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Abstract— Aloha [1] and its slotted variation [2] are commonly
deployed Medium Access Control (MAC) protocols in environ-
ments where multiple transmitting devices compete for a medium,
yet may have difficulty sensing each other’s presence. This is also
known as the “hidden terminal problem”. Competing 802.11
[3] gateways, as well as most modern digital cellular systems,
like GSM[4], are examples. This paper models and evaluates
the throughput that can be achieved in a system where nodes
compete for bandwidth using a generalized version of slotted-
Aloha protocols. The protocol is implemented as a two-state
system, where the probability that a node transmits in a given
slot depends on whether the node’s prior transmission attempt
was successful. Using Markov Models, we evaluate the channel
utilization and fairness of these types of protocols for a variety of
node objectives, including maximizing aggregate throughput of
the channel, each node greedily maximizing its own throughput,
and attacker nodes that attempt to jam the channel. If all
nodes are selfish and greedily attempt to maximize their own
throughputs, a situation similar to the traditional Prisoner’s
Dilemma[5] arises. Our results reveal that under heavy loads, a
greedy strategy reduces the utilization, and that attackers cannot
do much better than attacking during randomly selected slots.

I. Introduction

In many communication networks, the communication
medium is often shared by multiple users who must compete
for access. In Ethernet[6], nodes use CSMA/CD [7], [8] as a
MAC protocol. In order to reduce the probability of collisions,
each node implements CSMA/CD, sensing the medium to
ensure its availability prior to transmitting. However, for
wireless ad-hoc networks or sensor networks, carrier sensing
may not be effective. This is because nodes may not be able to
sense one anothers’ presence, yet their transmissions may still
interfere. Ad hoc networks, sensor networks, and competing
“hotspot” 802.11 gateways are examples where this so-called
“hidden terminal problem” occurs.

The Aloha protocol [1] is a fully decentralized medium
access control protocol that does not perform carrier sensing.
The subsequent slotted-Aloha[2] protocol was introduced to
improve the utilization of the shared medium by synchronizing
the transmission of devices within time-slots. Today, various
forms of slotted-Aloha protocols are widely used in most of
the current digital cellular networks, such as the Global System
for Mobile communications (GSM)1.

Because slotted-Aloha exhibits an instability as the num-
ber of transmitting nodes increases [9], [10], early research

1In the GSM network, the control channels of the TDM channels use
slotted-Aloha.

focused on stability control [11], [12]. However, today’s net-
works often implement an admission control procedure to limit
the number of simultaneous users in the system at any time.
In this sense, the system itself is stable in terms of users.

In this work, we consider a generalization of the slotted-
Aloha protocol. Like slotted-Aloha, the decision to transmit
within a slot has a random component. However, in traditional
slotted-Aloha, the user continues transmission in subsequent
slots until a subsequent collision. In our generalized version,
the user may cease transmitting with some fixed (non-zero)
probability. We model a system of

�
users implementing

this generalized protocol with tunable parameters via Markov
Models that allow us to measure the rate at which nodes
attempt to transmit packets (cost), and their rates of suc-
cess (throughput). In parts, we impose budget constraints
that restrict the nodes’ costs, such that the fraction of slots
within which a node attempts transmissions is bounded. In
practice, this may be due to energy constraints, or a bandwidth
constraint placed on the network application.

This generalized version of slotted-Aloha is worth studying
for two reasons. First, it is derived from a protocol that
is commonly used today. Second, we will show that the
generalized versions can outperform the original version, both
in terms of aggregate throughput, as well as the ability to cope
with malicious users.

We begin by exploring an environment where
�

users
cooperate and set the protocol parameters to maximize the
total system throughput while sharing the bandwidth evenly.
We find that the throughput is bounded by

���������	��

�
and

that to achieve this utilization, users who gain access to the
channel must transmit over a large number of consecutive
slots. We then explore how throughput decreases as “short-
term fairness” is more strictly enforced, reducing the expected
number of consecutive slots.

Next, we consider greedy users who wish to maximize their
own throughputs, perhaps at the expense of the nodes against
whom they compete. We evaluate this setting as a game,
where nodes set their parameters in a greedy manner and other
nodes subsequently modify their parameters in response to
maximize their own throughputs. We find that performance of
the protocol is a function of the nodes’ budgets, and takes
on three distinct behaviors. When nodes’ budgets are low, the
greedy strategy is optimal. When nodes’ budgets fall within
a medium range, there is a unique equilibrium point where
all nodes achieve the same throughput, but these throughputs
are less than what would be obtained in a cooperative setting.
When nodes’ budgets fall within the highest range, then there
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are multiple equilibrium points, and the throughput achieved
by a node depends on when it took its turn in the game. We
develop an additional enhancement to the protocol that can
be implemented by cooperative nodes which will encourage
greedy users to tune their protocol parameters to match those
of a cooperative node, maximizing throughput.

Last, we consider an attacking node that, with a limited
budget, seeks to minimize the throughput of the other nodes
in the system. We show that when the attacker’s budget is
small, selecting random slots (i.e., via a Bernoulli process) is
optimal. When the budget is large, the optimal strategy is to
mimic a greedy user. Our analysis provides insights on the
limits of success a jammer can have in disrupting a slotted-
Aloha like network.

The main contribution of this paper can be summarized as
follows:

1) We formulate different user behaviors under a general-
ized slotted-Aloha protocol where users make decisions
using a two-state system.

2) We identify throughput bounds for a system of coop-
erative users and explore the trade-off between user
throughput and short-term fairness.

3) Under non-cooperative/selfish behaviors of the users,
we identify a Prisoner’s Dilemma phenomenon and
propose methods to detect and prevent nodes from acting
selfishly without regard for other nodes’ throughputs.

4) Under adversarial behavior of one user, we measure the
maximum possible deterioration of the system and try
to understand the behavior of an attacker.

We organize our paper as follows. In Section II, we review
related work. In Section III, we motivate the protocol and
construct a Markov Model for the generalized slotted-Aloha
protocol. In Section IV, we measure the system throughput
in a cooperative environment where users want to maximize
the total throughput of the system. In Section V and VI, we
evaluate both the aggregate and individual user throughputs
where selfish users exist in the system. We formulate the game
as a Prisoner’s Dilemma situation in Section V and in Section
VI present strategies that cooperative nodes can implement
to detect and prevent selfish user behaviors. In section VII,
we explore a system in which attackers try to minimize the
throughputs of the remaining nodes. Section VIII concludes.

II. Related Work

The Aloha protocol and its slotted version have been studied
for decades from the early seventies. Due to Aloha’s instability
[13], [9], [14], [15], [11] in nature, early research focused on
stabilizing the Aloha protocols[11], [12]. Rivest[12] proposed
a pseudo-Bayesian algorithm to stabilize Aloha that utilized
feedback to estimate the number of current backlogged nodes
in the system.Later, even many performance evaluations of the
Aloha protocols were accompanied with dynamic controls[16],
[10] to stabilize the systems.

In this work, we focus on the performance of stable slotted-
Aloha type systems, where only a finite number of users will
access the shared medium simultaneously. The justification
of this assumption relies on the implementation of admission

control procedures in today’s networks. Early work on slotted
Aloha with finite number of users can be found in [13].

Besides finding the throughput bounds for a finite slotted-
Aloha type system, we consider the performance of individual
users under different user behaviors. We find that users al-
ways have incentive not to follow the designed protocol (not
backoff) in order to achieve higher throughput. Thus, Game
Theory[5], [17] applies here.

Recent work using Game Theory to analyze users behaviors
in MAC protocols and wireless ad-hoc networks can be found
in [18], [19] and [20], [21] respectively. More specifically,
game-theoretical analysis of the Aloha protocols can be found
in [22]2,[23], [24], [25], [26].

MakKenzie and Wicker’s work [23], [24] discussed the
stability of slotted-Aloha with selfish user behaviors and
perfect information. Our work is different in three ways. First,
we focus on performance (attainable throughput) instead of
stability. In terms of data backlog at the users, we consider
scenarios of elastic transfers, where users always have data to
send and utilize whatever bandwidth is available, and hence
classical stability results do not apply to our analysis. Second,
we assume that nodes do not know the number of nodes
that attempt to transmit in a particular slot, and know only
whether or not their transmission succeeded or failed after the
fact. Third, we consider cooperative and attacking strategies
in addition to greedy strategies.

Jin and Kesidis’s work [25] discussed the equilibra of a
noncooperative game for Aloha protocols. In their noncooper-
ative game formulation, each user only uses one transmitting
probability (i.e., always in a backlogged state). Moreover,
utility functions and payments are specified for each user. In
our work, on the other hand, the formulation is for a gener-
alized slotted-Aloha protocol which considers the Markovian
decisions depending on whether the most recent transmission
is a success (in a Free State) or a failure (in a Backlogged
State). And we do not impose any payment on the users. Our
settings capture more realistic features in real Aloha systems.

Altman et al. [26] consider slotted-Aloha systems as both
cooperative and noncooperative games with partial informa-
tion. Their work assumes that there are a finite number of
sources without buffer. The arrival packets to each source
follows a Bernoulli process. As in typical slotted-Aloha, users
only control the backlog probability in both games. In our
work, we consider the saturated arrival when each user always
has packets to transmit. But users’ strategies are more broad.
Because users are also allowed to choose a non-zero proba-
bility to backoff even its previous transmission is a success.
In addition, we analyze an adversarial game where an attacker
who wants to minimize other users’ throughput appears in the
game.

III. Protocol Description and Model

In this section, we describe a generalized slotted-Aloha
MAC protocol and construct a Markov Model from which its
throughput can be measured. First, let us overview the original
slotted-Aloha protocol:

2It is a preliminary abstract of this paper.
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1) Time is divided into slots, and each node can attempt to
send one packet in a slot.

2) If a node has a new packet to send, it attempts trans-
mission during the next time-slot.

3) If a node successfully transmitted its packet, it can
transmit a new packet in the next time-slot.

4) If a node detects a collision, it retransmits its packet in
each subsequent time-slot with probability � until the
packet is successfully transmitted. Returning to step 3
after a successful transmission.

The slotted-Aloha protocol described above can be imple-
mented as a 2-state system, where the state maintains the
outcome of the previously attempted transmission. A node is
in its Free State if the most recent transmission from that
node is a success. Otherwise, the node is in its Backlogged
State. In the Free State, a node transmits during the next slot
with probability



, and in the Backlogged State, it transmits

during the next slot with probability � . Our generalization of
the above protocol is to allow a node to vary the probability
with which a node transmits a packet when it resides within
the Free State.

Our evaluation will consider a network of
�

nodes, where
often

�
will start as

�
. We assume that nodes are able

to coordinate slot transmission times and can estimate the
number of nodes

�
with which they compete for bandwidth.

However, because nodes’ transmissions may interfere but
cannot be deciphered, methods to prevent slot contention that
require explicit communication and coordination among the
competing members (e.g., TDMA, RTS-CTS) cannot be used.

Each node � can tune its protocol using two parameters:������ Transmitting probability in the Free State for node� .������ Transmitting probability in the Backlogged State for
node � .

Given
�

and the transmitting probabilities for each of the
nodes in each of the states, it is possible to compute the
following measures of system performance:	 � � The throughput of node � , which is the fraction

of slots within which � successfully completes a
transmission, in that it is the only device to attempt
transmission within a slot.
 � � The cost for node � , which is the fraction of slots
within which � attempts transmission (regardless of
whether the transmission fails or succeeds).

Nodes may have physical limitations (e.g. power consump-
tion constraints or application throughput constraints) that
may bound its cost function. We bound allowed cost by a
budget, � � , such that a node’s parameters must produce a
cost


 � � � � .
When we consider cooperating nodes that seek to maximize

throughput, we are also interested in system fairness: all nodes
should get an equal share of the throughput. In addition, we
assume that it is undesirable for any one node to “capture”
the medium for an extended number of slots - a long-term
capture can be thought of as unfair over a short duration.
Koksal’s work[27] gives an analysis of the short-term fairness
of MAC protocols. It provides some insight into why MAC

protocols exhibit bad short-term fairness using two different
fairness indexes. In this paper, we measure short-term fairness
via a more fundamental quantity defined as the following:
Definition 1: Let 
 � be the number of consecutive slots
following an initially successful transmission over which node� successfully transmits packets (i.e., if there are � successful
consecutive transmissions, then 
 � ��� � 
 ). The system is
said to be � -short-term fair to all nodes if ��� 
 ��� � � for
all nodes � .

Each node’s decision to transmit within a particular slot
depends only on the outcome of its previous attempt (success
or failure), and does not depend on the state of other nodes.
Hence, this protocol is easily implemented in a distributed
manner. Moreover, each node’s decision is in fact Markovian,
as it depends only on the previous attempt’s outcome. For
simplicity, we will assume that a node always has a packet to
send in a slot whenever our slotted-Aloha variant decides to
transmit a packet in a slot (i.e., nodes have a sufficient backlog
of packets). However, our model also easily captures the case
where a packet enters the queue to be transmitted with a fixed
probability.3
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Fig. 1. Two-node Markov Chain.

Figure 1 shows the state transition diagram for a two-node
system with node � and � . � � and � � represent that node� is in a free state and a backlogged state respectively. A
system for

�
nodes is easily modeled by as a Markov Model

where the chain would consist of
���

states. By numbering the
states

� � ��� ��� � � � � ��� ��� � � � ��� � � � � � � � � � ��� � to be

 � � �"!��$# ,

the transition matrix for a two-node Markov Model is:

% �
&''
(


 � �)�� � � � * * ���� � � �,+� 
 � �)�� � � �� 
 � � �� * ����-� �� +� 
 � � � � � ���� * 
 � ���� � � � ���� +* �)�� � 
 � � �� � � �� � 
 � ���� � ��.".
/100
2

where ��.".3�4���� � ��65 � 
 � �)�� � � 
 � � �� � .
If �)�� � � � � � �)�� � � ��87 * , the Markov Model is positive-

recurrent. The steady state distribution is the following:

9: �
&''
(

: �: �:�;: .
/ 00
2 � 


� � 5 � � 5 � ; 5 �,.
&''
(

� �� �� ;�<.
/ 00
2

3The model simply has to reduce the probability of transmitting in the free
state to also account for the steady-state probability that a new packet arrived
during the previous attempt to transmit a packet.
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where

9� �
&''
(
� �� � �� � � 
 � � � � � � �� � 
 � � �� � 5 � 
 � � �� � � �� � 
 � � � � � �����-� � � � ���� � � � 
 � � �� ����� � � � � � �� � � � 
 � �)�� ����� � � � ���� � ��

/ 00
2 (1)

The corresponding throughput and cost functions of node �
are: 	 � � : � � ���� � � 
 � � � � � 5 : � � �)�� � � 
 � � �� � 5:); � ���� � � 
 � � � � � 5 : . � �)�� � � 
 � � �� � � (2)


 � � : � � ���� � 5 : � � ���� � 5 : ; � ���� � 5 : . � �)�� � � (3)

IV. Cooperative Performance Analysis

In this section, we assume that nodes cooperate to fairly
(i.e., equally) share the available bandwidth to maximize the
aggregate system throughput. By doing so, each node achieves
the maximum throughput possible in a fair allocation when
limited to protocols that cannot sense the line. Clearly, if
it were permissible to bias the allocation toward one of the
nodes, the system could achieve full utilization by allowing
only one node to transmit at all time. If a centralized scheduler
or carrier sensing mechanism were permitted, we could also
make fair share of the medium with


 *,* � utilization. Here,
we seek an unbiased and distributed solution for all nodes such
that nodes will achieve the same performance on average.

Our goal in this section is to answer the following questions:
1) What values of �)�� and �)�� for each node � to maximize

the total throughput of the system?
2) What is the maximum achievable throughput of the

system?
3) What is the short-term fairness of the optimal allocation,

and how can that short-term fairness be improved?
Theorem 1: For two homogeneous nodes with � � ��� � � � � � �
and �)�� � � �� � � � , �����	� 	 � 5 	 ��
 � � � ! .
Proof: Substitute all the transmitting probabilities with � � and� � into Equation (1), we have

9� �
&''
(
� � � � 
 � � � � � 
 � � � �� 
 � � � � � � �� 
 � � � � � � �� � �

/ 00
2

	 � � : � � � � 
 � � � � 5 : � � � � 
 � � � � 5:�; � � � 
 � � � � 5 : .$� � � 
 � � � �� � � � � � � � ��
 � � 5 
 � � � � � � ��
 � � � 5 
 � �
where


 � � � � � � � � 
 � � � � � � ! � � � � � �
When � � � 


,
	 � ��� � � 
 � � � � ��� ! � � � � � and ��� 

� !

as � � � * . By symmetry,
	 � 5 	 ��� � � ! as � � � * .

Next, we want to show
	 ��� 
 � ! for all � � � � ��� � * � 
 � . It

is equivalent to show the following:

� � � � � � � ��
 � � 5 
 � � � � � � ��
 � � � 5 
 � � �


� !��� ! � � � � � 
 � ��
 � � 5 
 �

� � � � ��
 � � � 5 
 ���� ! � � ;� � � ! 
 � 5 
 � � � � 5 # 
 � � � ��
 � � *

Let us define � � � � � � ! � � ;� � � ! 
 � 5 
 � � � � 5 # 
 � � � ��
 � .
Two boundary conditions are � � * � � ��
 � � * and � � 
 � �! � � 
 � * . Since � � � � � is a cubic function of � � , it is sufficient
to show that the local maximum is less than zero, so as to prove
that for any � � � � * � 
 � , � � � � � � * . At the local maximum,

��� � �	 � � ��!"� � �� � � � � � � ! 
 � 5 

� �	 � 5 # 
 � � * �
Using the above condition, it is equivalent to show

� � �  � � � � � 
 � ! � � ! 
 � 5 
 � � �  � � � 5 �$# � ! �%
 � �  � ��
 � � * �
The maximum of the above function is� � # � ! � � ! 
 � 5 
 �%
 � � � �&# � ! �%
 � � � � � � � � # � ! � � ! 
 � 5 

� � �
The denominator is negative, while the numerator is positive
because:

� # � ! � � ! 
 � 5 
 �'
 � � � �$# � ! �%
 � � � 7 *��� � # � ! � � ! 
 � 5 

� � �$( # � ! �'
 � 7 *��� 
 � � ! ��)��� � � � � 
 � � � � ��� ! � � � � � � ! ��)��� 
 # � �� � � * � � 5 ! 7 *
Finally, because the local maximum � � �  � � � * , we conclude
that � � � � � � * for all � �*� � * � 
 � .
Theorem 1 upper-bounds the maximum fair throughput at

� � ! ,
which is achieved in the limit as both nodes choose � � � � 


,� � � * 
 . This solution is intuitive: collisions are less likely
to occur in an carrier-sense free environment when nodes are
very unlikely to start trying to transmit, but hold the medium
until a subsequent collision.
Theorem 2: For

�
homogeneous nodes with � � � 


, � � �* , the total throughput tends to
�� �,+ � .

Proof: Consider in each time-slot, the whole system is in
certain state. We aggregate all the system states into the
following two states. One state is the “Busy” state where only
one of the nodes is transmitting in the time-slot. The other state
is the “Idle or Collision” state where no node or more than
one node are transmitting in the time-slot. The state transition
diagram is shown in Figure 2.
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Fig. 2. N-node Markov Chain with -/.1032�4 , .6587:9<; .
We define the transition probabilities to be: �	= � � 
 �� � � �*+ � and ��> � � � � � 
 � � � � �*+ � . ��= indicates the prob-

ability that all of the
� � 


backlogged nodes do not transmit.� > indicates the probability that only one of the
�

nodes
transmits. The system utilization becomes:

? � : =/@BA � � � > ��� 
 � � =�5 � > �� �DC<EGF � +HCIEKJ&LNMPO� +NF � +�C<E'J LNMPO%Q �DC<EGF � +�C<EKJ LNMPO� ����� �C<E � +NF � +HC E J LNMPOF � +�C<EKJ LNMPO 5 � �� ����� � Q F � +�C<E�J Q F � +�C<E'J E Q8RSRSR Q F � +HCIE�J LNM EF � +�C<E�J LNMPO 5 � �
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Therefore, ? � �� �,+ � as � � � * .

Intuitively, when the number of nodes increases in the
system, the system throughput decreases. However, Theorem 3
shows that the throughput does not drop to zero: even when the
number of nodes tends to infinity, we can still achieve a total
throughput of one half. Note that this result differs from the
traditional performance bound (



���
) of slotted-Aloha because

our generalized model permits “capture” of the resource,
allowing it to be used while all other nodes are back off. A
different analysis of the “Capture Phenomenon” appears in
[13].

Although the solution � � � � 
 � � � � * 
 maximizes
throughput, it is not short-term fair. As � � � * , we have��� 
 �<� ��� . We next consider how to enforce short-term
fairness:
Theorem 3: For

�
homogeneous nodes with � � � 


and� ��� 
 � LNMPO� 
 � 

� � , the system is � -short-term fair to
all nodes.
Proof: Because 
 � is a binomial random variable with pa-
rameter


 � � = . We have:

� � 
 ��� � 


 � � 
 � � � � �*+ � �

Since � � � 
 � LNMPO� 
 � 
 � � , ��� 
 � � � � . By definition,
the system is � -short-term fair to all nodes.
Theorem 3 quantifies how to select � � to achieve a certain
short-term fairness. In particular, in order to achieve � -short-
term fairness, we can choose the following value of � � .

� � � 
 � LNMPO� 
 � 

� � � (4)

The total throughput becomes a function of � :

? � � � � � 
 � � � � �*+ �
 5 � � � � � 
 � � 
 � � � � �*+ � (5)

� � ? � � � � � 
 �
� � � � 
 � 5 �� + LNMPO� � + O� (6)

Figure 3 plots the total throughput under different short-term
fairness constraints

� � �
as the number of nodes,

�
is varied

along the � -axis. Without sacrificing much throughput, we can
achieve very good short-term fairness criteria. For example, if
we want the system to be

#
-short-term fair, we can achieve

a total throughput close to

 ���

even for large
�

. Actually,
when

� �	� , the total throughput does not collapse to zero.
We draw the limits of the throughput in dotted lines under
each throughput curve. We will discuss these limits in a later
theorem.
Lemma 1: For any constant � 7 * , if � � � 
 �
LNMPO� 
 � 

� � , then

� � � is monotonically decreasing with�
.

Proof: Let

 � 
 � 
 � � and � � 
 OLNMPO . We have:

� � � 
 � LNMPO� 
 � 

� �8� 
 ��
 OLNMPO � 
 � � �
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Fig. 3. Throughput under different fairness conditions.

First, � � is strictly decreasing in
�

, because 
 � � � 
 � ��
� 
 �F �*+ � J E � * . Let us define � � � � � � �	� 
 � � � .

 � � � � � 
 � � � �	� 
 � � �
� 
 �F �*+ � J E � 5 
 � �� � � �	� 

� + � ��� 
 � 

� � 5 
� � �
� � � 
 � � 5 
� � �
� � � � 5 


�
�
� � � � 5 


� * �
The last inequality holds because of the following. Let us
define � � � � � �
� � � � 5 


. � � � � is a strictly concave
function. ��� � � � � 

� � � 


and ��� � � � � � � 

� � � . Since� � 
 � � * � ��� � 

� � * and ��� � � 
 � � � 

� * , we see � � � �

attains its maximum value * at � � 

. Because � �



under

our context, the last inequality holds.
Finally,

� � � � � � � 

� � � 5 � � . Therefore,
 � � � � 
 � ��
 � � � � � 
 � 5 
 � � � 
 � � * �
Theorem 4: Under any short-term fairness condition��� 
 � � � � , ? is lower-bounded by

+NF
� + � J�� �"F � + O� J� +NF
� + � J�� �BF � + O� J .
Proof: We choose the value of � � in Equation (4) to satisfy
the short-term fairness condition. Accordingly, from Equation
(6), we have




� � 


�� � 
 � � 
 � LNMPO

�

 � 


� � � � 
 � LNMPO� 
 � ����
The right hand side is in the form of �� as

� ��� . By
L’hospital rule,

�
 
!�#"%$ ��� � 
 � �� � LNMPO� 
 � �� � � � 
 � + �
� � + � � � �
� � 
 � 


� �

& �� 
!�#"%$ 


� � 


�� � 
 � � ��� � 
 � 


� �

� �
 
!�#"%$ ? � � � � � 
 � ��� � 
 � �� �

 � � � � 
 � �
� � 
 � �� �
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By Lemma 1, ? is monotonically decreasing in
�

. Therefore,? is lower-bounded by
+NF
� + � J�� �BF � + O� J� +NF
� + � J�� �6F � + O� J .

Theorem 4 provides the lower bounds for the curves in
Figure 3. We draw these limits in dotted lines under each
throughput curve. We see, for � to be reasonably large (e.g.� � #

), the throughput lower limit is close to

 ���

. Indeed,
when � tends to infinity, this limit also tends to



� �
.

V. Competitive Performance Analysis

In the previous section, we identified the lower bounds
of the obtainable throughput among cooperating nodes, even
taking into account short-term fairness requirements. In this
section, we assume that each node is autonomous and sets its
protocol parameters to greedily maximize its own throughput,
subject to currently observed conditions. First, let us see how
a single node can increase its own throughput by deviating
from the cooperative solution. After that, we formulate a
constrained optimization problem for each node to maximize
its throughput. We construct a Stackelberg game[5] which a
pair of nodes can play. This game reveals that a Prisoner’s
Dilemma[5] phenomenon can occur.

A. Selfish Behavior in a Cooperative Environment

Suppose
�

nodes are originally cooperative and use � � � 


and � � � 
 � LNMPO� 
 � 

� � to achieve the maximum � -short-
term fair aggregate throughput. In this system, each node �
obtains throughput:	 � � ? � � � � � � 
 � � � � � � � 

� 5 
 � � � � �
If one node deviates from this setting and sets � � � 


instead,
its throughput increases to	 �� �4� = � � 
 � � � � �*+ � � 
 � 

� � �
Its throughput now equals the probability that no other node
is transmitting in each time-slot. Comparing the above two
equalities, we have:	 ��	 � � � � � � 
 � 5 

� � �� � � 5 
 � � � �� � �
Hence, by unilaterally changing � � to be



, a selfish node can

usually increase its throughput at least
�

times (if
� � � � 


).
This change sacrifices the throughput of all of the other nodes,
which no longer obtain any throughput.

B. Stackelberg Game

We have shown that a single selfish node can increase
its own throughput in a setting where all other nodes are
cooperative. We now explore what happens when multiple
nodes set their parameters in a greedy fashion. Here, let us
consider a network that consists only of two selfish nodes �
and � , each of which wants to maximize its own throughput.
In addition, we assume that each have budget constraints
 � � � � and


 � � � � respectively.

 � and


 � are the costs
of both nodes as defined in Equation (3). � � � � � � � * � 
 �
are two budget constants which physically restrict the average

number of packets the node can transmit in each time-slot. We
impose these budget constraints in order to model the nodes in
a wireless ad-hoc network or a sensor network. Because nodes
in these networks are very sensitive to the power consumption,
and transmitting packets consumes a lot of battery power.
We model the competition between these two nodes using a
Stackelberg game[5], in which a “leader” chooses a strategy
(i.e. the transmitting probabilities in both the Free State and
the Backlogged State) and then a “follower”, informed of
the leader’s choice, chooses a strategy. We formulate a non-
cooperative Stackelberg game as follows:

Players: The leader node � and the follower node � .
Strategy: � � = �"�)�� � �)�� 
 for � ; � � = � � � � � � �� 
 for � .
Payoff:

	 � and
	 � for � and � respectively.

Game rule: � decides � �)�� � ���� 
 first.� decides � � � � � � ���
 after knowing �"� � � � �)�� 
 .
Follower’s Problem:

The follower � is given the leader’s chosen parameters.
It then simply sets its own parameters to maximize its own
throughput. More formally, for any given

�� � , the follower
node � solves: �

� � � �� � � ����� ���	��� 	 � � �� � �
�
� � �
���
�������������� 
 � � �� � �

�
� � � � �3� �

Leader’s Problem:
The leader knows that the follower will choose its parame-

ters to greedily maximize its own throughput. Therefore, the
leader must choose its protocol parameters that will maximize
its throughput, given the follower will subsequently choose its
own parameters to maximize its throughput. More formally,
the leader node � solves:�

� � ����� ����� � 	 � �
�
� � �

�
� � � �� � � �
���
�������������� 
 � �

�
� � �

�
� � � �� � � � � � � �

In order to solve this Stackelberg game, we first solve
the follower’s problem for every possible strategy taken by
node � . Thus, we obtain the best response strategy of �
as a function of node � ’s strategy. After that, the leader
decides its optimal strategy according to node � ’s best response
strategy. This procedure is often referred to as backwards
induction4[17]. The according game solution is often referred
to as a Stackelberg equilibrium.

C. Three Stackelberg Equilibrium Regions

We solve the above Stackelberg game for nodes who have
the same budget constraints, which means � � � � � .

Figure 4 shows the throughput and costs of both players
in Stackelberg equilibrium. X-axis represents the budget con-
straint for both players. The change in the throughputs as a
function of the budget behaves differently in three different
regions:

1) When the budget is less than


� ! , both players achieve

the same throughput. They use up their budgets. The

4Backward induction is actually a more general procedure to identify the
Subgame Perfect Nash Equilibra in any finite dynamic game with perfect
information.
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Fig. 4. Throughput and cost in Stackelberg equilibrium.

throughput is mainly limited by the budget constraints,
but not the competition between these two players. In-
creasing the budget increases their achieved throughputs.

2) When the budget is between


� ! and

� � ! , both play-
ers again choose similar strategies and achieve similar
throughputs. However, increasing both players’ budgets
decreases each player’s throughput. In this region, the
throughput is limited by both the budget constraints and
the competition between these two players. Note that
because similar strategies are chosen, it does not matter
(to a node) whether it is chosen to be the leader or the
follower.

3) When the budget is more than
� � ! , the leader can

select parameters that give it a larger fraction of the
throughput. The follower, still wishing to maximize its
own throughput, actually becomes less aggressive. In
this region, it is clearly preferable to be the leader.

Figure 5 shows the strategies of both players in Stackelberg
equilibrium. In the first two solution regions, both players
use similar strategies. When the budgets are close to



� ! ,
the greedy strategies selected by the players are similar to
what would be selected by cooperative players, and the ag-
gregate throughput approaches

� � ! . As the budgets are further
increased, the nodes’ additional greed increases the contention
on the line and the rate of interference becomes significant.
When the budgets exceed

� � ! , the leader’s strategy quickly
changes. It sets � � � 


, which means if a transmission fails
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Fig. 5. Strategies in Stackelberg equilibrium.

in a slot, it attempts retransmission during the next slot. This
makes sense intuitively because the follower, attempting to
maximize its own throughput with its confined budget, must
back off with high probability after a collision, and the “safest”
time for the follower to transmit will be following a previous
successful transmission. Hence, the follower sets � � � 


, since
it can only be in the Free State when the leader is also in the
Free State, and it can only successfully transmit when the
leader is in the Free State.

D. Prisoner’s Dilemma

From the above Stackelberg game, the leader node � can
achieve a throughput of at most

	 �� � 
 ���
. Note that this

throughput is better than it can gain in a cooperative environ-
ment (

	 � � 

� ! ). We continue to assume that both nodes will
decide their strategies simultaneously.

Let us consider three budget scenarios and the correspond-
ing strategies that would be played in the Stackelberg game:

� Low budget region: � � � �3��� * � !,# .
Strategy ��� � � � ��� � � �"� � � * � ! # � � � � * � * � 
 .

� Medium budget region: � � � �3��� * � � .
Strategy � � � � ��� � � �:� � � � 
 � � � � * � �"# 
 .

� High budget region: � � � � � � * � # .
Strategy ��� � � ���:� � � � * � ( #�� � � � 
 
 ,
and ���4� � � � �"� � � 
 � � � � * ��� 
 .

Strategy � � in the lower budget region is similar to the
strategy played by the nodes in a cooperative environment.
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Strategy � � , which is more aggressive than � � , is played by
both the leader and the follower in the middle budget region.
Finally, � � and � � are the respective strategies of the leader
and the follower in the high budget region.

Now, let us consider two situations where two nodes enter
into a common medium and must choose their parameters to
maximize their individual throughputs without knowing what
their opponent chooses to do:
To Cooperate or to Compete?

Consider a game in which two nodes, each with a budget
of 0.5, share a common medium. These nodes must decide
whether they will cooperate or behave in a greedy manner
(i.e., should the node set its parameters according to � � or
� � ?)

The throughput of both players can be depicted by the
following table.��� � �
� � (0.3246,0.3246) (0.0034,0.9288)
� � (0.9288,0.0034) (0.2951,0.2951)

The most efficient solution is at ( � � � ��� ). However, a selfish
node will note that whichever strategy its opponent chooses,
its throughput will be increased by choosing � � . Here, we see
a typical Prisoner’s Dilemma[5]. Although from a global per-
spective, both players know the best solution is ( � � � ��� ), from
any hypothetical local point, strategy � � should always be
played. This is because, for any fixed strategy by the opponent,
choosing � � is always better than choosing � � . Strategy � �
is called the dominating strategy[5] for both players and the
solution ( � � � � � ) is the unique Nash equilibrium[5] solution
of this game.
To Lead or to Follow?

In the second game, we assume that nodes have budgets in
the third region. As before, the nodes are better off playing a
greedy strategy. However, now the nodes must also decide
whether to choose the leader’s strategy or the follower’s
strategy.

� � � �
� � (0.25,0.25) (0.1233,0.3595)
��� (0.3595,0.1233) (0,0)

Here, a node’s strategy is not clear. A node is always better
off choosing the opposing strategy of its competitor. Choosing
the follower strategy is more conservative. A throughput of at
least * � 
 � !�! is ensured, but the throughput can be at most* � � � . If the leader strategy is chosen, a throughput of * � ! � ! �
is possible, but a throughput of 0 is also a possible outcome.
Interestingly, this game has two symmetric Nash equilibrium
solutions, which are

� � � � ��� � and
� � � � ��� � .

VI. Selfish Behavior Detection and Prevention

In the previous section, we used non-cooperative games of
two nodes to show that selfish behavior of nodes deteriorate the
overall throughput obtained across the transmission medium,
as well as that of the individual nodes. In this section, we
discuss how cooperating nodes can identify and prevent selfish
behavior in a general

�
-node system.

A. Transmitting is a Dominating Strategy

Consider any node
�

at any time-slot � . If it attempts to
transmit, the probability of success is������
	 � 
 � � � � � � �
where � � � � � is the transmitting probability of node � at that
time-slot. Without any budget constraint, if node

�
were greedy,

it would always be better for node
�

to transmit a packet during
every time-slot in order to maximize its throughput.

But if node
�

transmits packet in every time-slot, other
nodes transmission attempts will always fail. Over time, this
phenomenon is easily observed. Here, we consider how co-
operative nodes can alter their parameters if their perceived
throughputs are too small in such a way that selfish nodes
become “encouraged” to set their parameters in a cooperative
manner.

B. Selfish Behavior Detection

Theorem 5: For a � -short-term fair cooperative environ-
ment, where each node uses � � � 


and � � � 
 �
LNMPO� 
 � 

� � , the successful rate defined by

	 � � 
 � for any
node � is lower-bounded by

F
� + � J F
� + � JF
� + � J F ��+ � J Q � .
Proof: 	 �
 � � � 	 �� 
 � � ?

� 
 �� 
 � is equals to the total average cost for all nodes. Suppose
when all

�
nodes are in backlogged state. Let Q to be the

number of nodes which decide to transmit in a time-slot.
Therefore,

% �P��� � � 
 ��
 	 ��� � 	�� � 	� � 
 � � � � �*+ 	 and �
is a binomial random variable with parameter � � and

�
.

� 
 � � ? 5 � 
 � ? ��� �� � � ��
 �
� � 
 � 
 � �� ? 5 � 
 � ? � � ��� � � � 
 � � ��� 
 � 
 � �� ? 5 � 
 � ? � � � � � � 
 � � � � 
 � 
 � �
Since 
 � � � � � � 
 � � � � �*+ � � � � � � 
 � �� � , and

�� � 
 ��� + � ��DC E . 	 � � 
 � � ? � � ? 5 � 
 � ? � � � � � � 
 � � � � 
 � 
 � � ���� ������ � � � 
 � � �� � 

� � � � � � 
 � � ��� 
 � 
 � ���� ������ � � � 
 � �� + � ��DCIE � � � � � � � � � 
 � �� � � � � 
 � 
 � ���� �� � � � � � 
 � �� + � � �� � ��� 
 � 
 � ���� ������ � � � 
 � ���+ � � �� � � � 
 � � � � � 
 � �� � �
By Lemma 1,

� � � is monotonically decreasing in
�

. When� � �
,
� � � � � � � is the maximum for

� 7 

. Substitute� � � with

� � � , we have:������ � � � 
 � �� + � � �� � ��� 
 � � � � � 
 � �� � �� � ������ � � � 
 � �� + � � �� � ��� 
 � �� � 
 � �� � �� � �� � � � � � 
 � �� + � � � � � � � 
 � �� � � � ���+ � �� + �� � 	 � � 
 � 7 � � � � 
 � � � � � � � � � � � � 
 � � � � � � 5 
 �
Theorem 5 gives the guideline for cooperative nodes to

detect the existence of any selfish node. A fraction of at leastF ��+ � J F
� + � JF
� + � J F
� + � J Q � of a cooperative node’s transmissions should
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be successful. For instance, when � equals
#
, this average

success rate lower-bound is . �. ; . When � is larger, the success
rate is even higher. In practice, each node can measure this
quantity to infer if there is any selfish node in the system.

C. Selfish Behavior Prevention

In order to prevent selfish behaviors in the system, all
cooperative nodes should activate a new strategy using a� �� 7 � � that reduces the throughput of the selfish node beneath
what it would have been had when it used the cooperative
parameters. Knowing that such a reduction will occur gives the
selfish nodes the necessary incentive to remain cooperative.

Suppose after all cooperative nodes activate the new strategy� �� , the selfish node obtains throughput
	 �� .

	 �� has to be less
than ? � � , the fair share throughput gained in a cooperative
environment. 	 �� � � 
 � � �� � �,+ � � ? � �

��� 
 � � �� � LNMPO� ? � �
��� � �� 7 
 � LNMPO� ? � �

From Theorem 4, we know that ? is lower-bounded by

 ���

.
Hence, we can substitute in



� �
for ? when calculating � �� as

an approximation.
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Figure 6 shows the cooperative strategy � � and the selfish
prevention strategy � �� . We see


 � LNMPO� 

��� � is a good
approximation for the lower-bound for � �� .

VII. Adversary Model Analysis

All previous scenarios assume that each node, whether
cooperative or selfish, is interested in maximizing its own
throughput. In this section, we consider an attacking node
whose goal is to use its restricted budget to minimize the
throughput of the other nodes in the system, i.e., to cause as
many of its packets to collide with what would otherwise be a
successful transmissions. We first discuss how much damage
it will cost if an attack uses a random (stateless) attack. Next,
we formulate this attack model as another Stackelberg game.

A. Pure Random (Stateless) Attack

If an attacking node is able to transmit a packet in every slot,
it can clearly prevent any transmission from being successful.
We assume that the adversary node has a budget � � � * � 
 � ,
allowing it to transmit in at most a fraction � of the slots.
Definition 2: An adversary node uses � -pure random attack
if it transmits a packet in each time-slot independently with
probability � .
By Definition 2, an adversary node with a budget � can use
a � -pure random attack for any � � � . We can imagine that� -pure random attack for a communication channel is identical
to a lossy channel where a packet is lost with probability � .
Theorem 6: Suppose there are two nodes � and � in the
system. If node � is an adversary node which uses � -pure
random attack, then regardless of the strategy of player � , its
throughput

	 � is equal to
� 
 � � � 
 � .

Proof: Substitute �)�� and �)�� with � in the corresponding
throughput for � as in Equation (2). We have:

	 � � � : � � : ; � : � � : . �
&''
(
� � � � 
 � ���� �� � � � 
 � � �� �� �� � 
 � ���� �� �� � 
 � ���� �

/100
2

� � 
 � � � � : � � : ; � : � � : . �
&''
(
� � �� � �� ��� ��

/ 00
2

Since the corresponding cost function for � as in Equation (3),
we have: 
 � � � : � � : ; � : � � : . �

&''
(
� � �� � �� ��� ��

/ 00
2

Therefore,
	 � � � 
 � � � 
 � .

Theorem 6 formalizes the intuitive result that a � -pure
random attack reduces the capacity to be


 � � of the original
capacity. Interestingly and initially countering preliminary
intuition, if we have more than one cooperative node, the
damage caused by a � -pure random attack is often larger than
a factor of


 � � :
Theorem 7: Suppose originally there are

�
homogeneous

nodes which use � � � 

and � � � 

� �

in the system. They
achieve an aggregate throughput ? . If an adversary node joins
the system and uses � -pure random attack, then the aggregate
throughput of the

�
cooperative node is less than

� 
 � � � ? .
Proof: Before the adversary node comes into the system,
we can model the system as in Figure 2. The transition
probabilities are � = � � 
 � � � � �*+ � and � > � � � � � 
 � � � � �,+ � .
After the adversary node comes, we define the corresponding
transition probabilities to be � � = and � � > . Because a successful
packet from a normal node happens only if the adversary node
does not transmit, we have � � = � � 
 � � � � = and � � > � � 
 � � � � > .

From Equation (5),

? � � � � � 
 � � � � �*+ �
 5 � � � � � 
 � � 
 � � � � �*+ �
The new throughput ? � is
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? � � � � >
 � � � = 5 � � > � � � � � 
 � � � � �*+ ��� +�C 5 � � � � � 
 � � 
 � � � � �*+ �
Therefore,

? �? � 
 5 � � � � � 

� � 
 � � � � �*+ ��� +�C 5 � � � � � 
 � � 
 � � � � �*+ � � 
 � �
The last inequality holds if � � � 

� �

.

An explanation of this result is as follows: as more nodes
participate in the cooperative process, the expected number
of slots between transmissions in the Backlogged State grows
at a faster rate than the expected number of slots between
transmissions in the Free State. A random seeding of losses
forces more nodes to spend more time in the Backlogged State,
and as a result, each node attempts fewer transmissions over
time, yet still loses a fraction � of the attempts to the random
loss process.

B. Adversary Stackelberg Game

Now, let us compute the reduction in throughput that an
attacking node can cause if it maximizes its attack power
under a 2-state system. As in section V-B, we introduce a
Stackelberg game in this section. The difference between the
previous model and this model is that we assume the leader
node � is the attacker and its sole objective is to minimize
the throughput of node � . Because the leader always has the
advantage over the follower, making the attacking node the
leader maximizes its potential for damage. We still assume
that node � and � have budget constraints:


 � � � � and
 � � � � respectively. The adversary Stackelberg game can
be formally described as follows:

Player: The leader node � and the follower node � .
Strategy: � � = � ���� � ���� 
 for � ; � � = �"� � � � � ���
 for � .
Payoff:

�6	 � and
	 � for � and � respectively.

Game rule: � decides �"� � � � �)�� 
 first.� decides �"� � � � � �� 
 after knowing �"�)�� � ���� 
 .
Follower’s Problem:

For any given
�� � , the follower node � solves:�

� � � �� � � ����� ����� � 	 � � �� � �
�
� � �
���
�������� ����� 
 � � �� � �

�
� � � � � � �

Leader’s Problem:
The leader node � solves:�

� � � ��� �	� ��� 	 � � �� � �
�
� � � �� � � �
 ��
������ � ����� 
 � �

�
� � �

�
� � � �� � � � � � � �

C. Two Stackelberg Equilibrium Regions

By backward induction, we solve the above adversary Stack-
elberg game for nodes who have the same budget constraints,
i.e., � � � � � . In the upper part of Figure 7, we plot the
throughput of the follower (non-attacking) node � when �
chooses the optimal 2-state attacking strategy. We also plot
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Fig. 7. Throughput and cost in (adversary) Stackelberg equilibrium.

the curve � � � 
 � �3� � , which gives the throughput of node �
when the attacker uses a � -pure random attack with � � ��� .
In the lower part of Figure 7, we show the costs incurred
by both players. We identify two regions in the Stackelberg
equilibrium solutions:

1) When the budget is less than
� � ! , both players use

up their budgets. The throughput of player � when
attacked by the optimal 2-state attacker is identical to its
throughput when attacked by a � -pure random attacker.

2) When the budget is larger than
� � ! , player � ’s through-

put is slightly but observably lower when attacked by
the optimal 2-state attacker than when attacked by the� -pure attacker.

Intuitively, the attacking node will always use up its budget
to attack. But surprisingly, a strategic, 2-state attack cannot do
better than pure random attack if the adversary node does not
have a budget larger than

� � ! . When the budget is larger than� � ! , the 2-state attack is only slightly more effective.

D. Random Attack Vs. Strategic Attack

We show the strategy solutions of both players in Figure 8.
We find that the strategies played in the two budget regions
are quite different.

Not surprisingly, when the budget is less than
� � ! , the

attacking node uses the pure random strategy � � � �4�)�� � � � .
Theorem 6 explains why the throughput

	 � is so close to
curve � � � 
 � � � � in the lower budget region. Actually, player



11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Budget B
x
=B

y

S
tr

at
eg

y 
of

 le
ad

er
 x

px
1

px
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Budget B
x
=B

y

S
tr

at
eg

y 
of

 fo
llo

w
er

 y

py
1

py
2

Fig. 8. Strategies in (adversary) Stackelberg equilibrium.

� has multiple strategies to maximize its throughput. But all
these strategies use up the budget � � . Therefore, although the
strategies played by node � seem to be irregular, node � always
gains a throughput which is close to ��� � 
 � �3� � .

After comparing the strategies played by both nodes in the
larger budget region with those used by two non-cooperative,
non-attacking nodes in Figure 5, we notice that they are
strikingly similar. This means that an attacking node � chooses
a strategy very similar to what is chosen by a node who wishes
to greedily maximize its own throughput. Of course, node �
would therefore use the same response strategy.

In conclusion, if bandwidth requirements/capabilities are
low, an attacker cannot do much better than attacking at
random points in time. If the bandwidth requirements and
capabilities are high, then an attacker behaves similarly to a
node seeking to greedily maximize its own throughput.

VIII. CONCLUSION

In this paper, we generalize the slotted-Aloha protocol to
a general two-state process. We construct a Markov model
for this generalized two-state protocol. We find that if all
nodes cooperate in an effort to maximize the aggregate
throughput, an aggregate throughput of at least



� �
can be

achieved regardless of the number of nodes competing for
bandwidth. If all nodes are selfish and greedily attempt to
maximize their own individual throughputs, a situation similar
to the traditional Prisoner’s Dilemma arises. Specifically, for

a two-node system with budget constraints, the solution has
the following features: (1) When each node’s transmitting
budget is extremely limited, a greedy strategy maximizes each
individual node’s throughput as well as the aggregate system
throughput. (2) When each node’s transmitting budget is in
a middle range, a greedy strategy produces a local maximum
throughput, but a cooperative strategy would have produced
a higher throughput. (3) When each node’s budget is in the
upper range, a node’s greedy strategy depends heavily on what
its competitors choose to do. Finally, we showed that attacking
nodes with limited budgets can do little better than a random
attack, and nodes with large budgets should behave like their
greedy counterparts.
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