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ABSTRACT
Internet service providers (ISPs) must interconnect to provide global
Internet connectivity to users. The payment structure of these inter-
connections are often negotiated and maintained via bilateral agree-
ments. Current differences of opinion in the appropriate revenue
model in the Internet has on occasion caused ISPs to de-peer from
one another, hindering network connectivity and availability.

Our previous work demonstrates that the Shapley value has sev-
eral desirable properties, and that if applied as the revenue model,
selfish ISPs would yield globally optimal routing and interconnect-
ing decisions. In this paper, we focus our investigation of Shapley
value in networks with two basic classes of ISP: content and eye-
ball. In particular, we analyze the revenue distribution between
ISPs with elastic and inelastic customer demands, and calculate the
bilateral payments between ISPs that implement the Shapley rev-
enue. Our results illustrate how ISP revenues are influenced by
different demand models. In particular, the marginal revenue lost
by de-peering for an eyeball ISP with inelastic demand is inversely
proportional to the square of its degree of connectivity to content
ISPs. In practice, these results provide a guideline for ISPs, even in
peering relationships, to negotiate bilateral payments and for regu-
latory institutions to design pricing regulations.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Distributed Systems;
J.4 [Social and Behavioral Sciences]: Economics
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1. INTRODUCTION
The Internet consists of thousands of interconnected ISPs, with

each ISP interested in maximizing its own profits. Interconnection
agreements, often negotiated bilaterally between ISPs, are much
more complex and problematic today than they were several years
back, when Tier 1 ISPs would willingly all peer with one another,
and other interconnection agreements could easily be classified as
transit or peering. Today, because of the heterogeneity in ISPs,
simple peering agreements are not always satisfactory to all par-
ties involved, and paid peering [3] has naturally emerged as the
preferred form of settlement among the heterogeneous ISPs. The
transition to paid peering has not always been a graceful one. For
example, the ISP named Level 3 unilaterally terminated its “settle-
ment free” peering relationship with Cogent on October 5, 2005.
This disruption resulted in at least 15% of the Internet to be un-
reachable for the users who utilized either Level 3 or Cogent for
Internet access. Although both companies restored peering con-
nections several days later with a new on-going negotiation, Level
3’s move against Cogent exhibited an escalation of the tensions that
threaten settlement-free peering.

Faratin et al. [3] view today’s Internet as containing two classes
of ISPs: content and eyeball. Content ISPs specialize in provid-
ing hosting and network access for end-customers and commercial
companies that offer content, such as Google, Yahoo, and YouTube.
Eyeball ISPs, such as AT&T and Verizon, specialize in delivery to
hundreds of thousands of end-customers, i.e., supporting the last-
mile connectivity. Most commerce generating1 traffic flows from
the content ISPs to the eyeball ISPs. An open problem, which of-
ten is the centerpiece of the network neutrality debate [1, 10, 4],
involves determining an appropriate compensation structure that
distributes revenues “fairly” between these two classes of peering
ISPs. Without solving this problem, we can expect future peering
disputes that will lead to further de-peering disruptions within the
Internet.
1Peer-to-Peer traffic, which flows between eyeball ISPs, is outside
the scope of this study



In our previous work [6], we explored the application of Shap-
ley value [9, 8], a well-known economic concept originated from
coalition games [7, 2, 5], to a general ISP setting. We showed that
if profits were shared as perscribed by the Shapley value mecha-
nism, not only would the set of desirable “fair” properties inherent
to the Shapley solution exist, but also that the selfish behaviors of
the ISPs would also yield globally optimal routing and intercon-
necting decisions.

This paper provides a preliminary exploration into the implica-
tions of sharing profits as perscribed by our application of Shapley
Value in [6] to networks whose ISP structure fits the content/eyeball
classification of [3]. To focus specifically on the content/eyeball
dimension of the problem, we model ISP connectivity as a bipar-
tite graph with content ISPs on one side and eyeball ISPs on the
other. Using this bipartite structure, we consider separately the
cases where customers who are inelastic and are assigned to a sin-
gle eyeball ISP, and customers who are elastic and can choose
the eyeball ISP from a set whose size is larger than one, from
which they receive connectivity. This simple yet elegant formula-
tion omits some practical concerns like transit costs, but permits a
low-complexity algorithm for computing the Shapley value (which,
in general networks has a high complexity), allowing us to specif-
ically focus on how the roles of the content and eyeball ISPs, and
the various relationships they have with their respective customers
impact their profitability.

Our results are:

• We obtain closed-form Shapley revenues for all ISPs and
give a bilateral payment implementation in terms of the per-
centage of ISP customer revenues.

• We show that when customers are inelastic, the Shapley rev-
enue is separable: each eyeball ISP’s revenue is proportional
to its customer size, and is independent of other eyeball ISPs’
sizes. Each eyeball ISP controls d/(d + 1) fraction of the
generated revenue, where d is the number of connected con-
tent ISPs.

• We quantify the marginal loss for an eyeball ISP with inelas-
tic customer demand. We show that the percentage of rev-
enue loss for an eyeball ISP is inversely proportional to the
square of the number of content ISPs it currently connects to.

• We show that when customers are elastic, content ISPs and
eyeball ISPs have the same role in revenue distribution. Un-
der a complete partite topology, the revenue ratio of both
groups of ISPs equals the inverse of the ratio of number of
ISPs in each group.

We believe that the bilateral payment solution gives a guideline
for paid peering agreements for ISPs to negotiate based on the
characteristics of customer demand, content distribution and ISP
topologies.

2. SHAPLEY VALUE AND PROPERTIES
Here, we briefly introduce the concept of Shapley value and its

use under our ISP revenue distribution context. We follow the no-
tations in [6]. We consider a network system comprised of a set of
ISPs denoted as N . N = |N | denotes the number of ISPs in the
network. We call any nonempty subset S ⊆ N a coalition of the
ISPs. Each coalition can be thought of as a sub-network that might
be able to provide partial services to their customers. The network
system is defined as (N , v, E). E denotes the set of directed links
between the ISPs. The graphG = (N , E) defines the ISP topology

of the network. We denote GS as the subgraph of G induced by S,
defined by GS = (S, ES), where ES = {(i, j) ∈ E : i, j ∈ S}.
GS is the ISP topology formed by the coalition S.

We denote v as the worth function, which measures the monetary
payments produced by the sub-networks formed by all coalitions.
In other words, for any coalition S, v(S) defines the revenue gener-
ated by the sub-network formed by the set of ISPs S. In particular,
v measures the aggregate end-payments each ISP in a coalition ob-
tains in a specific topology as

v(S, ES) =
∑
i∈S

Pi(S, ES), (1)

where Pi(S, ES) is the end-payment collected by ISP i in a coali-
tion topology GS = (S, ES). To avoid the redundancy in the
notation, we drop ES and denote v(S) as the worth function for
any fixed topology. Through the worth function v, we can measure
the contribution of an ISP to a group of ISPs as the following.

Definition 1. The marginal contribution of ISP i to a coalition
S ⊆ N\{i} is defined as ∆i(v,S) = v(S ∪ {i})− v(S).

Proposed by Lloyd Shapley [9, 8], the Shapley value serves as
an appropriate mechanism for ISPs to share revenues.

Definition 2. The Shapley value ϕ is defined by

ϕi(N , v) =
1

N !

∑
π∈Π

∆i(v, S(π, i)) ∀ i ∈ N , (2)

where Π is the set of all N ! orderings of N and S(π, i) is the set
of players preceding i in the ordering π.
The Shapley value of an ISP can be interpreted as the expected
marginal contribution ∆i(v,S) where S is the set of ISPs pre-
ceding i in a uniformly distributed random ordering. The Shapley
value depends only on the values {v(S) : S ⊆ N}. The Shapley
value satisfies a bunch of desirable efficiency and fairness proper-
ties [6].

We showed in [6] that the Shapley value mechanism also induces
global Nash equilibra that are globally optimal for routing and in-
terconnecting. In our prior work, we assumed an oracle that per-
formed global revenue (re)allocation based on the Shapley value.
That assumption however has clear practical and regulatory limita-
tions. In this paper, we focus on ISP interconnecting and revenue
distribution amongst peers. We assume the routing costs are neg-
ligible compared to the revenue obtained from providing services.
Nevertheless, our framework can always be extended to include an
orthoganal direction of routing decisions and costs.

3. THE ISP MODEL
We follow the categorization of ISPs by Faratin et al. [3] as two

basic types [3]: content ISPs and eyeball ISPs. The set of ISPs is
defined asN = C ∪B, where C = {C1, · · · , C|C|} denotes the set
of content ISPs and B = {B1, · · · , B|B|} denotes the set of eyeball
ISPs. We denoteQ as the set of contents provided by the set of con-
tent ISP C. Each content ISP Ci provides a subset of the contents
Qi ⊆ Q. For each content q ∈ Q, we define a popularity factor
kq for that content, which is used to quantify the relative amount of
demand that end-users are going to download this content. If only
one content is provided by all content ISPs, we denote the popular-
ity factor simply as k. We assume a size of x of total end-customer
population in the network. Each eyeball ISP Bj attracts a portion
xj of the total population size. We assume the conservation of the
end-customer population size, i.e. x =

∑|B|
j=1 xj . We also define

two monetary factors α and β associated with end-customers and



content providers. α can be regarded as the average monthly In-
ternet access fee per customer. Similarly, β can be regarded as the
average compensation paid by content providers to content ISPs
per traffic demand unit. We denote rij as the traffic rate originated
from content ISP Ci to eyeball ISP Bj .

Figure 1: A content ISP and an eyeball ISP.

Figure 1 illustrates the simplest scenario where one eyeball ISP
owns the whole customer size x and one content ISP provides a
single content, which attracts monthly download traffic rate of kx.
We assume that the traffic rate is proportional to both the population
size and the popularity factor of the content. The eyeball ISP’s
revenue equals αx (dollars); the content ISP’s revenue equals βkx
(dollars).

3.1 Topology, Revenue and Traffic Model
We define the complete bipartite graph, which connects each

content ISP with all other eyeball ISPs, as G̃ = (C + B, Ẽ), where
Ẽ = {(Ci, Bj) : Ci ∈ C, Bj ∈ B}. We are only interested
in the set of links E ⊆ Ẽ that connect content ISPs with eyeball
ISPs. Links among eyeball ISPs and among content ISPs can be
present in reality; however, due to the characteristics of the Internet
traffic pattern, the traffic volume on these links are either relatively
small or symmetric (peer-to-peer). Therefore, “charge free” peer-
ing agreements can be expected for building these links among the
same type of ISPs, if necessary.

Under different topology and user demand models, the popula-
tion size of each eyeball ISP differs. We define the direct payment
received by an eyeball ISP Bj as a function of its realizing cus-
tomer size xj :

PBj (N , E) = αxj , (3)

where α is the monetary factor defined before.
We denote dq as the number of content ISPs which provide con-

tent q, dBj as the number of content ISPs that connect to eyeball
ISP Bj , and dqBj

as the number of content ISPs that both connect
to Bj and provide content q. In general, dBj 6= 0, because, oth-
erwise, we can conceptually exclude Bj from the network system
without affecting other ISPs. These three quantities are defined as
follows.

dq =

|C|∑
i=1

1{q∈Qi}, dBj =

|C|∑
i=1

1{(Ci,Bj)∈E}, (4)

dqBj
=

|C|∑
i=1

1{q∈Qi}1{(Ci,Bj)∈E}. (5)

We assume the traffic rate rij (from Ci to Bj) as the following:

rij =
∑
q∈Qi

kq
dqBj

xj . (6)

The above equation assumes that traffic rate is proportional to the
customer size, the popularity of the contents and the inverse of

number of content ISPs who are sharing the same content. This
implies that eyeball ISPs download content from all available con-
tent ISPs uniformly. Finally, we define the direct payment received
by each content ISP Ci as the following:

PCi(N , E) = β
∑

j:(i,j)∈E

rij , (7)

where β is the average per traffic demand compensation paid by
content providers.

Figure 2: An example of content and traffic model for the ISPs.

Figure 2 illustrates a scenario with |C| = 3, |B| = 2, E =
{(1, 1), (2, 2), (3, 1), (3, 2)}, and Q = {1, 2}. The contents pro-
vided by three content ISPs are Q1 = {1, 2}, Q2 = {2} and
Q3 = {1} respectively. It also shows the traffic rates as well as
the revenues of all ISPs.

3.2 Customer Demand Model
To calculate the Shapley value for individual ISPs, we need to

consider the contribution of each ISP to any coalition of a subset
of the ISPs. Eyeball ISPs’ immediate revenue come from end-
customers; content ISPs’ immediate revenue come from the traf-
fic demand from their connected eyeball ISPs. Therefore, the cus-
tomer demand pattern determines the revenues of the coalitions of
the ISPs as well as the Shapley value for each ISP.

Figure 3: Inelastic and elastic demand patterns.

Figure 3 illustrates a simple case with two eyeball ISPs and one
content ISP, evenly sharing a customer size of x. We consider a
coalition {C1, B1} when B2 de-peers with C1. Under an inelas-
tic demand model, the customer size of B1 remains x/2, which
implies that the customers of B2 cannot move to B1 due to physi-
cal constraints, e.g. geographic or regulatory constraints. In this
case, the whole coalition loses half of the customers as well as



half of the total revenue. Under an elastic demand model, the
customers of B2 shift to B1 and the coalition’s revenue remains
the same when B2 was connected. We can imagine that under
the elastic demand case, the importance of eyeball ISPs is rela-
tively small compared with that of the inelastic case, since the eye-
ball ISPs cannot control its end-customers. As a special case of
a general result we will show in later sections, the Shapley value
for the ISPs are ϕB1 = ϕB2 = 1

2
ϕC1 = 1

4
(α + βk)x and

ϕB1 = ϕB2 = 1
4
ϕC1 = 1

6
(α + βk)x under the inelastic and

elastic models respectively.
In the next sections, we model both inelastic and elastic cus-

tomer demand in detail. Under both demand models, we quantify
the Shapley values for each ISP and the bilateral transfers between
ISPs which implement the Shapley value revenue distribution. We
will explain the effects of demand elasticity, privileges of contents
and topologies on Shapley value as well as the bilateral payments
between ISPs.

4. INELASTIC CUSTOMER DEMAND
In this section, we consider an inelastic customer demand model.

We assume that each eyeball ISP Bi attracts a fixed customer size
of xi. An eyeball ISP Bj obtains direct revenue αxj from end-
customers only if it connects some of the content ISPs.

Theorem 1 (SHAPLEY VALUE FOR INELASTIC DEMAND). Given
a set of ISPs C ∪B with topology E ⊆ Ẽ, the Shapley value of any
ISPBi ∈ B orCi ∈ C under the inelastic demand is the following:

ϕBj =
dBj

dBj + 1
αxj +

|Q|∑
q=1

dqBj

dqBj
+ 1

βkqxj ,

ϕCi =
∑

{j:(Ci,Bj)∈E}

[
αxj

(dBj + 1)dBj

+
∑
q∈Qi

βkqxj
(dqBj

+ 1)dqBj

].

Theorem 1 shows that under the inelastic demand, the Shapley val-
ues of the ISPs can be decomposed linearly as a function of cus-
tomer sizes {xj}. Each eyeball ISP Bj’s Shapley value is pro-
portional to its own customer size xj , and is independent of the
customer sizes of other eyeball ISPs. Further, this Shapley value
ϕBj can be decomposed as two parts: a fraction dBj/(dBj + 1) of
the eyeball-side revenue αxj and fractions dqBj

/(dqBj
+ 1) of the

content-side revenue βkqxj generated by each content q. Conse-
quently, content ISPs collect the remaining revenue. All content
ISPs that connect to Bj evenly share 1/(dqBj

+ 1) of eyeball-side
revenue αxj . The 1/(dqBj

+ 1) of the content-side revenue βkqxj
is also evenly shared by the subset of content ISPs which provide
content q.

We define tij , i ∈ C, j ∈ B as a bilateral payment from ISP i
to ISP j. The following corollary gives the closed-form bilateral
payments that implement the Shapley value revenue distribution.

Corollary 1 (BILATERAL PAYMENTS). The bilateral payments
between any linked pair of ISPs, i.e. (Ci, Bj) ∈ E, that implement
the Shapley value are the following:

tBjCi =
αxj

(dBj + 1)dBj

=
PBj

(dBj + 1)dBj

,

tCiBj =
∑
q∈Qi

βkqxj
dqBj

+ 1
=
∑
q∈Qi

dqBj

dqBj
+ 1

P
Bj ,q

Ci
.

Corollary 1 implements the Shapley value revenue for ISPs using
bilateral payments. Each payment can be expressed as fraction of
the direct payment (PCi for a content ISP and PBj for an eyeball
ISP) of an ISP. Each eyeball ISP Bj transfers 1/(dBj + 1) of its

direct payment PBj to connected content ISPs. PBj ,q

Ci
denotes the

fraction of direct payment PCi generated by Bj requesting content
q. Therefore, each content ISP Ci, however, only keeps 1/(dqBj

+

1) of its direct payment PBj ,q

Ci
for every content q provided to Bj .

Corollary 2 (MARGINAL REVENUE). Suppose all content ISPs
provide a set Q of contents. Let K =

∑
q∈Q kq . Consider any

de-peering of a pair of ISPs, i.e. removing (Ci, Bj) ∈ E from E

to form E
′
. The marginal revenues of the ISPs, defined as ∆i =

ϕi(E
′
)− ϕi(E), are the following:

∆ϕBj
= ∆ϕCi

= − (α+Kβ)xj
dBj (dBj + 1)

= − 1

d2
Bj

ϕBj (E),

∆ϕCl
=

2(α+Kβ)xj
(d2
Bj
− 1)dBj

∀ Cl : (Cl, Bj) ∈ E′,

∆ϕCl
= 0 ∀ Cl : (Cl, Bj) /∈ E, ∆ϕBl

= 0 ∀ Bl 6= Bj .

Corollary 2 shows the revenue effect on the pair of de-peering ISPs
as well as other ISPs. The marginal revenue loss of a de-peering
eyeball ISPBj is inversely proportional to the square of dBj , which
is the degree of connectivity to the content ISPs. For example,
if Bj only connects to one content ISP, the marginal revenue is
−ϕBj (E), which means that when the link is disconnected, the
revenue loss is 100% of original Shapley revenue. Similarly, it
loses 1/n2 of it Shapley revenue if it disconnects one of its n links.
This result implies that when an eyeball, controlling inelastic cus-
tomer demand, connects to more content ISPs, its marginal loss by
disconnecting any of the content ISPs decreases inversely propor-
tional to the degree of connectivity.

5. ELASTIC CUSTOMER DEMAND
In this section, we consider an elastic customer demand model.

We assume that the total population size of end-customer is x. Con-
sider any coalition S ⊂ N . Let S = CS∪BS for some CS ⊆ C and
BS ⊆ B. We define the complete bipartite graph of the coalition
S as ẼS = {(Ci, Bj) : Ci ∈ CS , Bj ∈ BS}. We further assume
that if the topology of system is ẼS for some S ⊆ N , the customer
size of an eyeball ISP Bj is the following:

xj =

{ x
|BS |

if Bj ∈ BS ,
0 otherwise.

This elastic demand assumption implies that when some eyeball
ISPs leave the system, their customers are re-distributed evenly to
the remaining eyeball ISPs. It models a perfect elastic demand
where users can choose any of the eyeball ISPs with equal probabil-
ity. We do not put any assumption on the customer re-distribution
when eyeball ISPs disconnect individual links to content ISPs.

Similarly to the definition in Equation 4, we denote dq as the
number of content ISPs in the coalition CS that provide content q,
defined as dq =

∑|CS |
i=1 1{q∈Qi}.

Theorem 2 (SHAPLEY VALUE FOR ELASTIC DEMAND). Given
a subset of ISPs CS ∪BS with a fully-connected topology ẼS ⊆ Ẽ,



the Shapley value of any ISPBi ∈ BS orCi ∈ CS under the elastic
demand is the following:

ϕBj =
|CS |

|BS |(|CS |+ |BS |)
αx+

|Q|∑
q=1

dq
|BS |(dq + |BS |)

βxkq,

ϕCi =
|BS |

|CS |(|CS |+ |BS |)
αx+

∑
q∈Qi

|BS |
dq(dq + |BS |)

βkqx.

Theorem 2 shows the Shapley value of each ISP under an elastic
demand model. These Shapley values are proportional to the total
customer size x. The eyeball side revenue αx is shared by the
coalition S = CS∪BS and each content side revenue βkqx is share
by BS and the set of content ISPs that provide content q. Since the
demand is elastic, the group of BS can be imagined as a whole to
compete the revenue and divide revenue evenly among themselves.
In particular, if |BS | = 1, the results coincide with Theorem 1,
because customers cannot switch to another eyeball ISP (inelastic
demand) when there is only one eyeball ISP.

Corollary 3 (BILATERAL PAYMENTS). The bilateral payments
between any linked pair of ISPs, i.e. (Ci, Bj) ∈ ẼS , that imple-
ment the Shapley value are the following:

tBjCi =
αx

|CS |(|CS |+ |BS |)
=

|BS |PBj

|CS |(|CS |+ |BS |)
,

tCiBj =
∑
q∈Qi

βkqx

|BS |(dq + |BS |)
=
∑
q∈Qi

dqP
q
Ci

|BS |(dq + |BS |)
.

The bilateral payment from an eyeball ISP Bj is a fraction of the
eyeball side revenue αx and an adjustment of its PBj . The eyeball
ISP pays |BS |/(|CS |+ |BS |) of its direct payment PBj to all con-
tent ISPs. Similarly, a content ISP Ci pays fractions of the content
side revenue βkqx, which are adjustments of their direct payment
P qCi

generated by content q.

6. EXAMPLES

Figure 4: Shapley revenue distribution between eyeball and
content ISPs.

In our first example, we focus identical content ISPs that provide
the same set of contents Q. We compare the revenue obtained by

the group of eyeball ISPs ϕB =
∑
Bj∈BS

ϕBj and by the group of
content ISPs ϕC =

∑
Ci∈C ϕCi . Figure 4 illustrates the Shapley

revenue distribution between eyeball ISPs and content ISPs under
complete bipartite topology. On the x-axis and y-axis, we vary the
number of eyeball and content ISPs. We plot the proportion of
total revenue, i.e. (α + β

∑
q∈Q kq)x, obtained by content ISPs

on the z-axis. We can observe that the revenue for both groups of
ISPs follows ϕB : ϕC = |CS | : |BS |. In particular, both types of
ISPs evenly share revenue when |BS | = |CS |. For elastic customer
demand, eyeball ISPs and content ISPs have anti-symmetric roles
in the Shapley revenue distribution, i.e., a content ISP’s revenue
when there are x eyeball ISPs and y content ISPs equals what an
eyeball ISP’s revenue is when there are y eyeball ISPs and x content
ISPs.

Figure 5: Shapley revenue distribution for each eyeball/content
ISP with inelastic/elastic demands.

Figure 5 compares revenues across elastic and inelastic settings.
The number of eyeball ISPs is fixed at 5, and the number of content
ISPs is varied on the x-axis. Individual ISP revenues for the two
cases (elastic and inelastic customers) are plotted along the y-axis
for both the content ISP and the eyeball ISP. The figure supports
several interesting observations:

• When |CS | = |BS |, the symmetry desribed above results in
content an eyeball ISPs evenly splitting revenue. This situa-
tion holds for both the case of elastic and inelastic customers.

• When |CS | < |BS |, content ISP revenues are larger when
eyeball customers are elastic in comparison to when cus-
tomers are inelastic. The reverse is true for eyeball ISP rev-
enues.

• When |CS | > |BS |, the situation reverses, with content
ISP revenues being larger when customers are inelastic than
when elastic.

The above observations have some interesting implications. In
an environment where the content market is dominated by a small
set of players, and eyeball ISPs are numerous, eyeballs benefit from
inelasticity, i.e., they should discourage customers from being able
to move easily from one eyeball to another, suggesting that eyeball
ISPs are better off monopolizing customers in regions. In contrast,
if the content market has many more ISPs than the eyeball mar-
ket, eyeball ISPs can increase market share by facilitating customer
movement between them, e.g., ISPs share coverage of regions.



7. CONCLUSION
In this paper, we explore ISP peering settlements in the context

of sharing revenue among eyeball and content ISPs. Our solution is
based on the Shapley value concept which provides various fairness
and incentives to the ISPs. Our results show that the Shapley value
revenue distribution can be implemented by bilateral payment be-
tween any pair of eyeball and content ISPs. Our results reveal that
1) under inelastic customer demand, the marginal revenue loss of
an eyeball ISP from de-peering to a content ISP is inversely pro-
portional to the square of number of connected content ISPs, and
2) under inelastic customer demand with complete bipartite topol-
ogy, the revenue ratio between the groups of eyeball and content
ISPs is inverse to ratio of number of ISPs in each group. Compar-
ing with revenue under inelastic and elastic customer demand, we
observe the conditions where eyeball ISPs can better off by monop-
olizing small regions or sharing coverage of regions. In practice,
this bilateral implementation of the Shapley value gives a guideline
for ISPs to negotiate partial peering agreements and for regulatory
institutions to impose pricing regulations.
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