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ABSTRACT
In this paper we use jump process driven Stochastic Differential
Equations to model the interactions of a set of TCP flows and Ac-
tive Queue Management routers in a network setting. We show
how the SDEs can be transformed into a set of Ordinary Differen-
tial Equations which can be easily solved numerically. Our solu-
tion methodology scales well to a large number of flows. As an
application, we model and solve a system where RED is the AQM
policy. Our results show excellent agreement with those of sim-
ilar networks simulated using the well known ns simulator. Our
model enables us to get an in-depth understanding of the RED al-
gorithm. Using the tools developed in this paper, we present a crit-
ical analysis of the RED algorithm. We explain the role played by
the RED configuration parameters on the behavior of the algorithm
in a network. We point out a flaw in the RED averaging mecha-
nism which we believe is a cause of tuning problems for RED. We
believe this modeling/solution methodology has a great potential in
analyzing and understanding various network congestion control
algorithms.

1. INTRODUCTION
Active queue management techniques have recently been proposed
[8], [3] to to both alleviate some congestion control problems for
IP networks as well as provide some notion of quality of service.
Modeling and analysis of such networks is important to understand
their dynamics. While traditional discrete event simulations work
well in general, even the most efficiently coded simulators suffer
from the problem of scaling. In this paper, we exploit fluid model-
ing to present a general methodology for the analysis of a network
of routers supporting active queue management with TCP flows.
We model the data traffic as a fluid and specifically use Poisson
Counter Driven Stochastic Differential Equations to model sample
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path description of TCP traffic. We also derive a set of differential
equations that describe the AQM policy and the router queueing
process. Next, we develop a numerical scheme for obtaining the
transient average behavior of a number of metrics including queue
length, round trip time and TCP flow throughput from a set of cou-
pled ordinary differential equations that result from our analysis.
Given an AQM policy, we are able to get (expected) transient be-
havior of networks from our solution. We are able to handle large
flows without a significant increase in computational complexity.

In order to illustrate the advantages of our technique, we consider
RED [8], one of the most popular AQM schemes to address the con-
gestion control issues. We show that our solution technique yields
predictions that match well with those obtained with the ns sim-
ulator. We are able to make some critical comments about RED.
Our modeling and solution methodology lead to a straightforward
discovery of a critical problem with the RED averaging mecha-
nism, one which we believe has not been addressed elsewhere. Our
scheme has similar aims, to obtain transient behavior by numerical
solution of a system of equations, to a heuristic approach proposed
in [9]. It is however not clear how and why the heuristics work in
cases reported.

The rest of this paper is organized as follows. In Section 2, we de-
velop our analytical model and describe the solution technique. In
Section 3, we consider an application to our techniques in a setting
with RED as the AQM policy. We compare our results with those
obtained using the well known ns simulator and make some obser-
vations about RED behavior. Finally, we present our conclusions
in Section 4.

2. MODEL AND ANALYSIS
In [11], we modeled the behavior of TCP using jump process driven
Stochastic Differential Equations [2]. The results showed a good
match between predictions from this model and measurements re-
ported in [13]. A deficiency of the model however was that the
packet loss process was independent of the data flow. Our model
remedies this deficiency by modeling a complete system, in which
losses and TCP sending rates are closely coupled. Thus we have a
closed loop control system 1 giving rise to a set of coupled differen-
tial equations. We will begin with a single router in Section 2.1 and
then show how the model and analysis are extended to a network
in Section 2.2. In Section 2.3 we extend the techniques to include
TCP timeouts. Last, we describe some optimizations in the case of
identical TCP flows in Section 2.4.

Such a system was alluded to in [6].



We first consider a system in which there is a single congested
router with a transmission capacity of . Associated with this
router is an active queue management (AQM) policy that is charac-
terized by a packet discard function that takes as its argument
an estimate of the average queue length at the router. The queue
length of the router is denoted by , . The classical exam-
ple of an AQM policy is RED [8] for which takes the form

(1)

where , , and are configurable parameters. The
drop function is depicted in Figure 1, showing the discontinuity at

.

Figure 1: RED drop function

2.1 A single congested router
Let TCP flows labeled traverse the router. Let

and denote the TCP window size and round trip time
at time , of flow , . We assume that takes
the form

(2)

Where is a fixed propagation delay and models the queue-
ing delay.

Last, let denote the instantaneous throughput of TCP-flow
at time .

Our model is based on the assumption that packet losses to flow
are described by a Poisson process with time varying rate

. The time varying nature of is able to model the inde-
pendent marking schemes commonly found in AQM. Here
denotes the number of losses suffered by flow . Note that here
denotes the point in time when the flow detects losses, which is dif-
ferent from when the actual dropping at the queue occurs. Hence-
forth, when there is no ambiguity, we will omit the argument . A
short description of Poisson Counter Driven Stochastic Differential
equations is included in an Appendix for completeness. We have

the following equation describing the behavior of the window size
,

(3)

This models the additive-increase multiplicative-decrease behavior
of TCP. The first term corresponds to the additive increase part,
which says that the window size will increase by one every round
trip time. The second term corresponds to the multiplicative de-
crease part, which halves the window size at the instant of the ar-
rival of a loss ( ). We model the traffic as a fluid, making
the instantaneous throughput equal to . Taking
the expectation2 of each side of the above equation yields

The above equation is approximate because we have broken down
as , which assumes indepen-

dence between the two which is not true, especially in propor-
tional marking schemes. However, this approximation does not
change the fundamental nature of the multiplicative decrease mech-
anism, and we are able to capture TCP dynamics. Now is
the loss indication received by the source. It reaches the source
approximately one round trip delay ( ) after a packet has been
marked/dropped at the queue. In [14] an exact stochastic differ-
ential equation for TCP with feedback delay has been studied, in
the context of fairness. Here we model the delay as the solution
to the following equations

In the proportional marking schemes employed in AQMs, mark-
ing/dropping is implemented to distribute the losses in proportion
to a flows bandwidth share. Thus, if the throughput of a flow is

at the time , the rate of loss indications ( ) it
receives at time is . We denote the expected
value of it by .

Now, returning to our earlier differential equation equation describ-
ing the expected window size, we have

The approximation that we made in the step above involved making
the approximation . We’ll comment more on
this in a later section. Thus, we have,

(4)

We assume that the estimate of the average queue length is an expo-
nentially weighted moving average based on samples taken every

Throughout this section we represent the expected value of any
variable by



seconds Using a weight , ,

(5)

It is useful to convert this equation into a differential equation.
Given the form (5), the natural candidate is

Then, in a sampled data system [1], is given by

(6)

Note that the differential equation matches the discrete time system
exactly at the sample points, and there is no accumulation of error
as increases. Comparing the coefficients in (6) and (5), we obtain

or

Thus, we have the following equation describing the behavior of ,

As this is a linear equation, taking expectation of both sides yields

(7)

Finally, we have the following equation describing the behavior of
, which is the differential version of the Lindley equation

(8)

Here, the first term models the decrease in the queue length, when
it is greater than zero, due to the servicing of packets. The second
term corresponds to the increase in the queue length due to the ar-
rival of packets from the TCP flows. Again, taking expectations,
we obtain

Now for a bottlenecked queue, we’ll have with probability
close to 1. Thus, we can approximate to obtain

(9)

We have coupled equations (4), (7), and (9) and
unknowns, ( ) which can be solved numerically. The solu-
tion provides an estimate of the average transient behavior of the

system. We get the queue length, queue estimate and window size
evolution directly, and those values in turn yield average round trip
delay, average loss rate etc.

2.2 Extension to a network
The extension to the network case is straightforward. Let be a
collection of communication routers. Each router has a
transmission capacity of bits per second. Router has an AQM
policy characterized by a probability discard function, , which
takes as its argument , the estimated average queue length of .
The queue length for router is . Last, let x and q be
vectors whose components are the estimated average queue lengths
and queue lengths, respectively, at time . Associated with
each router is the sampling period and averaging weight .

Consider a workload of TCP flows labelled . Let
be the ordered set of links (i.e., path)

taken by packets from flow where , and
is the path length. Generalizing (2), the average round trip time

of session is approximated by:

q (10)

The routes can be represented by a binary matrix A where the rows
represent the different flows and the columns represent the different
routers (queues). In other words, iff . We modify
equation (4) to account for losses arriving from each router in the
path. If P x is the vector of loss probabilities at each node, then
we define a matrix AP where we multiply every column of the A
matrix by the corresponding element of the P vector. The combined
loss seen by a particular flow is, then, given by AP
Thus, (4) is modified to

-

AP x

-

where is the probability of packet loss experienced by flow
on its path. The equation for the estimated average queue length

and the queue length at each node remain unchanged. Define as
the set of flows through queue . Then

(11)

In the networked case, for any queue which is a bottleneck,
with probability close to 1, and for a non-bottlenecked queue,

with probability close to 0. This is the basis for the
approximation that . We end up with a system of
equations with unknowns that can be solved numerically
to yield the transient behavior of the network.

2.3 Modeling Timeouts
To account for timeouts, we need to quantify the division of losses
into the two types, viz. timeout (TO) and triple duplicate ack (TD).
Let denote the the probability that the loss is a TO loss, given
that the window size at the time of a loss is . We use the simplified
function derived in [13], for this purpose.
Intuitively, this expression for is based on the assumption that



all packets in a particular round are equally likely to be dropped,
with at most one drop per round. In that case, any one of the last
3 packets in a round can cause a timeout if dropped, hence the
function . Equation (4) can be modified to account for
TO losses resulting in

+

2.4 Aggregation of identical flows
The system of equations describing the transient behavior of a net-
work of TCP flows can be simplified in the presence of identical
flows, i.e., those with the same route and round trip time. This is
done by representing identical flows by a single class. Let there be

classes of flows, where the -th class contains identical flows
with route and round trip time q . All flows in the same
class will have the same average behavior. Thus, we can represent
the behavior of the average window size for each flow using equa-
tion (9). We suitably modify the equation for the average queue
size in the following manner

(12)

This formulation leads to a considerable savings in computation
time when we have a large number of identical flows to solve for.
The number of equations and unknowns reduces from

to .

It is also worth noting that, as the number of flows in a class in-
crease, the law of large numbers comes into play and the expected
behavior begins to approach the aggregate sample path behavior.
Thus, the stochastic differential equations start converging to ordi-
nary differential equations.

3. ANAPPLICATIONTOTHEREDACTIVE
QUEUE MANAGEMENT POLICY

We now present an application of the system, taking RED as the
AQM policy RED has been shown to outperform Drop-Tail queues
under certain scenarios. RED is a powerful mechanism to control
traffic, potentially solving problems like flow synchronization, cor-
relation of drop events while providing consistently high link uti-
lizations. However, numerous problems have been cited with RED
[10]. RED works well in certain scenarios, whereas it does very
poorly, even worse than Drop-Tail, in other cases [6]. There is no
clear understanding on how to tune various RED parameters that
work well in all scenarios. Consequently, there is considerable ner-
vousness in the community regarding deployment of RED, and nu-
merous variations of RED have been proposed [5], [12], [4]. Some
of the schemes have self-tuning parameters, while others maintain
per-flow state. It is clear that there is a great need for thoroughly
understanding the behavior of RED. We believe our techniques can
help in that effort.

Throughout this section we will compare the results obtained from
our model to those obtained from simulating an equivalent system
using the well known ns simulator. To avoid confusion between
the process of averaging by RED, and our operation of obtaining

expected values using differential equations, we denote the aver-
age queue length (as it is more commonly referred) as calculated
by the ns implementation of RED as Queue estimate ( ) and the
result obtained by our differential equation solution as average
Queue estimate. Similarly, is referred to as the average Instan-
taneous Queue length and as reported by ns as instantaneous
queue length. Our differential equation solver was implemented as
a MATLAB program (a simple implementation with 42 total lines
of code) which takes the matrix A and a link capacity vector C as
input. We did not incorporate slow-start in our program. All routers
are assumed to have the same RED parameters . The propagation
(non-queueing) delay for each class of flows is kept at 200 ms. The
buffers are sized so that all losses are RED-related, i.e. no drop-tail
losses occur on the network.The is 150 packets and the
is 200 packets. is a parameter in our solver which is not specified
in RED. Instead RED updates the queue size estimate on the arrival
of each packet. We can account for it in two different ways

ns updates the queue at every packet arrival. Thus, we can
choose to be , where is the instantaneous arrival
rate at a queue measured in packets. thus becomes a func-
tion of time.

We can choose a fixed value of . If the queue is stable,
then the steady state arrival rate = service rate. Then, for
each (bottlenecked) queue, is simply where is
the capacity of link in terms of (average) sized packets per
second.

Note that both techniques are approximate, in our implementation
we use as an estimate of .

S1

S2

S3

S2

S4

S5

Q1 Q2

Figure 2: Simple network topology

3.1 Experiment topology
We use the simple topology shown in Figure 3. It consists of two
RED queues and . Both links have three sets of flows going
through them. goes through both the queues, whereas
and go through only and respectively. The only bot-
tleneck links are the queues and . We’ll show results from 5
different experiments performed using ns and our DE solver. We
tabulate the parameter choices in the various experiments in the
following table for reference



Parameter sets for various experiments
Exp. No. Q1 cap. Q2 cap. Pkt size

1 0.0001 5 Mb/s 5 Mb/s 500 Bytes 0.1
2 0.0001 5 Mb/s 2.5 Mb/s 500 Bytes 0.1
3 0.0001 15 Mb/s 15 Mb/s 500 Bytes 0.1
4 0.0001 15 Mb/s 15 Mb/s 1500 Bytes 0.1
5 0.0001 15 Mb/s 15 Mb/s 500 Bytes 1

3.2 Experiment 1
We first consider a symmetric case, where both RED queues have
similar bandwidth capacity of 5Mb/s. is kept at 0.0001,

. Each class of flows consists of 40 individual flows which start
at (200 flows in all). At time , three fourths of the
flows in each class drop out (so there are only 10 flows in each
class). At time , those flows restart. We plot the Queue es-
timate and instantaneous queue length for Queue 1 and 2 in Figures
3, 4 respectively along with our model predictions of the expected
values for the same. Note that we are plotting the results of one
ns simulation along with our solution which gives the expected re-
sults. As we can see, the differential equation solution tracks the
simulations pretty well, tracking both the average queue estimate
and the instantaneous queue length well. Our method adapts to the
changing nature of the load as well. Note that our solution differs
initially from the simulation in all cases, because we didn’t imple-
ment the effect of slow start. We’ll return to this discrepancy in a
later section.

3.3 Experiment 2
Now we repeat the experiment in an asymmetric setting. We re-
duce the link capacity of the second queue to be 2.5Mb/s from
5Mb/s. Again we show the average queue estimate and instanta-
neous queue length along with our DE estimates for both the queues
in Figure 5 and our results match well with ns simulations for both
the queues. Notice that the average queue estimate stays higher for
Queue 2 which is correctly reflected in our DE solution.

3.4 The importance of
If we focus on in the middle portion of Figure 4 and 5 (when only
a fourth of the flows are active), we observe that Queue 1 exhibits
more oscillations than Queue 2. The oscillations are not good for
the network as they may result in unacceptably large queue lengths
and hence a large variability in delays for the flows going through.
Even if the mean delay may turn out to be the same, these oscilla-
tions add considerable jitter to the delays. If the buffer is not large
enough, then the effect of the oscillations will be to cause buffer
overflows. They also cause periodically high RED loss rates and
affect the throughput adversely. The question is: why? The larger
bandwidth capacity of Queue 1 certainly plays a part, reducing sta-
bility margins, however we would like to point out another, hidden,
cause. This is done by revisiting equation (7):

Denote by (since is a negative
quantity). Then we have

Taking the Laplace transform of both sides, we get the transfer
function of the queue averaging module as . This is the first
order low pass filter which was the original design goal of RED,
to track the average queue size (low frequency signal), and to fil-
ter out bursts (high frequency signal). The input to this filter is
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Figure 3: Symmetric case, Plots for Queue 1, Experiment 1

the instantaneous queue length, and the output is the average queue
estimate. Asymptotically, the frequency response of this filter is
described by the magnitude Bode plot shown in Figure 7. It allows
frequencies smaller than to pass through, while damping inputs
at a frequency higher than . In simple terms, determines the
responsiveness of the filter. The higher the value of , the faster
it will respond to a sudden change. If we maintain a high value of

, then the AQM function starts tracking the instantaneous queue
length closely resulting in sustained oscillations. Let’s perform ex-
periment 3, with all settings unchanged except with both link ca-
pacities set at 15 Mb/s, and Figure 8 illustrates the Queue estimates
and Instantaneous Queue Lengths for Queue 1 in the time interval
[0 75] (i.e. when all flows are active). We observe the presence
of large oscillations. In the scenario where the link capacity was
5Mb/s and the packet size 500 Bytes, the effective sampling period

was (the link capacity is 1250 packets of 500 bytes per
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Figure 4: Symmetric case, Plots for Queue 2, Experiment 1

second, gives ). With ,

With the increase in link capacity to 15Mb/s, the value of reduced
to and becomes .3750 (3 times the earlier value). As
the link capacity increases, the RED average queue estimate tracks
the instantaneous queue length more closely, essentially resulting in
sustained oscillations. This hidden artifact of the RED algorithm,
the adaptive nature of , is, in our opinion, a significant cause of
the “tuning problem” with RED. We can modify our DE solution
system by using a static value of , larger than with the hope
of reducing and thereby reducing oscillations. Figure 9 illus-
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Figure 5: Asymmetric case, Plots for Queue 1, Experiment 2

trates the behavior of the Queue Estimate and Instantaneous Queue
Length for different values of . We keep constant at 0.0001, the
value we have used in all the experiments so far. As we observe,
increasing the value of results in increasing stability, with both
the average queue estimate as well as average instantaneous queue
length settling down . However, care should be taken that not
be kept too large, as increasing values of result in increasing rise
times of the average queue estimate and increasing initial overshoot
of the average instantaneous queue length.

Returning to the problem of tuning RED parameters, not only does
the performance of the mechanism depend on link bandwidth, but
also on the average packet size of the flows. We now illustrate
this via experiment 4. Consider the two queue setting with the link
capacities set to 15Mb. This time we increase the packet size from
500 Bytes to 1500 Bytes. This results in a that is approximately
the same as the one where link capacity was 5 Mb/s with 500 Byte
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Figure 6: Asymmetric case, Plots for Queue 2, Experiment 2

packets (the number of packets that are being processed remains a
constant). Looking at Figure 10, we indeed observe that the system
is stabilized.

Since the average packet size is not something network designers
can control, the only hope to stabilize the RED algorithm is to make

a parameter whose value is independent of and the packet size.
Implementing an algorithm whose stability is influenced by exter-
nal factors (user packet sizes) is also not good from a security point
of view. A malicious user could conceivably influence RED behav-
ior by sending very small or very large packets.

It is not sufficient to make , the forgetting factor, small to re-
duce the effects of transient spikes in incoming traffic. If changes
in response to the input packet rate, then a changing means a
changing forgetting rate. In fact, because of the very nature of the
spikes, at the point of their arrival RED starts sampling the queue

 0 dB

K

Figure 7: Magnitude Bode Plot of the first order averaging fil-
ter

size much more frequently, thereby “forgetting” history that much
more quickly and starts tracking the spike closer.

In [6] Firoiu et. al. suggest that should be made equal to the
smallest round trip time of the flows going through the link. They
also suggested that the thus selected is “good enough” and finer
sampling won’t improve things. The authors propose some guide-
lines for choosing RED parameters. We are currently investigating
“tuning” RED parameter values via a different, control theoretic
viewpoint.

Further, in [6] the authors also suggested that the discontinuity in
the RED drop function (the jump from to 1 at ) is a
cause of oscillations in RED. It has been suggested that making
the drop function continuous via the gentle [7] should improve
things in that regard. Our experiments show that the discontinu-
ity is not the only cause of oscillations and that a simple fix by
making the drop function continuous won’t remove them. To il-
lustrate that, we repeat the previous experiment with ,
thereby removing the discontinuity. We perform experiment 5, and
the results are illustrated in Figure 11, showing that the oscillations
persist. A quick investigation with our differential equation tool
reveals that stabilizes the system, keeping .
However, on the downside the system becomes very sluggish in it’s
response time to changes in the load. Thus, this tradeoff between
responsiveness and stability unfortunately cannot be avoided with
the RED control mechanism. Thus, it is a combination of the link
bandwidth , average packet size, , and load levels which make
the system stable. Summarizing, our main observations with RED
are

The adaptive nature of the sampling interval is harmful and
can lead to oscillations

The averaging algorithm needs to be modified, to make the
sampling period a static value independent of packet sizes or
arrival rates

The presence of oscillations depends on many factors includ-
ing packet size, link bandwidth and load levels
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Figure 8: Link speed 15 Mb/s, Packet size 500 Bytes, Experi-
ment 3

3.5 Modeling different variations of TCP
We have described a generic TCP model, i.e., we have not con-
sidered the different variations Reno, Sack, Fack etc. One of the
major differences between the variations of TCP is how they infer
timeouts. Sack and Fack yield a much better behavior with re-
spect to timeouts We model the effects of timeouts by the function

, where gives the split between timeout and triple du-
plicate ack losses given that a loss occurred when the window size
was . The that we used was derived in [13], which seems
valid for Reno. For Sack, a lower than the one derived for
Reno should be used. Our observation has been that a of

seems to work for Sack while Reno needs a of
. This was validated by experiments not reported here.

3.6 Control systems mapping
A very important by-product of our modeling and formulation is
that we can map the differential equation based TCP+AQM sys-
tem into a classical control systems model. We can then use stan-
dard techniques to analyze various mechanisms and propose im-
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Figure 9: Link speed 15 Mb/s, Packet size 500 Bytes

provements to algorithms as well as analysis-backed guidelines for
choosing parameters of the algorithms. We are currently preparing
a manuscript describing our work on the analysis of such systems
from a control systems perspective.

3.7 Some comments on modeling and simula-
tion

The lack of slow-start in the model used to predict performance
only affects initial start up of the experiments. Once the system
nears the stable point, the DE solver is able to track changes in
the network well. Hence, for computational simplicity, we did not
incorporate slow-start.

At a number of places in our derivation, we had to make the approx-
imation . This is strictly not correct and should
cause errors. However our system seems to capture the dynamics
of TCP reasonably well. For the particular case of

we explain why the approximation may not be so bad: If
we divide into (a propagation delay + queueing delay), the
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Figure 10: Link speed 15 Mb/s, Packet size 1500 Bytes, Exper-
iment 4

randomness comes from the queueing delay. If we look at the plots
from the experiments, for most cases we see that the queue length
varies periodically. Thus, we can further break it down to a deter-
ministic, periodic part and a random part. As the number of flows
starts to increase, the random part of the round trip time makes up
a smaller and smaller contribution, it is dominated by the determin-
istic part. In which case the approximation is not bad, since, if we
write as , denoting the deterministic and random part
respectively, we get
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Figure 11: Link speed 15 Mb/s, Packet size 500 bytes,
, Experiment 5

We have used our methods to solve for thousands of flows in high
bandwidth networks, however due to our inability to validate our
results with simulation we do not present those results. While it is
not right to compare the computational complexity of our technique
with ns, as ns provides a lot more functionality, to get an idea
of the speeds involved we mention that none of the experiments
presented in the paper took more than 10 seconds to solve within
MATLAB, while some of the ns simulations took several minutes
to run.

4. CONCLUSIONS
We have developed a methodology to model and obtain (numeri-
cally) expected transient behavior of networks with Active Queue
Management routers supporting TCP flows. We applied our tech-
niques to analyze networks where the AQM policy was RED. Our
results match well with simulation results, and are able to scale up
well to large flows. We are able to get a qualitative understanding
of the behavior of such networks quickly with our tool. Our model-
ing technique enables us to spot a possible problem with the RED



averaging mechanism, which we verify via simulations. The tech-
nique that we presented in this paper is quite general purpose and
can be easily extended to model and analyze other AQM mecha-
nisms. There are several avenues of future work which we intend
exploring. We are currently studying the control-dynamics of the
system of RED routers and flows using the analytical formulation
that we obtained. In terms of improvements to the methodology,
finer grain modeling of TCP, accurate modeling of drop-tail behav-
ior and a better handling of the stochastic nature of queueing delays
are issues to be explored.
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APPENDIX
A. POISSONCOUNTERDRIVENSTOCHAS-

TIC DIFFERENTIAL EQUATIONS

Consider a stochastic integral equation

(13)

where is a Poisson Counter. The solution of equation (13) is
defined as follows.

Definition: is a solution of (13) in the Itô sense if, on an in-
terval where is constant, satisfies and if, when
jumps at , changes according to

and is taken to be continuous from the left. Equation (13) is
often written as

and is called the Poisson Counter Driven Stochastic Differential
Equation (PCSDE) or Jump Process Driven Stochastic Differential
Equation.

We list some direct consequences of the above definition. Consider
a stochastic differential equation driven by independent Poisson
Counters :

We have the following “Itô rule”. If is a differentiable
function, then

Since is continuous from the left and the Poisson counter is
taken to be continuous from the right, we have

where is the rate for .
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