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1. INTRODUCTION

Aloha [1] and its slotted variation [5] have been widely de-
ployed as a medium access control (MAC) protocol for differ-
ent communication networks. Slotted-Aloha type MAC proto-
cols don’t perform carrier sensing and synchronize the trans-
missions into time-slots. These protocols are suitable for con-
trolling multiple accesses when nodes cannot sense each other.
For example, two nearby wireless LANs [2] may compete for
shared media, where nodes in one WLAN don’t notice the ex-
istence of the other WLAN. Recent development of wireless
and sensor networks urges us to re-investigate slotted-Aloha
type MAC, and to design its variations for these new trends.

Early researches had focused on the stability control [6, 4]
aspect of the protocol. One recent work [3] discussed the sta-
bility of slotted-Aloha with selfish user behaviors and perfect
information. In this paper, we focus on the performance issues
of slotted-Aloha type MAC protocol with selfish behaviors.
We propose a generalized Markov model for slotted-Aloha
protocol. Under this model, we don’t assume that each node
knows the perfect information, which is the current number
of backlogged nodes in the system. We analyze the perfor-
mance of the protocol when nodes are either cooperative or
non-cooperative. The main results are: (1) Under cooperative
selfish behaviors, one half of the medium utilization is achiev-
able. (2) Under non-cooperative selfish behaviors, medium
utilization collapses and Prisoner’s Dilemma characterizes the
situation.

2. MARKOV MODEL

In this section, we build a Markov Model for slotted-Aloha
type MAC protocol. Recall the slotted-Aloha protocol:

1. If a node has a new packet to send, it sends at the begin-
ning of the next time-slot.

2. If a node successfully transmitted its packet, it can trans-
mit a new packet in the next time-slot.

3. If a node detects a collision, it retransmits its packet in
each subsequent time-slot with probability� until the
packet is successfully transmitted.

In a slotted-Aloha protocol, each node is in either a back-
logged state or a free state. The transmission decision only
depends on the state of the node. Therefore, the decision in
slotted-Aloha for each node is actually Markovian. Suppose
nodes in the system always have packets to transmit, we have
the following notations for a generalized Markov model for
slotted-Aloha type MAC protocols.

� � Number of nodes in the system.
��� � Transmitting probability at free states for node�.
��� � Transmitting probability at backlogged states for

node�.
��� � Throughput function, which indicates the average

throughput of node�.
�� � Cost function, which indicates the average transmit-

ting probability of node� in each time-slot. If trans-
mitting a packet in a time-slot incurs a unit cost (e.g.
power consumption),�� represents the average cost
for the node.
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Figure 1: Two-node Markov Chain.

Figure 1 shows the Markov Chain for two nodes. It’s easy to
extend this Markov Chain for� nodes where the chain would
be consist of�� states. The transition matrix for the above
Markov Chain is:

� �

�
���

�� ����
�
� � � ����

�
� �

��� �����
�
� �� ��� � ����

�
� �

��� �����
�
� � �� ��� ����

�
� �

� ������ ���� ������ ���� ���

�
���

where��� � ����
�
� � ��� ������� ����.

If ��� � �
�
� � �

�
� � �

�
� 	 �, the Markov Chain is positive-recurrent.

The steady state distribution is the following:
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The corresponding throughput and cost functions of node�
are:
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3. COOPERATIVE PERFORMANCE ANALYSIS

In this section, we assume each node behaves selfishly but
cooperatively. It means that each node tries to help the sys-
tem get better performance so that they individually gain better
performance. We try to answer the following questions.

1. What are the best value of��� and��� for each node� in
order to achieve the best performance for the system.

2. What is the achievable performance lower bound for the
system?

3. How fair is the protocol treating individual nodes?

If the protocol is biased to one of the nodes, it can always
fully utilized the system by allowing only one node to transmit
at all time. If we had centralized scheduler, we could also
make fair share of the medium with���� utilization. Here,
we seek unbiased and distributed solution for all nodes, so that
they have the same performance on average.

Theorem 1. For two homogeneous nodes with ��� � ��� �
�� and ��� � ��� � ��, �
����� � ���� � ���.

Proof: Substitute with�� and��, we have
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When�� � �, ��� � � � �� � ������ � ���� and� �
��� as�� � �. By symmetry,������� � ��� as�� � �.

Next, we want to show��� � ��� for all ��� �� � ��� �
.
It’s equivalent to show the following:
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Let’s define����� � ������ �������������������.
���� � ��� � � and���� � �� � � � �. Since�����
is a cubic function of��, it’s sufficient to show that the local
maximum is less than zero, in order to prove that for any�� �
��� �
, ����� � �. At the local maximum,
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Using the above condition, it’s equivalent to show
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The maximum of the above function is
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Therefore, it’s sufficient to show
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The solution��� � �, �� � �� is consistent with our intu-
ition: when the medium is not busy, we use it; when it becomes
busy, we stop using it. Theorem 1 tells us that slotted-Aloha
should use small transmitting probabilities during the back-
logged state to get the best performance for two nodes.

Theorem 2. For � homogeneous nodes with �� � �,
�� � �, total throughput tends to �

����
.

Proof: We classify the system states as the following two. One
state is the busy state when only one of the nodes is transmit-
ting. The other state is either when the system is idle or when
collisions happen.
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Figure 2: N-node Markov Chain with ��� � �, �� � ��.

The transition probabilities are:�� � �� � ���
��� and

�� � ����� � ���
���. �� indicates the probability that all

of the� � � backlogged nodes don’t transmit.�� indicates
the probability that only one of the� nodes transmits. The
system utilization becomes:
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By Theorem 1, we can achieve a total throughput as close as
��� for two nodes. But when�� � �, nodes need to backoff
for a very long time, causing short term unfairness.

In general, after one node successfully transmitted a packet,
it obtains the medium. This node will continue to occupy the
medium for a random amount of time, say��. �� is a bi-
nomial random variable with parameter� � ��. When�� is
smaller, short term fairness of the system improves.

Suppose we want to achieve�	��
 � � for some constant
� , then� � �

����������� . Therefore, the total throughput
becomes a function of� :
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Figure 3: Throughput under different fairness conditions.

Figure 3 shows the total throughput under different values
of � and� . If we can bear with� � �, we can achieve a
total throughput close to�
� even for large� (When� �	,
the total throughput doesn’t collapse to zero.).

Theorem 3. Under any fairness condition �	��
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Right hand side is in the form of�
�

as� � 	. By
L’hospital rule,
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4. NON-COOPERATIVE GAME FRAMEWORK AND

PRISONER’S DILEMMA

In last section, we obtained the best solutions for all nodes to
achieve high system performance. In this section, we assume
that each node is only interested in its own performance, and
wants to maximize its own throughput. We first formulate this
problem as a constrained optimization problem for each node.
After solving a specific “leader-follower” game, we identify
that Prisoner’s Dilemma phenomena happens when nodes are
allowed to transmit most of the time.

4.1 Two-node Leader-follower Game
We consider two nodes� and� which have their own budget

constraints:�� 
 �� and�� 
 ��. ��� �� � ��� �
 are two

budget constants which physically restricts the average num-
ber of packets (or the battery power consumption) the node
can transmit in each time-slot. The non-cooperative leader-
follower game can be described formally as follows:

Player: The leader node� and the follower node�.
Strategy: �� = ���� � ���� for �; �� = ���� � ���� for �.
Payoff: ��� and��� for � and� respectively.
Game rule: � decides���� � ���� first.

� decides���� � ���� after knowing���� � ����.

For any given	��, the follower node� solves:

����	��� � ��� ��� ����	��� ����

������� �� � ���	��� ���� 
 ��


The leader node� solves:

��� � ��� ��� ���� ���� ���� �����

������� �� � ��� ���� ���� ����� 
 ��


4.2 Three Solution regimes
We solve the above leader-follower game for nodes who

have the same budget constraints, which is�� � ��.
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Figure 4: Throughput and cost in the leader-follower
game.

Figure 4 shows the throughput and costs of both players.
We identify three regimes in the game solutions:



1. When the budget is less than���, both players gain
the same throughput. They use up their budgets. The
throughput is mainly limited by the budget constraints,
but not the competition between these two players.

2. When the budget is between��� and���, both players
gain similar throughput. But the throughput keeps de-
creasing when the budget increases. The throughput is
limited by both the budget constraints and the competi-
tion between these two players.

3. When the budget is more than���, leader takes advan-
tage of the follower and gains much more throughput.
The competition becomes strong. But both players don’t
use up their budgets.
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Figure 5: Strategies in the leader-follower game.

Figure 5 shows the strategy solutions of both players. In
the first two solution regimes, both players use similar strate-
gies. Especially, when the budget is close to���, both players
use the best cooperative strategy and achieve a total through-
put close to���. After that, because the budget is higher, they
can afford to use more aggressive and selfish strategy to in-
crease��. When the budget is more than���, the leader’s
strategy becomes totally different. It keeps transmitting dur-
ing the backlogged state, forcing the follower to backoff.

4.3 Prisoner’s Dilemma Phenomena
We pick up one typical strategy solution in each of the solu-

tion regimes:

� No competition regime:�� � �� � �
��.
Strategy�� � �� � �� � ��� � �� �� � �
���.

� Minor competition regime:�� � �� � �
�.
Strategy�� � �� � �	 � ��� � �� �� � �
���.

� Strong competition regime:�� � �� � �
�.
Strategy�� � �� � ��� � �
��� �� � �
����
�� � �
 � ��� � �� �� � �
���.

Now, consider the following two simultaneous move game:
�� �	

�� (0.3311,0.3311) (0.0022,0.9413)
�	 (0.9413,0.0022) (0.2845,0.2845)
In the first simultaneous move game, the most efficient so-

lution is at (�� � �� ). But the symmetric Nash Equilibrium
is at (�	 � �	 ) and the payoff in equilibrium is worse than
that in the cooperative solution. Here, we see a typical Pris-
oner’s Dilemma situation. Although both players know it’s
the best for them to be at (�� � ��), strategy�	 should al-
ways be played. Because�� is strictly dominated by�	 ,
which means regardless of the strategy of the opponent,�	
is always better than�� for the player to use. This is also the
reason why the leader cannot take advantage of the follower in
the second solution regime.

�
 ��
�
 (0.2449,0.2449) (0.1263,0.3433)
�� (0.3433,0.1263) (0.0324,0.0324)
In the second simultaneous move game, each player choose

either the leader’s strategy or the follower’s strategy. The best
solution is at (�
 � �
 ). But this solution is not an equilibrium.
Each player has an incentive to move from�
 to �� to get
higher throughput. Different from the previous game, when
both players use��, the total throughput goes close to zero. In
this game, we have two asymmetric Nash equilibra instead of
one symmetric one. This is also the reason why the leader can
take advantage of the follower in the third solution regime.
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