Congestion Equilibrium for Differentiated Service Classes

Richard T. B. Ma
School of Computing
National University of Singapore

Allerton Conference 2011
Outline

- Characterize Congestion Equilibrium
- Modeling Differentiated Service Classes
- Solve Congestion Equilibrium
- Applications
Competitive Market Equilibrium

- In a competitive economy, buyers decide how much to buy and producers decide how much to produce.

- A market competitive equilibrium is characterized by price:
 - Higher prices induce lower demand/consumption
 - Higher prices induce higher supply/production

- Prices can be thought of indicators of congestion in system ➔ a congestion equilibrium generalization.
An Internet Ecosystem Model

- Three parties system (M, μ, \mathcal{N}): 1) Content Providers (CPs), 2) ISPs, and 3) Consumers.

- μ: capacity of a bottleneck ISP.
- λ_i: throughput rate of CP $i \in \mathcal{N}$.
- M: number of end customers using the ISP.
What drives traffic demands?

- User drives traffic rates from the CPs.
- User demand depends on the level of system congestion denoted as Γ.

- Given a fixed congestion Γ, we characterize
 $$\lambda_i(M, \mu, N) = \lambda_i(\Gamma) = \alpha_i M \rho_i(\Gamma)$$

- Assumption 1: $\rho_i(\cdot)$ is non-negative, continuous and non-increasing on $[0, \tilde{\theta}_i]$ with
 $$\rho_i(0) = \tilde{\theta}_i \text{ and } \lim_{\Gamma \to \infty} \rho_i(\Gamma) = 0.$$
Unconstrained Demand $\hat{\theta}_i$

- **Google Search**
 - Search Page 20 KB
 - Search Time .25 sec
 - Unconstrained demand 600 KBps

- **Netflix**
 - HD quality Stream
 - Unconstrained demand 6 MBps
Interpretation of $\rho_i(\cdot)$

$$\lambda_i(\Gamma) = \alpha_i M \rho_i(\Gamma)$$

- α_i is the % of users that are interested in content of CP i.

- $\rho_i(\Gamma)$ can be interpreted as the per-user achievable throughput rate, which can be written as

 $$\rho_i(\Gamma) = d_i(\Gamma) \theta_i(\Gamma),$$

 where $\theta_i(\Gamma) \in [0, \hat{\theta}_i]$, is the throughput of an active user and $d_i(\Gamma) \in [0,1]$ is the % of users that are active under Γ.
What affects congestion Γ?

- Let $\Lambda = (\lambda_1, \dots, \lambda_N)$ be the rates of the CPs.
- Γ of system (M, μ, \mathcal{N}) is characterized by
 - Throughput rates Λ and system capacity μ
 - Higher throughput induces severer congestion
 - Larger capacity relieves congestion

- Assumption 2: For any $\mu_1 \leq \mu_2$ and $\Lambda_1 \leq \Lambda_2$, $\Gamma(\cdot)$ is a continuous function that satisfies $\Gamma(\Lambda, \mu_1) \geq \Gamma(\Lambda, \mu_2)$ and $\Gamma(\Lambda_1, \mu) \leq \Gamma(\Lambda_2, \mu)$.
Unique Congestion Equilibrium

Definition: A pair \((\Lambda, \Gamma) \) is a congestion equilibrium of the system \((M, \mu, \mathcal{N}) \) if
\[
\lambda_i(M, \mu, \mathcal{N}) = \alpha_i M \rho_i(\Gamma) \quad \forall i \in \mathcal{N} \text{ and } \Gamma = \Gamma(\Lambda, \mu)
\]

Theorem 1: Under assumption 1 and 2, system \((M, \mu, \mathcal{N}) \) has a unique congestion equilibrium.

Intuition:
- A1: decreasing monotonicity of demand
- A2: increasing monotonicity of congestion
 - System balances at a unique level of congestion
Further Characterization

- Assumption 3 (Independent of Scale): \(\Gamma(\Lambda, \mu) = \Gamma(\xi \Lambda, \xi \mu) \ \forall \xi > 0 \).

- Theorem 2: Under assumption 1 to 3, if \((\Lambda, \mu)\) is the unique equilibrium of \((M, \mu, N)\), then for any \(\xi > 0\), \((\xi \Lambda, \mu)\) is the unique equilibrium of \((\xi M, \xi \mu, N)\).

- Equilibrium \((\Lambda, \Gamma)\) can be expressed as a function of the per capita capacity \(\nu \equiv \frac{\mu}{M}\).
Equilibrium as a Function of ν

- Congestion in equilibrium $\Gamma_\mathcal{N}(M, \mu) \overset{\text{def}}{=} \Gamma(M, \mu, \mathcal{N})$ is a homogenous function of degree 0, i.e.
 \[\Gamma_\mathcal{N}(\nu) = \Gamma_\mathcal{N}(\xi M, \xi \mu) \quad \forall \xi > 0. \]

- $\Gamma_\mathcal{N}(\nu)$ is a continuous non-increasing function of ν that satisfies
 \[\Gamma_\mathcal{N}_1(\nu) \leq \Gamma_\mathcal{N}_2(\nu) \quad \forall \mathcal{N}_1 \subseteq \mathcal{N}_2. \]

- Rates in equilibrium $\Lambda_\mathcal{N}(M, \mu) \overset{\text{def}}{=} \Lambda(M, \mu, \mathcal{N})$ is a homogenous function of degree -1, i.e.
 \[\Lambda_\mathcal{N}(M, \mu) = \xi^{-1} \Lambda_\mathcal{N}(\xi M, \xi \mu) \quad \forall \xi > 0. \]
Interpretations of Congestion

- The concept of congestion is very broad
 - depends on the system resource mechanism
 - can be functions of delay, throughput and etc.

1. System mechanism: $M/M/1$, FIFO queue; Congestion metric: queueing delay;

$$\Gamma(\Lambda, \mu) = \Gamma_N = \frac{1}{\mu - \lambda_N}$$
Interpretations of Congestion

2. System mechanism: Proportional rate control, i.e. $\theta_i: \theta_j = \hat{\theta}_i: \hat{\theta}_j$ for all $i, j \in \mathcal{N}$; Congestion metric: throughput ratio;
$$\Gamma(\Lambda, \mu) = \Gamma_{\mathcal{N}} = \frac{\hat{\theta}_i}{\theta_i} - 1 \forall i \in \mathcal{N}$$

3. System mechanism: End-to-end congestion control, e.g. max-min fair mechanism; Congestion metric: function of throughput;
$$\Gamma(\Lambda, \mu) = \Gamma_{\mathcal{N}} = \frac{1}{\max\{\theta_i: i \in \mathcal{N}\}}$$
PMP-like Differentiations

- κ percentage of capacity dedicated to premium content providers
- c per unit traffic charge for premium content

<table>
<thead>
<tr>
<th>Class</th>
<th>Capacity</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium Class</td>
<td>$\kappa \mu$</td>
<td>$c $/unit traffic</td>
</tr>
<tr>
<td>Ordinary Class</td>
<td>$(1 - \kappa) \mu$</td>
<td>0</td>
</tr>
</tbody>
</table>
Two-stage Game \((\mathcal{M}, \mu, \mathcal{N}, \mathcal{I})\)

- **Players:** ISP \(\mathcal{I}\) and the set of CPs \(\mathcal{N}\)
- **Strategies:** ISP chooses a strategy \(s_{\mathcal{I}} = (k, c)\).
 CPs choose service classes with \(s_{\mathcal{N}} = (\mathcal{O}, \mathcal{P})\).
- **Rules:** 1st stage, ISP announces \(s_{\mathcal{I}}\). 2nd stage, CPs simultaneously reach a joint decision \(s_{\mathcal{N}}\).
- **Outcome:** set \(\mathcal{P}\) of CPs shares capacity \(\kappa \mu\)
 and set \(\mathcal{O}\) of CPs share capacity \((1- \kappa)\mu\).
Payoffs (Surplus)

- **Content Provider Payoff:**
 \[u_i(\lambda_i) = \begin{cases}
 v_i \lambda_i & \text{if } i \in \Omega, \\
 (v_i - c) \lambda_i & \text{if } i \in \mathcal{P}.
\end{cases} \]

- **ISP Payoff:**
 \[c \sum_{i \in \mathcal{P}} \lambda_i = c \lambda_{\mathcal{P}} \]

- **Consumer Surplus:**
 \[\sum_{i \in \mathcal{N}} \phi_i \lambda_i \]
CPs’ strategy

- Choose which service class to join
- Congestion-taking assumption: Competitive congestion equilibrium in each service class

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1-\xi)n</td>
<td>$0</td>
</tr>
</tbody>
</table>

\[c \in [0, \infty) \] for all unit traffic
Best response, Nash equilibrium

- Lemma: Given $(\mathcal{O}, \mathcal{P})$, CP i's best response to join the premium service class if
 \[(v_i - c) \rho_i(\Gamma_{\mathcal{P}\cup\{i\}}(\kappa v)) \geq v_i \rho_i(\Gamma_{\mathcal{O}\cup\{i\}}((1 - \kappa) v)).\]

- Nash equilibrium:
 \[
 \frac{v_i - c}{v_i} \begin{cases}
 \leq \frac{\rho_i(\Gamma_{\mathcal{O}}((1 - \kappa) v))}{\rho_i(\Gamma_{\mathcal{P}\cup\{i\}}(\kappa v))} & \text{if } i \in \mathcal{O}, \\
 > \frac{\rho_i(\Gamma_{\mathcal{O}\cup\{i\}}((1 - \kappa) v))}{\rho_i(\Gamma_{\mathcal{P}}(\kappa v))} & \text{if } i \in \mathcal{P}.
 \end{cases}
 \]
Competitive equilibrium vs Nash

- Under the congestion-taking assumption:
 - Competitive equilibrium:
 \[
 \frac{v_i - c}{v_i} \begin{cases}
 \leq & \frac{\rho_i(\Gamma_\mathcal{O}((1 - \kappa)v))}{\rho_i(\Gamma_\mathcal{P}(\kappa v))} & \text{if } i \in \mathcal{O}, \\
 > & \frac{\rho_i(\Gamma_\mathcal{O}((1 - \kappa)v))}{\rho_i(\Gamma_\mathcal{P}(\kappa v))} & \text{if } i \in \mathcal{P}.
 \end{cases}
 \]

- Advantages of competitive equilibrium:
 - Does not assume “common knowledge”
 - Like the price-taking assumption, valid for large number of players (CPs)
Solving Competitive Equilibrium

- Each CP has a binary choice, state space size is $2^{|\mathcal{N}|}$, exhaustive search not feasible

- If for any Γ_1 and Γ_2, $\rho_i(\cdot)$ satisfies
 \[\frac{\rho_i(\Gamma_1)}{\rho_i(\Gamma_2)} = F_i(G(\Gamma_1, \Gamma_2)), \]
 where F_i is continuous and invertible

- Sort the CPs by $F_i^{-1}\left(\frac{v_i-c}{v_i}\right)$ and use binary search to find a competitive equilibrium
Solving Competitive Equilibrium

- A general searching method in the “congestion space”

 - Initialize at step 0, assume the congestion in service classes to be \(\Gamma[0] = \left(\Gamma_0^0, \Gamma_P^0 \right) \).

 - At step \(t \), take previous congestion \(\Gamma[t-1] \), calculate induced equilibrium \((\mathcal{O}_t, \mathcal{P}_t) \).

 - Update the congestion level \(\Gamma[t] \) based on the previous estimate \(\Gamma[t-1] \) and the induced congestion level \((\Gamma_0^t, \Gamma_P^t) \).
Finding competitive equilibrium

1. Initialize $\Gamma[0] = (\Gamma_0^0, \Gamma_P^0)$; $t = 0$;
2. Calculate induced equilibrium $(\mathcal{O}_0, \mathcal{P}_0)$;
3. Do
4. $\Gamma'[t] = (\Gamma_0[t], \Gamma_P[t])$;
5. $\Gamma[t + 1] = \Gamma[t] + g[t](\Gamma'[t] - \Gamma[t])$;
6. $t = t + 1$;
7. Calculate the induced equilibrium $(\mathcal{O}_t, \mathcal{P}_t)$;
8. Until $t > T$ or $(\mathcal{O}_t, \mathcal{P}_t) = (\mathcal{O}_{t-1}, \mathcal{P}_{t-1})$;
9. Return $(\mathcal{O}_t, \mathcal{P}_t)$;

Parameters: gain $g[t]$ and maximum steps T.
Applications

- Congestion equilibrium serves a building block of more complicated game models
- Analyze strategic behavior of a monopolistic ISP
- Analyze strategic behavior of ISPs under oligopolistic competition
- Compare social welfare under different policy regime, e.g. Network Neutrality Vs. non neutral policies.