrium.

Based on the above throughput-taking assumption, we can
define a competitive equilibrium of the CPs as follows.

Definition 3. A strategy profile sN = (O,P) is a competi-
tive equilibrium of a game (M,µ,N , sI ), if

vi − c
vi


≤ ρi

(
(1− κ)ν,O

)
/ρ̃i
(
κν,P

)
if i ∈ O,

> ρ̃i
(
(1− κ)ν,O

)
/ρi
(
κν,P

)
if i ∈ P.

(7)

The competitive equilibrium depends on how each CP i
calculates ρ̃i = di(θ̃i)θ̃i, which boils down to an estima-
tion of the ex-post throughput θ̃i. This estimation depends
on the rate allocation mechanism being used. For exam-
ple, under the max-min fair mechanism, CP i can expect
an achievable throughput of θN = max{θj : j ∈ N}.
Thus, CP i can take this throughput as given and estimate
that θ̃i = min{θ̂i, θN }. The competitive equilibrium under
the throughput-taking assumption can be regarded as a spe-
cial type of congestion equilibrium [18], where the through-
put of the CPs indicates the level of congestion in system.

In practice, because CPs rarely know the characteristics
of all other CPs, the common knowledge assumption [20] for
reaching Nash equilibria might be questionable. Thus, we
use competitive equilibria for numerical evaluations4. Al-
though the throughput-taking assumption might not be valid
if one of the CPs’ has significant percentage of traffic, our
results do not depend on the underlying equilibrium type,
and apply for both equilibrium definitions. In the rest of the
paper, unless we specifically indicate an equilibrium to be
Nash (Definition 2) or competitive (Definition 3), we use the
term equilibrium to indicate both.

Theorem 3. If sN = (O,P) is an equilibrium of a game
(M,µ,N , sI ), it is also a same type of equilibrium (Nash or
competitive) of a game (ξM, ξµ,N , sI ) for any ξ > 0.

Although a game (M,µ,N , sI ) might have multiple equi-
libria, we do not assume that it reaches a particular equilib-
rium. However, to make equilibria under the same per capita
capacity ν consistent, we make the following assumption.

Assumption 4. If sN = (O,P) is a realized equilibrium of
a game (M,µ,N , sI ), then it is also the realized equilibrium
of the linearly scaled game (ξM, ξµ,N , sI ) for any ξ > 0.

The above assumption implies that when the ISP scales its
capacity µ linearly and smoothly with its consumer size M ,
the CPs will not diverge abruptly into another equilibrium,
if there exists any. For the game (M,µ,N , sI ) with strategy
4Please refer to [18] for evaluating a competitive equilibrium.

sI = (κ, c) and equilibrium sN = (O,P), the per capita
consumer surplus Φ is a function of ν, written as

Φ(M,µ,N , sI ) = Φ(ν,N , sI ) = Φ((1−κ)ν,O)+Φ(κν,P).

Under the above assumption, the per capita consumer and
ISP surplus will remain the same in linearly scaled games
{(ξM, ξµ,N , sI ) : ξ > 0} in equilibrium.

Lemma 3. Under Assumption 4, the per capita consumer
surplus Φ satisfies

Φ(ν,N , sI ) = Φ(ξM, ξµ,N , sI ), ∀ ξ > 0.

The above is true for the per capita ISP surplus Ψ as well.

3.5 Monopolistic ISP’s Strategy
In order to increase surplus, the ISP’s optimal strategy

would encourage more CPs to join its premium service class.

Theorem 4. In the game (M,µ,N , I ), for any 0 ≤ c < 1,
strategy sI = (κ, c) is always dominated by s1I = (1, c).
If λP < min{µ,

∑
vi≥c λ̂i}, sI is strictly dominated by s1I .

sI = (κ, c) is also dominated by s′I = (κ′, c) with κ′ > κ, if
equilibrium (O′,P ′) under s′I satisfies P ⊆ P ′.

When the monopoly ISP increases κ, it improves the con-
dition in the premium service class and in a new equilibrium,
P ′ would attract more CPs to join than P . Theorem 4 states
that the ISP would have incentives to increase κ so as to
maximize revenue. The effect of increasing κ is twofold: 1)
more capacity is allocated to the premium class for sale, and
2) the reduced capacity in the ordinary class makes more
CPs switch to the premium class. As a result, one of the
optimal strategies of the monopolistic ISP is to always set
κ = 1. This implies that, if allowed, the selfish ISP will
only provide a charged service class P without contributing
any capacity for the ordinary class O. Suppose the ISP is
allowed to set κ = 1, we first study its optimal price c and
its impact on the consumer and ISP surplus.

We use the demand function of Equation (3) and the max-
min fair mechanism for our numerical simulations. We study
a scenario of 1000 CPs, whose αi, θ̂i and vi are uniformly
distributed within [0, 1] and βi is uniformly distributed within
[0, 10]. To satisfy all unconstrained throughput for the CPs,
the per capita capacity needs to be around ν = 250. Since
throughput-sensitive applications, e.g. Skype, bring more
utility to consumers in reality, we consider the consumer
utility φi that is uniformly distributed within [0, βi] (the uni-
form distribution biases utility towards CPs with high through-
put sensitivity while introducing some randomness)5.
Figure 4 plots Ψ and Φ versus the pricing strategy c when ν
ranges from 20 to 200. We observe three pricing regimes.

1. When c is small, Ψ increases linearly, i.e. Ψ = cν.
This happens when most of the CPs can afford to join

5More experiments that confirm our results can be found in [19].
Although the parameters do not come from real CPs, our purpose is
to show qualitative trends in general. Our theoretical results do not
come from or depend on the particular setting of the experiments.



Figure 5: Per capita surplus Ψ and Φ under various strategies sI = (κ, c) versus per capita capacity ν.

Figure 4: Per capita surplus Ψ and Φ under κ = 1.

the service and the entire capacity is fully utilized, i.e.
λP = µ, resulting a high level of consumer surplus Φ.

2. When c is large, Ψ drops sharply. This happens when
only a small set of CPs can afford to join the service
and the capacity is largely under-utilized, i.e. λP < µ,
resulting a sharp drop in Φ accordingly.

3. When ν is abundant, e.g. ν = 200, there exists a
pricing region where Ψ increases sub-linearly and Φ
decreases. Consequently, the ISP’s optimal strategy
(c ≈ 0.45) could intentionally keep more CPs away
from the (only) service class and under-utilizes the ca-
pacity, which hurts the consumer surplus Φ.

Figure 5 illustrates Ψ and Φ under various strategies sI =
(κ, c) versus ν ranging up to 500, which doubles the required
capacity to serve all unconstrained throughput. For a fixed c
in each column, we identify three equilibrium regimes.

1. When ν is small, Ψ increases linearly and Φ increases
accordingly. This happens when the premium class ca-
pacity is fully utilized, i.e. λP = κµ.

2. When ν keeps increasing, Ψ starts to decrease and Φ
increases at a much slower rate. This happens when the
premium class capacity is not fully utilized, i.e. λP <
κµ, and more CPs move from P to O.

3. When ν is large, Ψ drops to zero for small values of
κ, where Φ is maximized. This happens when P = ∅
and O’s capacity is abundant enough to serve all CPs’
unconstrained throughput. However, if κ is big, e.g.
κ = 0.9, it guarantees some revenue for the ISP, but
reduces the consumer surplus from its maximum.

Further, under a fixed ν, we observe that higher κ induces
higher revenue for the ISP (Theorem 4), even if that results in
an under-utilization of the premium class capacity and hurts
the consumer surplus. When comparing different prices c,
we observe that larger values of c make the premium class
becomes under-utilized faster, because fewer CPs can afford
to join the premium class when necessary. However, when
reaching the turning point where congestion starts to be re-
lieved, κ plays a major role, under which Φ’s rate of increase
depends on the amount (1− κ)µ of capacity allocated to O.

Regulatory Implications: In the monopolistic scenario, the
ISP would maximize κ for the charged service (Theorem 4).

In the case where the system capacity is abundant, i.e.
large values for ν, the ISP would provide more capacity for
the premium class than needed, making the premium capac-
ity under-utilized. It also implies that the ordinary service
class would be made a damaged good [11], where the ISP
would have the incentive to degrade service quality, avoid
network upgrades or investments for the non-charged ser-
vice class. Consequently, the consumer surplus is greatly



hurt by the ISP’s selfish interest. To remedy this problem,
the network neutrality principle should be imposed to some
extent to protect consumer surplus. In other words, the non-
neutral service differentiation should be limited. The bot-
tom line is that capacity under-utilization should be avoided,
which implies that non-work-conserving policies of the ISP
should not be allowed. Technically speaking, by imposing a
work-conserving policy, we put an upper-bound κ(c) for the
capacity of the premium class, which can be expressed as a
function of the price c. Effectively, the ordinary class would
obtain (1− κ(c))µ amount of capacity.

In the case where the system capacity is scarce, i.e. small
values for ν, or under a work-conserving policy, although
the system capacity would not be under-utilized, whether the
ISP’s pricing strategy is beneficial for consumer surplus is
still uncertain. In general, an ISP would prefer to set a high
price c so as to obtain high surplus cλP from the premium
class. Therefore, the consumer surplus depends on whether
the CPs in the premium class would provide higher utility
for the consumers, i.e. high φi values for all i ∈ P . On the
one hand, if the price c is too high, it might limit/reject incu-
bative CPs that are potentially beneficial for the consumers,
but not yet profitable (low values of vi). On the other hand,
without enough price differentiation, more useful and prob-
ably more profitable CPs cannot provide better services so
as to increase the consumer surplus. In the next section, we
will show that the problem can be solved by introducing a
so-called Public Option ISP for ISP competition.

4. OLIGOPOLISTIC ISP ANALYSIS
In the previous section, we concentrated on a monopolis-

tic ISP I with capacity µ and a strategy sI = (κ, c). In
this section, we extend our model to a set I of oligopolis-
tic ISPs, each I ∈ I of which has a capacity µI and uses
a strategy sI = (κI , cI ). We define µ =

∑
I∈I µI as the

total system capacity and γI = µI /µ as the capacity share
of ISP I . Our oligopolistic models have two major differ-
ences from the monopolistic model. First, since consumers
connect to the Internet via one of the ISPs, they might make
strategic decisions on which ISP to subscribe to. We denote
MI as the consumer size of ISP I , where

∑
I∈IMI = M ,

and mI = MI /M as its market share. Second, besides the
ISP surplus, a more important objective of any ISP I is to
maximize its market share mI . This is because the core
revenue of the last-mile ISPs relies on the subscription pay-
ments of the users and the market share is also what the last-
mile ISPs can leverage to generate the CP-side revenue in
the first place.

Similar to the monopolistic ISP game (M,µ,N , I ), we
denote (M,µ,N , I) as the two-stage oligopolistic ISP game,
under which the set of ISPs I choose their strategies sI =
{sI : I ∈ I} simultaneously in the first stage, and then the
set of CPsN and theM consumers make their strategic deci-
sions simultaneously in a second-stage game (M,µ,N , sI).
In the second-stage game, we denote sM = {MI : I ∈ I}

as the consumers’ strategy that determines all ISPs’ market
shares, and sN = {sIN = (OI ,PI ) : I ∈ I} as the CPs’
strategy, where each sIN denotes the decision made at ISP I .

We denote ΦI as the per capita consumer surplus achieved
at ISP I , defined as ΦI (MI , µI ,N , sI ) = ΦI (νI ,N , sI ) =
Φ((1 − κI )νI ,OI ) + Φ(κI νI ,PI ), where νI = µI /MI .
We assume that consumers will move towards the ISPs that
provide higher per capita surplus as follows.

Assumption 5. Under any fixed strategy profile sI and sN ,
for any pair of ISPs I , J ∈ I, consumers will move from I
to J if ΦI < ΦJ . This process stops when ΦI = ΦI ∀I ∈ I
for some system-wise per capita consumer surplus ΦI .

Although consumers might not be totally elastic or/and
accessible to all available ISPs in practice, our assumption
takes a macro perspective and assumes that if an ISP pro-
vides worse user-experience on average, there must exist
some consumers who can and will move to other better ISPs.
Based on Assumption 5, we define the equilibrium of the
second-stage game (M,µ,N , sI) as follows.

Definition 4. A strategy profile (sM , sN ) is an equilibrium
of the multi-ISP game (M,µ,N , sI) if 1) for any I ∈ I, sIN
is an equilibrium of the single-ISP game (MI , µI ,N , sI ),
and 2) ΦI = ΦJ for any I , J ∈ I.

4.1 Duopolistic ISP Game
We first study a two-ISP game with I = {I , J}. Before

that, we formally define a Public Option ISP as follows.

Definition 5. A Public Option ISP PO is an ISP that uses a
fixed strategy sPO = (0, 0) and does not divide its capacity
or charge the CPs.

Figure 6: A two-ISPs model.

We assume that ISP J is a Public Option ISP. Figure 6 il-
lustrates an example of the above duopolistic model, where
both ISPs have the same amount of capacity, the CPs choose
a service class at ISP I and the consumers move between the
ISPs. The above setting of the duopolistic game applies for
two real scenarios. First, it models the competition between
two ISPs, where one of them is actively a Public Option ISP
and the other actively manages a non-neutral service differ-
entiation. Second, it also models a situation where a single
ISP owns the entire last-mile capacity µ; however, by reg-
ulation [3], it is required to lease its capacity to other ser-
vice providers that do not own the physical line. The leasing



ISP might be technologically limited from providing service
differentiation on the leased capacity, but actually have cus-
tomers in the region. For both scenarios, we will answer
1) whether the non-neutral ISP could obtain substantial ad-
vantages over the neutral Public Option ISP (or whether the
Public Option could survive under competition), and 2) how
the competition is going to impact the consumer surplus.

We study the same set of 1000 CPs as in the previous sec-
tion. We further assume that µI = µJ = µ/2 in our numeri-
cal example. We take the same route to numerically evaluate
the competitive equilibria of the CPs under κI = 1.

Figure 7: ISP I ’s market share mI and per capita sur-
plus ΨI and per capita consumer surplus Φ under κ = 1.

Figure 7 plots ISP I ’s market sharemI , per capita surplus
ΨI , defined as ΨI = c

M λPI
, and Φ versus ISP I ’s charge

cI . By the same reasons as before, the revenue of I increases
linearly when its capacity is fully utilized, i.e. λPI

= κIµI .
However, we observe three differences: 1) after λPI drops
below κIµI , ΨI drops to zero much steeper than before, 2)
ΦI does not drop down to zero when cI increases to 1, and
3) the maximum ΨI is lower in the case of ν = 200 than
in the case of ν = 150, which means that under κI = 1,
capacity expansion could reduce ISP I ’s revenue from the
CPs. All these observations can be explained by checking
the market share of ISP I in the upper sub-figure. The mar-
ket share mI starts to increase with cI until ISP I ’s capacity
becomes under-utilized, i.e. λPI < κIµI . Afterwards, the
market share drops dramatically. This explains that under
congestion, i.e. λPI = κIµI , by increasing cI , ISP I re-
stricts the number of CPs in its service class and maintains
less congestion, which could result higher consumer surplus,
and therefore, attract more consumers from ISP J . After λPI

drops below κIµI , further increase of cI reduces the num-
ber of CPs in the service as well as the total throughput. This
reduces consumer surplus, and therefore, consumers start to
depart from ISP I to J . When cI reaches 1, no CP survives
in I ’s service class and all consumers move to ISP J , which
guarantees a non-zero consumer surplus in equilibrium.

Parallel to Figure 5, Figure 8 illustrates the per capita
surplus ΨI , Φ and ISP I ’s market share mI under various
strategies sI versus ν ranging up to 500. Compared to the
monopolistic case, we observe two differences in ΨI and Φ:
1) under any strategy sI , ISP I ’s revenue drops sharply to
zero after reaching a maximum point where λPI drops be-
low κIµI , and 2) the increase of consumer surplus does not
get affected by ISP I’s strategy too much. By observing the
market share of ISP I , we identify two capacity regimes.
First, when ν is extremely scarce, the differential pricing
slightly benefits the consumer; and therefore, ISP I can ob-
tain a slightly larger percentage of the market 6. Second,
when the per capita capacity ν is abundant, ISP I obtains at
most an equal share of the market if it uses a small value of
κ. Under this case, the capacity under O can support half
of the population’s unconstrained throughput and in fact, the
premium class is empty, i.e. P = ∅. As a result, ISP I fol-
lows the Public Option ISP by using some kind of neutral
policy (small κ) and maximizes the consumer surplus.

Theorem 5. In the duopolistic game (M,µ,N , I), where
an ISP J is a Public Option, i.e. sJ = (0, 0), if sI maximizes
MI under an equilibrium (sM , sN ), then the per capita con-
sumer surplus ΦI is also maximized under that equilibrium.

Theorem 5 implies that the existence of a Public Option
ISP is superior to a network neutral situation, where sI =
(0, 0). This is because given the freedom of choosing an
optimal sI to maximize market share, ISP I ’s strategy will
induce a maximum consumer surplus under sJ = (0, 0).

Based on our results, we answer the previously raised
two questions: 1) The non-neutral ISP cannot win substan-
tially over the Public Option ISP, which can still be profitable
under the competition, confirming the independent findings
from [12]. 2) Regardless of the capacity size, the compe-
tition induces higher consumer surplus in equilibrium than
under network neutral regulations. The strategic ISP could
obtain slightly over 50% of the market; however, if it differ-
entiates services in the way that hurts consumer surplus, its
market share will drop sharply.

Regulatory Implications: In the duopolistic scenario with
one of the ISPs being a Public Option, contrary to the mo-
nopolistic case, the non-neutral strategy sI is always aligned
with the consumer surplus (Theorem 5). This result shows
an interesting alternative to remedy the network neutrality
issue under a monopolistic market. Instead of enforcing
the ISP to follow network neutrality, the government (or a
private organization, if it can be profitable [12]; otherwise,
the government would bear a social cost so as to achieve
the maximization of consumer surplus) can provide the con-
sumers with a Public Option ISP that is neutral to all CPs.
Given such a neutral entity in the market, consumers will
move to their public option if it provides higher consumer
6By limiting the number of CPs in P , the proportion of throughput-
sensitive traffic is larger, which yields higher consumer surplus.



Figure 8: Per capita surplus Ψ, Φ and market share mI under various strategies sI = (κ, c) vs. per capita capacity ν.

surplus than the non-neutral ISP that uses differential pric-
ing to the CPs. Meanwhile, in order to maximize its market
share, the non-neutral ISP will adapt its strategy to maxi-
mize consumer surplus. In conclusion, the introduction of a
Public Option ISP is superior to network neutral regulations
under a monopolistic market, since its existence aligns the
non-neutral ISP’s selfish interest with the consumer surplus.

4.2 Oligopolistic ISP Competition Game
After analyzing the duopolistic game between a non-neutral

and a Public Option ISP, we further consider a deregulated
market under which all ISPs make non-neutral strategies.
We consider a multi-ISP game under which each ISP I chooses
a strategy sI to maximize its market share mI .

We first consider a homogenous strategy s = (κ, c), which
can be a preferred or regulated strategy, used by all ISPs.

Lemma 4. If sI = {sI = s : I ∈ I} for some strategy
s = (κ, c), then {mI = γI , s

I
N = sN (M,µ,N , s) : I ∈ I}

is an equilibrium of the game (M,ν,N , s).
Lemma 4 shows a symmetric equilibrium where market

share mI is proportional to capacity µI . It implies that ISPs

will have incentives to invest and expend capacity so as to
obtain a larger market share. This equilibrium could be reached
when ISPs simply mimic one another’s strategy.

A further question is whether the competition of market
share among the ISPs would induce equilibria where con-
sumer surplus is high. To address this issue, we first define

εsI = sup{Φ(ν1,N , sI )− Φ(ν2,N , sI ) : ν1 < ν2}. (8)

We denote s−I as the strategy profile of the ISPs other than
ISP I , and define δsI = sup{m1 − m2 : Φ(ν1,N , sI ) ≤
Φ(ν2,N , sI )} and εs−I = max{εsJ : J ∈ I\{I }}.
Theorem 6. Under any fixed strategy profile s−I , if I ’s strat-
egy sI is a best-response to s−I that maximizes its market
share mI in the game (M,µ,N , sI), then sI is a εs−I -best-
response for the per capita consumer surplus ΦI , i.e.

ΦI ≥ Φ′I − εs−I , ∀s′I 6= sI .

Moreover, if sI is a best-response that maximizes consumer
surplus ΦI in the game (M,µ,N , sI), then sI is a δsI -best-
response for the market share mI , i.e.

mI ≥ m′I − δsI , ∀s′I 6= sI .



Theorem 6 states that, given the fixed strategies of all
other ISPs, an ISP’s best-responses to maximize 1) its mar-
ket share and 2) the consumer surplus are closely aligned.
Parallel to Theorem 5, it shows that an ISP’s selfish interest
is, although not perfectly, aligned with the consumer surplus
under competition. Technically, the εs−I imperfection is due
to the discontinuity of Φ(ν,N , sI ) in ν when CPs move be-
tween service classes. When εs−I approaches zero, Φ be-
comes non-decreasing and the objectives of market share
maximization and consumer surplus maximization converges.
Definition 6. A strategy profile sI = {sI : I ∈ I} is a mar-
ket share Nash equilibrium of the game (M,µ, sN , I) if for
any I ∈ I and any strategy s′I 6= sI , the market share mI

satisfiesmI (s′I , s−I) ≤ mI (sI , s−I). Similarly, sI is a con-
sumer surplus Nash equilibrium of the game (M,µ, sN , I)
if for any I ∈ I and any strategy s′I 6= sI , the consumer
surplus ΦI satisfies ΦI(s′I , s−I) ≤ ΦI(sI , s−I).
Corollary 1. If sI is a market shares Nash equilibrium of
the oligopolistic game (M,µ,N , I), then it is also a con-
sumer surplus εsI -Nash equilibrium, where εsI = max{εsI :
I ∈ I}. Conversely, if sI is a consumer surplus Nash equi-
librium, then it is also a market share δsI -Nash equilibrium,
where δsI = max{δsI : I ∈ I}.

As a direct consequence of Theorem 6, Corollary 1 ad-
dresses that the objectives of maximizing market share and
maximizing consumer surplus are also closely aligned under
Nash equilibria of the oligopolistic game (M,µ,N , I).

Regulatory Implications: In the oligopolistic scenario, all
ISPs’ optimal strategies are closely aligned with the con-
sumer surplus. Even if some ISPs use sub-optimal decisions,
any remaining ISPs’ optimal strategy would still nearly max-
imize the system consumer surplus (Theorem 6). This align-
ment with consumer surplus also sustains under Nash equi-
libria of the multi-ISP competition game (Corollary 1). Un-
der this case, the existence of a Public Option ISP would be
sub-optimal compared to the efficient Nash equilibria; how-
ever, its damage is very limited because the Public Option
ISP would be the only one that uses a sub-optimal strat-
egy, where all other ISPs can adapt to optimal strategies and
more consumers will move from the Public Option to bet-
ter and non-neutral ISPs. Of course, there is no reason why
the Public Option cannot perform the price discrimination
that aligns with the consumer surplus, which induces an effi-
cient Nash equilibrium in theory. However, implementing a
neutral Public Option will avoid mistakes or accidental “col-
lusion” with the existing ISPs in the market. In contrast, if
network neutral regulations are enforced, all ISPs will have
to perform a neutral but inefficient strategy, which could re-
duce the consumer surplus substantially. In conclusion, net-
work neutral regulations are not needed and should not be
imposed under a competitive market; however, regulations
should enforce the ISPs to be transparent in the sense that
ISPs’ capacity and strategies should be common knowledge
to all ISPs, which would help the market converge to an ef-
ficient equilibrium in an easier manner.

5. RELATED WORK
Despite of its short history, a lot of of work on network

neutrality can be found in computer science [10, 22, 6, 12,
24, 16], economics [8, 14], and law [26, 25] literature.

From an economics perspective, Sidak [25] looked at the
network neutrality regulation from consumer welfare’s point
of view and argued that differential pricing is essential to the
maximization of welfare. We also focus on the consumer
welfare and seek the conditions under which ISPs’ strategy
would be aligned with consumer welfare. Choi et al. [8]
analyzed the effect of neutral regulations on ISPs’ invest-
ment incentive and found that capacity expansion decreases
the sale price of the premium service. This coincides with
our finding under the monopolistic scenario; however, under
oligopolistic competitions, we find that ISPs do have incen-
tives to increase capacity so as to maximize market share.

From an engineering perspective, Dhamdhere et al. [12]
took a profitability perspective and concluded that the ISPs
can still survive without violating network neutrality. This
supports our proposal of a Public Option ISP that can be
implemented and sustained by either a government or a pri-
vate organization. Crowcroft [10] reviewed various techni-
cal aspects and concluded that “perfect” network neutrality
has never been and should not be engineered. We share the
same view that under competition, network neutrality regu-
lation is not necessary; while, under a monopolistic market,
a non-regulatory alternative can be a Public Option ISP that
incentivizes the existing ISP to maximize consumer surplus.

From a modeling point of view, one departure in our ap-
proach from previous analyses is the way we model traffic
and congestion in the network. Traditionally, the M/M/1
formula for delay has been used to abstract out traffic and
congestion [8] in economic analyses. Our view is that a more
appropriate approach is to more faithfully model closed loop
protocols like TCP that carry most of the traffic on the Inter-
net. Musacchio et al. [22] considered advertising CPs and
also used a two-stage model under which ISPs move first.
Their focus was primarily on a monopolistic ISP. Caron et
al. [6] modeled differentiated pricing for only two applica-
tion types. Shetty et al. [24] used a similar PMP-like two-
class service differentiations and considered capacity plan-
ning, regulation as well as differentiated pricing to consumers.
Our differentiated pricing focuses on the CP-side, where the
CPs choose service classes and consumers choose ISPs. Yuk-
sel et al. [27] also used a two-class service model, but fo-
cused on transit ISPs and quantified the equivalent overpro-
visioning cost when best-effort is used. Our work focuses on
the last-mile eyeball ISPs and consumer surplus.

From a regulatory aspect, Wu [26] surveyed the discrimi-
natory practices, e.g. selectively dropping packets, of broad-
band and cable operators and proposed solutions to manage
bandwidth and police ISPs so as to avoid discrimination.
Shetty et al. [24] proposed a simple regulatory tool to re-
strict the percentage of capacity the ISPs dedicate to a pre-
mium service class. Economides et al. [13] compared var-



ious regulations for quality of service, price discrimination
and exclusive contracts, and drew conclusions on desirable
regulation regimes. Ma et al. [16, 17] considered the ISP
settlement aspect and advocated the use of Shapley value
as profit-sharing mechanism to encourage ISPs to maximize
social welfare. Our proposal of a Public Option ISP, on the
other hand, is an non-regulatory alternative to the network
neutral regulations.

6. DISCUSSION AND CONCLUSIONS
In a monopolistic market, the ISP’s selfish non-neutral

strategy hurts consumer surplus. Although network neutral
regulation might improve consumer surplus, we find a better
non-regulatory alternative which is to introduce a Public Op-
tion ISP. The existence of a Public Option ISP incentivizes
the existing ISP’s strategy to be aligned with consumer sur-
plus, and achieve higher consumer surplus than that under
network neutral regulations. In an oligopolistic competi-
tion, market forces influence ISPs’ non-neutral strategies to
be aligned with consumer surplus and ISPs will get mar-
ket shares proportional to their capacities. Although net-
work neutral regulations are not needed and should not be
imposed under oligopolistic scenarios, we envision that the
Public Option could be implemented as the safety net, or the
last/back-up choice, for the consumers if the existing com-
mercial ISPs’ strategy hurt consumer surplus.

Theoretically speaking, the existence of a Public Option
ISP will be effective if µPO > 0, regardless of how large its
capacity is. This is because, in the idealized game model,
we assume that an ISP’s sole objective is to maximize its
market share. In practice, ISPs will trade off their market
share with potential revenue from the CPs, which depends
on the characteristics of the CPs, e.g. their profit margin and
throughput sensitivity, and the condition of the system, e.g.
the available capacity and congestion level. Moveover, ISPs
might be able to use the CP-side revenue to subsidize the
service fees for consumers so as to increase market share.
In general, the more ISPs compete freely in a market, the
less the market needs a public option and the less capacity
we need to deploy for the Public Option ISP to be effective.
In the most hostile case where only one monopolistic ISP
exists in the market, a Public Option ISP could be effective
as long as it has a capacity that is larger than the percent-
age of consumers that the monopoly cannot afford to lose.
For example, if 10% of the market share is critical for the
monopoly, implementing 10% of its capacity would be able
to at least “steal” 10% of consumers from the monopoly if it
follows a network neutral strategy. If the monopoly applies
a worse than neutral strategy for consumer surplus, it will
lose even more. In that sense, although 10% of the capac-
ity will not be operating optimally, its existence incentivizes
the remaining 90% maximizing for consumer surplus, which
could result in much better consumer surplus than requiring
the monopoly to follow network neutral regulations.

In summary, we believe our paper sheds new light on and

informs the continuing debate on the role of regulation on
the Internet and our introduction of the Public Option ISP is
an important contribution.
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