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ABSTRACT
Network verification, broadly defined as proving the correct-
ness of certain properties resulting from a network’s configu-
ration, cannot be efficiently solved on classical hardware via
brute force. Prior work has developed a variety of methods
that scale by observing a structure in the search space and
then evaluating classes induced by that structure. However,
even these classification mechanisms have their limitations.
In this paper, we consider a radically different approach: ap-
plying quantum computing to more efficiently solve network
verification problems.We provide an overview of how tomap
variants of verification problems into unstructured search
problems that can be solved via quantum computing with
quadratic speedup, making the approach feasible in theory to
problems that twice as big in the size of the input. Emerging
quantum systems cannot yet tackle problems of practical
interest, but rapid advances in hardware and algorithm de-
velopment make now a great time to start thinking about
their application. With this in mind, we explore the limits
of scale of the problem for which quantum computing can
solve network verification problems as unstructured search.

CCS CONCEPTS
• Hardware → Quantum computation; • Networks → Pro-
tocol testing and verification; Protocol testing and ver-
ification.
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1 INTRODUCTION
Networks are designed with the intention of meeting certain
goals and requirements. Network verification refers to a class
of techniques used to check that various properties of con-
cern to network administrators are satisfied by a network’s
configuration. For instance, common concerns might be to
ensure that routes between specific sources and destinations
explicitly do (or do not) pass through specific intermediate
routers, or that the number of hops is bounded below some
threshold (precluding infinite loops). There is a significant
body of prior art that explores verification in the context of
properties of different networks using different techniques to
efficiently perform the verification process [5, 14, 21]. Despite
their differences, the focus of each verification technique can
generally be split into two classes:

• Data plane: whether the forwarding table rules and other
data plane elements (e.g., ACLs) achieve desired properties
for how data flows through the network.
• Control plane: whether the configuration of routing pro-
tocols results in data planes that satisfy desired properties.

Substantive progress has been toward the design of ap-
proaches that address many concerns of network administra-
tors, despite the problems’ inherent complexity [15]. How-
ever, there remains a large set of properties for which exist-
ing approaches do not offer efficient solutions. For instance,
for data plane verification, it remains elusive to determine
whether routing paths through the network are guaranteed
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to be bounded by a fixed number of hops or fixed delay. For
control plane, evaluating whether desired properties hold
across flows in the face of link failures remains an open
challenge.

Network verification differs from a traditional single-machine
program verification in three important ways:

• The network “program” is implemented across a dis-
tributed set of components (e.g., routers). While what each
component does is relatively simple when compared to a
standard (centralized) program, the complexity in analyz-
ing properties of a network system greatly depends on how
these relatively simple parts interact as a whole.
• The network “program” is generally an operation that
needs to be completed quickly (e.g., transit from a source to
a point), and loops or significant recursion is highly unde-
sirable. In contrast, traditional programs often rely heavily
on long loops and recursive calls to effectively implement
operations of significant complexity.
• When a property is violated, the verification system
should (hopefully) return an input that caused the violation.
Inputs in traditional programs are inputs to the program
and are often themselves quite large, for example files, large
arrays, or values input within iterations of a program loop.
In contrast, network verification inputs for a given network
tend to be small, on the order of tens of bits: e.g., a packet
headers or a set of failed links that cause a property to be
violated.

Because in network verification the internal state of the
system may be highly complex but an input of the problem is
small, quantum computing may offer a more efficient means
at solving a variety of problems that remain elusive classi-
cally. While quantum computing technology is not yet at a
point where it can be deployed to address reasonably-sized
networks, the trajectory of advances in the field is moving so
quickly that now is a good time to further our understanding
of how to apply quantum technology so that we can rapidly
build solutions when its applicability does reach fruition.
Classical “structured” v. Quantum “unstructured”:

For classical solutions to be efficient, they generally require
being able to make assumptions about a given network, effec-
tively applying “structure” to inputs. Such a structure allows
inputs to be grouped into (evolving) classes, where the classi-
cal approach analyzes the inputs on networks by each class,
one at a time. Classical techniques become intractable when
the inputs lack this structure necessary to separate them into
a small number of classes. In contrast, quantum computing
is known (in theory) to offer quadratic improvement with
respect to classical computing when dealing with “unstruc-
tured” data: this allows a doubling of the size (number of
bits) of the input space, where doubling can be beneficial in
practice (e.g., handling headers twice the size).

In this paper, we show how to map variants of previously
considered network verification problems into a quantum
computing framework. The variants we consider are difficult
to solve efficiently on classical infrastructure because of their
inherent complexity [3] but can be solved with quadratic
speedup in a quantum computing context as unstructured
search problems by applying Grover’s Algorithm [11]. These
results are merely proof-of-concept, as hardware is not ready
to implement these algorithms. Also, quantum computing
may in fact offer significantly more computational power
than what we demonstrate here if one can find some struc-
ture in the data whereby a solution beyond Grover’s Algo-
rithm may be applied with significantly greater speedup.
We demonstrate one minor enhancement technique for our
control plane example known as amplified Grover that can
bias solutions toward those with a desired number of lossy
links [6].

In the remainder of this paper, we present a formulation of
the general network verification problem within the frame-
work of an unstructured search scenario and illustrate how
to use Grover’s algorithm to address some of the challenges.
Because it is hard to exactly assess practical costs (error
correction and the stochastic nature of quantum measure-
ment), it is difficult to precisely assess how long our proposed
unstructured searches will take. For now, we limit our scala-
bility analysis to the number of qubits (the analog of classical
bits) needed to perform verification as unstructured search
on emerging quantum devices.

2 NETWORK VERIFICATION FORMALISM
This section introduces basic nomenclature we use to define
a verification problem, which is effectively a 4-tuple consist-
ing of 1) the network components, 2) the protocols as run
on those network components, 3) inputs of interest, and 4)
properties to verify. A network verification system incorpo-
rates these four components by emulating the protocols on
a software manifestation of the network and determining,
across the set of inputs of interest, which inputs satisfy the
properties to verify and which do not.

• Components are the network hardware, i.e., routers, switch-
es, links, that must be emulated in the network system.
• Protocols are the software and their configurations run
on the components.
• Inputs of interest describe the scenarios over which verifi-
cation is performed, e.g., in the data plane, the set of possible
packet headers, and in the control plane, the set of possible
link failure combinations.
• The property is the specific condition that the verifier is
to identify inputs that either succeed or fail to satisfy the
property. In the data plane, the property might be to find
the sets of headers that never reach an intended destination
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(infinite loop) or whose path is beyond a reasonable length.
In the control plane, it may be a path either proceeding or
failing to proceed through some intermediate router.

In classical approaches, there are simply too many inputs
(e.g., possible packet headers, combinations of network links
that fail) to test for. Hence, prior art has found a variety of
ways to find “structure” within the problem such that, rather
than analyze individual inputs, inputs can be classified into
what is hopefully a much smaller number of classes. Classes
can be dynamically modified during the evaluation process,
but, as long as the number of classes remains small, the prob-
lem can be solved in a practically reasonable time. Much of
the innovation in network verification involves translating
from the underlying protocol that acts on an individual in-
put to a form that functions on the (structured) classes of
inputs. For instance, in the data plane, a protocol run at a
router may determine a packet’s next hop router based on a
packet header. HSA’s network verification system uses a data
structure to represent the set of possible packet headers and
represents a router’s forwarding rules by indicating, for each
next hop router, the subset of these headers that would tran-
sition there [14]. The subsets of headers that are equivalent
with respect to the checked property can be grouped together
as a union, intersection, or difference of regular expressions
of their bit patterns. As these classes move between routers
and headers are modified, these modifications are captured
by recomputing the corresponding resulting combinations
of regular expressions that capture the change. In the control
plane, a router’s choice of a next hop will be dependent on
the set of network links that have failed. In NetDice’s net-
work verification system, for a given source-destination pair,
a link can a priori be identified as “cold” and omitted from
the evaluation if that link will only be on the path from that
source to that destination given extremely unlikely failure
scenarios of links that are otherwise preferred [21].

3 QUANTUM UNSTRUCTURED SEARCH
BACKGROUND

In this section, we present a very high-level overview of
how unstructured search is implemented in a quantum com-
puting context using Grover’s algorithm, which has been
shown to have quadratic speedup over classical analogs [12].
Our explanation provides a minimal description of Grover’s
algorithm sufficient to support our discussion in §4.
Grover’s algorithm is most easily described in the con-

text of a problem involving a black box function 𝑓 whose
internals are presumed unknown. The function 𝑓 itself takes
an 𝑛-bit input and, based on the input, deterministically out-
puts either a 0 or 1, where an output of 1 is uncommon. 𝑓
itself is assumed to have no structure, i.e., knowing the out-
come of a subset of the inputs provides no information about
which as-of-yet unevaluated inputs might yield a 1. The goal

is to find an 𝑛-bit input whose output evaluates to 1 (if such
an output exists).
In a practical use, the function 𝑓 in Grover is not an un-

known oracle but is a reasonably computable (i.e., polynomial-
time) verifier whose use is similar to that of a verifier in a
nondeterministic Turing machine. It is assumed that building
the verifier function is easy. However, to find a solution, the
verifier must be run on a large (often exponential) number
of inputs. Classical approaches require 𝑂 (2𝑛/𝑘) time when
𝑘 solutions exist; a (conceptual) nondeterministic Turing
machine requires polynomial time since it checks all inputs
in parallel; and a quantum computer applying Grover’s al-
gorithm will require time 𝑂 (

√︁
2𝑛/𝑘), a quadratic speedup

over classical approaches. To illustrate the advantage of this
quadratic speedup, consider a problem with an 𝑛 = 32-bit
input where a single solution exists (𝑘 = 1), and assume that
classically computing 𝑓 () on an input takes 10 ms. Checking
half the inputs (the expected number to find the solution)
would require 231/100 seconds, which is just under 250 days.
In contrast, even if the corresponding overhead of computing
𝑓 () in the context of Grover’s algorithm (high-level details
below) took 1 second each (a relative slowdown of 100 per
input), a solution could be found in slightly over 18 hours.
Were𝑛 = 48, the respective times would be just under 450,000
years for classical vs. 194 days for quantum.
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Figure 1: Grover overview

The general process of Grover’s algorithm is depicted in
Figure 1. Grover’s algorithm starts much like a non-determin-
istic Turing machine, generating (in superposition) the set
of all possible inputs (the time to do this is linear in the
size of the input): the 𝑛 qubits, initially set in a ground state
(i.e., to 0 or more formally, |0⟩), are each operated upon by a
Hadamard gate that shifts each qubit to a state known as |+⟩
which, if measured, returns 0 or 1 with equal probability of
0.5. This superimposed state is simultaneously run through
the verifier circuit, 𝑓 , which, in superposition, computes 𝑓
on all 2𝑛 inputs. The output of 𝑓 is applied (in superposi-
tion) as the exponent to −1 (to produce 1 when 𝑓 = 0 and
−1 when 𝑓 = 1), thereby generating (in superposition) the
result of each input (success or failure of the desired result).
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A final step is to choose one of the 𝑘 inputs that was suc-
cessful. Unfortunately this part is not easy, and extracting an
appropriate solution is what adds the 𝑂 (

√︁
2𝑛/𝑘) additional

complexity. This extraction process involves repeated appli-
cation of a sequence of gate operations 𝐺 , often termed a
Grover iterate, that combines 𝑓 with a Diffuser circuit, as
shown in Figure 1, after which, the 𝑛 qubits that represented
the input are measured. With probability close to 1, these
bits will collapse to an 𝑛-bit input that matches an input for
which 𝑓 evaluates to 1. In effect, this 𝑂 (

√︁
2𝑛/𝑘) extraction

process finds a desired input [18]. In this sense, it differs from
a nondeterministic Turing machine in two ways: first, it has
an additional 𝑂 (

√︁
2𝑛/𝑘) overhead to find a solution, and it

only returns a single solution, effectively selected at random,
as opposed to conceivably returning all possible solutions
by the end of the (nondeterministic) run.

4 MAPPING NETWORK VERIFICATION
TO QUANTUM UNSTRUCTURED
SEARCH

n-bit input
Network 
Instance 

Generator

Protocol 
Implementor

Property 
Checker {0,1}

𝑓

Figure 2: Components of the oracle function 𝑓

In this section, we describe how tomap Grover’s algorithm
to a generalized instance of a network verification problem.
In short, we must define an oracle function 𝑓 as a verifier
that takes an 𝑛-bit input to specify a specific input of the
search space and emulates network operation on that input
to validate whether the desired (or undesired) property holds
for that input. The basic functionality that 𝑓 must perform
is depicted in Figure 2. Given an 𝑛-bit input, 𝑓

• generates an emulated network whose configuration can
be influenced by the 𝑛-bit input, which we call a network
instance.
• emulates the underlying routing/forwarding protocol
upon the network input via a Protocol Implementor
• in parallel to the execution of the protocol, a Property
Checker checks whether the property holds or is violated for
the current network input.

By encoding 𝑓 as a circuit that can be executed in a quantum
computer, Grover’s algorithm can be applied to simultane-
ously evaluate all possible 2𝑛 inputs.
In the following two subsections, we separately describe

application of the general mapping approach to verification
problems on the data plane and control plane, each followed
by a very preliminary, proof-of-concept mapping of the prob-
lem to existing NISQ quantum hardware.

4.1 Data Plane Example
Consider a data plane setting similar to that proposed in
the HSA paper [14], viewing the underlying network as a
graph. At each router, the next hop is determined by the 𝑛-bit
packet header, which may also be modified by the router in a
deterministic manner. We wish to determine whether, from
a specific source node 𝑆 , any packets will traverse more than
100 hops. This property can be hard to detect since short-
lived cycles are permissible if packets break out of the loops
due to packet header changes. We design 𝑓 as follows:

• The Network Instance contains a hard-coded version of
𝐺 , as well as a hard-coded set of forwarding rules and packet
header modification routines for each node in the network.
The 𝑛 bit input indicates the packet header and is the only
variable component to the network instance.
• This graph is passed into the Protocol Implementer that
emulates the hard-coded forwarding rules upon the provided
𝑛-bit packet header for 100 hops.
• The Property Checker monitors the path taken by the
packet as it traverses through the network, counting the
number of hops as it proceeds along for at least 100 hops.
If the packet reaches its destination prior to the 100th hop,
a 0 is immediately returned. Otherwise, upon reaching the
100th hop, a 1 is returned.

4.2 Control Plane Example
Consider a control plane setting similar to that proposed
in NetDice [21], in which a given underlying network can
be viewed as a graph 𝐺 = {𝑉 , 𝐸} with 𝑛 = |𝐸 |, the num-
ber of links in the network. A routing protocol emulating
BGP/IGP determines routes through this graph. Selecting
specific nodes𝐶, 𝐷, 𝐸 ∈ 𝑉 on this network, we wish to evalu-
ate whether there exist combinations of up to 10 link failures
for which 𝐶’s path to 𝐷 fails to proceed through node 𝐸. We
design 𝑓 as follows:

• The Network Instance Generator contains a hard-coded
version of 𝐺 and uses the 𝑛-bit input to encode which of the
𝑛 links are up/failed, removing these links from the instance
of the graph.
• This revised graph is passed to the Protocol Implementer
that emulates a hard-coded implementation of BGP/IGP on
the underlying network.
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• The Property Checker then explores the route from 𝐶 to
𝐷 , returning 0 as soon as vertex 𝐸 is reached (i.e., before
𝐷). Also, if the 𝑛-bit input itself initially has more than 10
bits encoded to 1 (i.e., more than 10 link failures), 0 is also
returned. Otherwise, if 𝐷 is reached without going through
𝐸, then 1 is returned.

In addition to implementing a “cutoff” that bounds the
maximal number of failing links, a variant of Grover known
as Amplified Grover can be used to increase the efficiency
of finding solutions with a specific number of link failures.
While the traditional implementation of Grover applies the
Hadamard gate on each qubit to put its measurement out-
come split in half between 0 and 1, an enhanced Amplified
Grover can instead initialize the state of each qubit into any
arbitrary probability 𝑝 of evaluating to 0 (link failure). Do-
ing so changes the relative likelihoods of Grover selecting a
given outcome, maximizing those centered around the distri-
bution where a fraction 𝑝 of the links fail. Hence, in a large
network where we are interested in only considering the
cases where small numbers of links are expected to fail, we
can utilize values of 𝑝 that are far smaller than 0.5.

5 (VERY) PRELIMINARY
IMPLEMENTATION

r=00 r=10

h = 00

h = 10
h = 10

h = 01

r=01

A B

C

(a) Data Plane

r=00 r=10

r=01

A B

C

(b) Control Plane

Figure 3: Example Networks for Experiments

For purposes of proof-of-concept and to evaluate initial
efficacy of using quantum computation, we consider a very
simple network that can be easily analyzed on today’s QC
platforms. Our examples illustrate how to perform network
verification on top of QC, but the hardware available to us is
nowhere near large enough to observe quantum advantage.
In fact, our networks are so simplistic that validation can sim-
ply be done by hand. Figure 3 depict simple 3-node networks
(with nodes A,B,C) with 2-bit router IDs 𝑟 assigned. Figure
3a’s data plane example depicts a network where routers for-
ward packets with 2-bit headers in the directions indicated
by arrows, while, in Figure 3b, we annotate 3 edges 𝑒0, 𝑒1,
and 𝑒2 that may fail, and evaluate whether flows from router
node 𝐴 can reach node 𝐵.

5.1 Data Plane Proof-of-concept
We demonstrate an example of mapping network verification
to quantum search for the data plane setting. Figure 3a shows
a toy network with 3 routers, A, B and C. We assume packets
have two-bit headers. The arrows represent the network
routing behavior based on header values labeling the edges,
which can be described in the same way as the transfer
functions of Header Space Analysis [14]. Headers with no
corresponding arrows remain at the current router without
being forwarded.

We consider checking the property that packetsmust route
from A to B within 2 hops (i.e., avoiding loops). To construct
the quantum circuit, the Network Instance Generator and
Protocol Implementer, collectively referred to as the oracle
𝑓 , are simultaneously integrated into one quantum circuit
block (please see [8] for more details on the quantum circuit).
We associate two bits to each router to represent a packet’s
current location. The input that 𝑓 takes is four bits long: two
for the packet header, whichwill be put into superposition for
Grover’s Algorithm, and two to represent a packet’s current
router location, which is reset in between iterations.

Our quantum circuit employs standard combinatorial logic
to implement the network and its routing behavior. First, the
header bits of the input are fed through a bit checker. Based
on the value of the header bits and the network’s forwarding
logic, the bits encoding the packet’s location are updated to
reflect where it is forwarded.

The circuit consisting of bit-checking and altering router
location represents one “hop” of the routing process. To
simulate a second hop, this circuit is applied once more, with
all inputs except the current router location reset to their
original value.
Property Checker: After applying the above circuit to

simulate two “hops” of routing logic, the Property Checker
is another logical circuit that checks the value of the current
router location bits to see if they are set to 10 (representing
router B).

The combined Network Instance Generator and Protocol
Implementer represent the “oracle” of Grover’s algorithm.
For the full algorithm, the header bits of the input are ini-
tially put into equal superposition and fed into the Grover
oracle. For this problem, a total of one Grover iterate (oracle
+ diffusion) are sufficient to extract the solution headers (“00”
and “10”) with high probability.
We implemented this circuit in IBM Qiskit and ran it on

both IBM’s AerSimulator and on IBM’s Osaka, an actual 127-
qubit Quantum Computer, for a total of 10, 000 shots each.
Figure 4 shows the results for both, with the measurement
outcomes labeled on the x-axis and relative proportion of that
outcome on the y-axis. When simulated (Figure 4a), Grover’s
algorithm returns a correct header roughly 75% of the time.
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(a) simulation (b) experimentation

Figure 4: 10,000 shots of Grover’s Algorithm

Ironically, Grover’s algorithm increases in accuracy as the
size of the input grows.1 However, for small inputs, with
enough repeated runs of the entire circuit, we can ensure
we obtain a correct answer with high probability. On the
real quantum machine (Figure 4b), this correct proportion
is reduced to 51%, additional demonstration that quantum
computation is not yet ready for conventional use.

5.2 Control Plane Proof-of-Concept
Using the topology shown in Figure 3b, we consider all 8
possible combinations of link outages.

Figure 5: Results of control plane analysis

Our quantum circuit implements 𝑓 to return 1 when the
destination at 𝐵 is unreachable from the source at 𝐴. We
also implemented this circuit in IBM Qiskit and ran it on
IBM’s AerSimulator. Figure 5 shows histogram results of
the output of 10, 000 shots when applying Grover, where
the label 𝑥2𝑥1𝑥0 indicates the status of respective links 𝑒2, 𝑒1,
and 𝑒0 where 1 indicates the link is operational (0 indicates
failure). The most frequently returned results represent all
failure scenarios.

6 QUANTUM CIRCUIT COMPLEXITY
ANALYSIS

The time required to perform verification depends on factors
including error correction codes and their corresponding
rates, the general speed of the circuits, and how well these
circuits can be optimized. It is difficult at this time to pre-
suppose the time computation will take. We can, however,

speculate on the number of qubits, including scratch qubits
(i.e., temporary variables) that a computation will require as
a function of the size of the problem being considered. Our
results demonstrate a linear scaling of qubits, which demon-
strates the potential viability of the approach as quantum
hardware continues to scale the number of available qubits.

6.1 Data Plane Verification
For data plane verification with Header Space Analysis, we
consider two ways to quantify the size of the problem: the
number of possible header addresses and the size of the
network (in terms of the number of rules and routers).
For simplicity, we consider a network that consists only

of if/then rules matching a header wildcard expression and
forwarding to a particular port number. Define 𝑛 to be the
total number of headers, 𝑅 the total number of routers, ℓ the
number of unique wildcard expressions that appear in the
rules of the network, 𝑃 the number of unique port numbers
that appear in the rules, 𝑘 the max number of hops, and 𝐺
the optimal number of Grover iterates. Our Quantum Circuit
requires (1 + ℓ) ⌈log(𝑛)⌉ + (𝑃 + 𝑘 + 𝐺 (2𝑘 − 1)) ⌈log(𝑃)⌉ +
2max(ℓ, 𝑃) + 𝑃 + ℓ qubits. If we allow the use of mid-circuit
reset gates (instead of using extra ancilla qubits), we require
only (1 + ℓ) ⌈log(𝑛)⌉ + (1 + 𝑃) ⌈log(𝑃)⌉ + 2max(ℓ, 𝑃) + 𝑃 + ℓ .

Figure 6a shows how the number of required qubits varies
with 𝑛 (varied logarithmically on the 𝑥-axis), for network
sizes of 10 and 100 routers. For ease of analysis, we assume
every router has the same number of rules 𝑟 , and ℓ = 𝑃 = 𝑅 ·𝑟 .
We also set 𝑘 = 𝑅 and𝐺 = 5. Unsurprisingly, the number of
qubits required scales linearly with the log of the number of
headers (i.e., linearly with the number of input bits).

Figure 6b shows how the required number of qubits varies
with 𝑅, for an assumed 32-bit header space, with the number
of rules per router 𝑟 set to either 5 or 50. Again, we set
ℓ = 𝑃 = 𝑅 · 𝑟, 𝑘 = 𝑅 and 𝐺 = 5. We see the scaling is linear
in 𝑅, which is to be expected as we have set 𝑅 to be directly
proportional to both ℓ and 𝑃 . The number of qubits needed
for computation scales linearly in the size of the network.

6.2 Control Plane Verification
For control plane verification with NetDice, we quantify the
size of the problem in terms of the input space 𝑛, the total
number of edges in the network. We define 𝑅 to be the total
number of routers, 𝐷 to be the diameter of the network, and
𝐺 the optimal number of Grover iterates. In these terms, this
quantum circuit requires log(𝑟 ) + 𝑒 ((𝑟 − 1) ∗ 𝑑) + 𝑔 total
1Each iteration can be viewed as a rotation, where the size of the rotation
angle is inversely proportional to the ratio of solution inputs to the space
of all inputs. Hence, when the space of all inputs is small, one is forced to
either significantly over- or under-rotate.
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(a) Data plane varying size of input 𝑛 (b) Data plane varying number of routers (c) Control plane varying size of input 𝑛

Figure 6: Required number of qubits for implementation

qubits. Allowing mid-circuit reset gates reduces this number
to log(𝑟 ) + 𝑒 + 𝑟 qubits.

Figure 6c shows how the number of required qubits varies
with 𝑛, for network sizes of 10 and 50 routers. We assume
𝑑 = 𝑟 − 1 and 𝑔 = 𝑟 . Again, we see a linear scaling in the size
of the input.

7 RELATEDWORK
Quantum Computing for Program Verification: To our
knowledge, our work is the first to propose the use of quan-
tum computing for network verification. Recent work ex-
plores quantum computing for program verification [13].
Due to complexities in verification of general programs (§1),
the program cannot be analyzed directly (i.e,. applyingGrover
directly to a verifier) as in our case but must first be converted
to a corresponding SAT instance.

NetworkVerification: There are a wide range of classical
approaches and techniques to verifying network properties
have been developed [16]. In general, approaches to verifica-
tion can be divided into two classes. Control plane verification
([1, 5, 10, 17, 21]) analyzes the network at the level of protocol
and device configurations, derives the subsequent routing
behavior, and then checks the relevant properties. Holistic
approaches intend to holistically represent all possible data
planes induced by a given control plane configuration via
symbolic representation but at the expense of computational
tractability [4, 5, 19, 20]. On the other hand, instance-based
approaches emulate the convergence process from a given
control plane to a fixed data plane, but they face the challenge
of accurately modeling every network component and risk
missing critical corner cases [1, 7, 9]. Data plane verification
([2, 14, 17, 22]) assumes the network routes to have already
been established and checks relevant properties by analyzing
the network forwarding tables. These methods generally aim
to group packet headers with identical routing behavior to
optimize the search of inputs that might violate the property
of interest. However, the number of groups can increase ex-
ponentially with the number of network components, packet
headers, and middleboxes. To maintain efficient verification,

these techniques make assumptions about a given network’s
underlying structure. When violated, the claims to efficiency
may no longer hold.

8 DISCUSSION / FUTURE PLANS
This paper’s contribution is intended to introduce to the net-
working community an application of quantum computing
to a computationally challenging problem in networks: that
of network verification. Our preliminary work is meant to
demonstrate that there will be certain challenges in network
verification which remains open and impractical to solve us-
ing classical computing. Instead, by phrasing the verification
problem as a functional verifier, quantum’s ability to speed
up unstructured search may itself provide sufficient benefit
to make these challenges verifiable in reasonable time.
Our initial foray indicates that there is still a significant

amount of work to be done. First, building the verifier 𝑓

for large networks and sophisticated properties remains a
challenging endeavor. For now, it must be designed at the
circuit level. Second, our experience with Grover’s algorithm
thus far shows that its performance in practice is noisy (too
often returning inputs where the property was not violated).
This overhead must also be taken into account or somehow
approved upon. Last, the speedup gained by utilizing unstruc-
tured search, while significant, does not take full advantage
of the potential power of quantum computing. The commu-
nity should try to understand how existing structure in the
underlying problem (in this case, network verification) can
be exploited in approaches that can potentially have expo-
nential speedup when performed upon a quantum system.
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