
Appears in Proceedings of NOSSDAV’98

Real-Time Reliable Multicast Using Proactive Forward Error Correction
�

Dan Rubenstein, Jim Kurose, and Don Towsley
Computer Science Department

University of Massachusetts at Amherst�
drubenst, kurose, towsley � @cs.umass.edu

Abstract

Real-Time reliable multicast over a best-effort service net-
work remains a challenging research problem. Most pro-
tocols for reliable multicast use repair techniques that re-
sult in significant and variable delay, which can lead to
missed deadlines in real-time scenarios. In this paper we
present a repair technique that combines forward error cor-
rection (FEC) with automatic repeat request (ARQ). The
novel aspect of the technique is its ability to reduce delay
in reliable multicast delivery by sending repairs proactively
(i.e., before they are required). The technique requires mini-
mal state at senders and receivers, and no additional active
router functionality beyond what is required by the current
multicast service model. Furthermore, the technique uses
only end-to-end mechanisms, where all data and repairs
are transmitted by the data-originating source, leaving re-
ceivers free from any burden of sending repairs. We simu-
late a simple round-based version of a protocol embodying
this technique to show its effectiveness in preventing repair
request implosion, reducing the expected time of reliable de-
livery of data, and keeping bandwidth usage for repairs low.
We show how a protocol using the technique can be adapted
to provide delivery that is reliable before a real-time dead-
line with probabilities extremely close to one. Finally, we
develop several variations of the protocol that use the tech-
nique in various fashions for high rate data streaming ap-
plications, and present results from additional simulations
that examine performance in a variety of Internet-like het-
erogeneous networks.

1 Introduction

Multicast has become an important component of the Inter-
net within the past decade. Deering’s work [1] describes�

This material was supported in part by the National Science Founda-
tion under Grant No. CDA-9502639, NCR-9508274, and NCR-9527163.
Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.�

This version appears in IEEE NOSSDAV’98, Cambridge, UK July
1998. An extended version is available as UMass CMPSCI Tech Report
98-19.

a framework for distributing data to multiple receivers via
multicast groups. When multicast groups grow large, sim-
ple reliable multicast protocols suffer from a condition
known as feedback implosion: an overload of network re-
sources due to many receivers trying to send repair requests
(henceforth referred to as NAKs) for a single packet. A
number of solutions exist to avoid this implosion effect, us-
ing techniques such as randomized timers, local recovery
(receivers sending repair packets), and hierarchical recov-
ery. While such techniques are effective in providing reli-
ability without implosion, they can result in significant and
unpredictable delays, making them unsuitable for applica-
tions that have stringent real-time constraints.

In this paper, we present a technique that uses a novel
combination of forward error correction (FEC) and auto-
matic repeat request (ARQ) to reliably deliver data, with
an emphasis on reducing delay and meeting real-time con-
straints without using randomized timers, local recovery,
or hierarchical recovery. We call this technique proactive
FEC, because it forwards error correcting packets into the
network prior to their necessity.1 It is this idea of having
the data source forward repairs before they are required that
differentiates our work from previous reliable multicast pro-
tocols that make use of FEC.

Our results through simulation indicate that this tech-
nique 1) offers a significant decrease in the expected time
to reliably receive data, 2) can be used to meet hard real-
time deadlines of reliable delivery of data with probabilities
extremely close to one, 3) reduces feedback implosion, 4)
competes well with other protocols in terms of required net-
work bandwidth, 5) can reduce bandwidth requirements for
meeting real-time deadlines compared to non-proactive ap-
proaches, and 6) scales to groups containing thousands of
members configured in various topologies with various spa-
tial and temporal loss characteristics. We also show that
the technique functions well for high-rate data transfers in
networks containing large multicast groups, where receivers
are at varying distances from the sender, with varying end-

1The term is actually somewhat redundant, since the F in FEC implies
the sending of information before its necessity. However, FEC in a mul-
ticast context commonly refers to sending encoded repair packets, as op-
posed to direct retransmission of the data, in response to NAKs.

1

Appears in Proceedings of NOSSDAV’98

to-end loss rates and latencies.
The remainder of this paper is structured as follows.

Section 2 gives an overview of related work, followed by a
brief description in Section 3 of the coding method used to
provide forward error correction, and its application within
the domain of reliable multicast. The technique used to
reduce delay and provide hard real-time guarantees is de-
scribed and evaluated in Section 4, followed by a descrip-
tion and examination of low latency, reliable protocols in
section 5. Real-time, probabilistically reliable (i.e., resilient)
protocols are presented later on in this section as well. Sec-
tion 6 further examines performance of our protocol as we
vary a wide variety of network features. We conclude the
paper in Section 7.

2 Related Work

In this section we discuss previous work that addresses var-
ious issues that arise when attempting to reliably multicast
data in the Internet. To reduce NAK and repair transmis-
sions, reliable multicast protocols have incorporated ran-
dom delays [7]. However, this comes at the cost of in-
creased latency. A variety of approaches have been pro-
posed that limit the bandwidth used by NAKs and repairs,
including scoping [7], and communicating via unicast to
nearby receivers [10, 11] or designated repair servers [8].
Using such approaches, repair latency and bandwidth de-
pend heavily on the location of both the repair entity and
the point of loss within the network: the benefit is reduced
as their distance to the receiver increases. Another approach
restricts the number of entities that provide immediate feed-
back. This is used in [15], with the data source periodically
choosing a small set of representative receivers that have
priority in sending feedback. Here, the protocol’s effective-
ness depends on the source’s ability to select a good set of
receivers with its limited knowledge of the group topology
and network loss characteristics.

There has also been recent interest in providing resilient
multicast service for real-time data, where retransmissions
occur only if data can be delivered before the real-time dead-
line. Data is not reliably delivered, but a higher good-put
can be achieved than without any retransmission. Two pro-
tocols that that are designed to provide resilient multicast
are STORM [10] and LVMR [12]. Both approaches form
virtual trees with the source as the root and receivers as in-
ternal and leaf nodes. Recovery is implemented by sending
all repair requests and retransmissions via unicast along this
tree. Repairs can be performed with low latency provided
that they do not need to traverse numerous links within the
receiver-based tree. However, substantial delays can occur
when losses occur close to the source. In such cases, the
transmission path to a receiver can be significantly longer
than the multicast route direct from the source. This is be-

cause repairs occur as a series of unicast transmissions be-
tween receivers.

Additional functionality within routers can also improve
real-time reliable multicast performance. Several mecha-
nisms have been suggested as a means of improving relia-
bility [16, 9, 18]. However, this is at the cost of additional
router state and / or processing.

Forward error correction (FEC) [3] is a technique that
reduces the bandwidth overhead of repairing errors or loss-
es in bit streams. It has been shown in [6] that a hybrid ap-
proach combining FEC with ARQ can significantly reduce
bandwidth requirements of a large reliable multicast ses-
sion. Hybrid approaches that combine FEC and ARQ have
been proposed and classified for repairing loss and noise
at the bit-level [23]. The Type I Hybrid approach involves
sending repair bits within a packet that can correct bit er-
rors or erasures, and retransmitting packets if the number
of repair bits is insufficient to reliably receive the packet.
Type II Hybrid approaches place the repair bits in packets
that are distinct from the packets that contain the data. Our
approach is considered to be a Type II Hybrid approach.
However, our forwarding of repair packets before their ne-
cessity incorporates certain favorable features of a Type I
approach as well.

[17] presents a preliminary analysis that compares the
benefits of combining local recovery with an FEC/ARQ hy-
brid technique, and concludes that for many multicast sce-
narios, such a combination offers little improvement over
an FEC/ARQ hybrid technique without local recovery. [13]
compares real-time performance of reliable multicast tech-
niques that use FEC to those using ARQ techniques, but
does not consider hybrid approaches. An interesting ap-
proach using FEC is presented in [14], where data is de-
livered reliably without requiring ARQ through multicast
group joins and leaves. A recent implementation utilizes
ARQ as a last resort to obtain any data that could not be ob-
tained via the joining of a particular multicast group. Present
join-leave latencies for multicast groups make the approach
too bandwidth inefficient to support real-time applications.
Other works are showing the promise of the proactive FEC
technique. One such work is [21], in which a round-based
proactive FEC approach is combined with a receiver-based
hierarchical recovery scheme.

3 Overview of Forward Error Correc-
tion (FEC)

Error correcting codes were initially applied in domains
where bits could be erroneous or missing, but have more
recently been applied to repairing packet losses at the net-
work layer. The following description is sufficient for un-
derstanding how systems, equipped with Reed-Solomon en-

2

Appears in Proceedings of NOSSDAV’98

P1 P2 P3 P4 P5

P1 P2 P3 P4 P5 R1

BLOCK ENCODER

DECODER

Sender
Receiver

R2 R3

Figure 1: A sample decoding using a block built from 5 packets.

coders and decoders, can make use of repair packets to re-
cover from loss. The sender forms blocks, where each block
consists of a subset of the data packets it wishes to deliver
reliably. The number of data packets that are used to form
a block is commonly referred to as the block size, � . The
sender inputs the � packets into its encoder which then gen-
erates repair packets for that block. A receiver uses its de-
coder to recover the � data packets from any combination
of � distinct packets that use data packets from the block,
and/or repairs generated for the block. An example is shown
in Figure 1, where a sender groups 5 data packets into a
block, encodes 3 repair packets from this block, and trans-
mits all 8 packets to the receiver. As soon as the receiver
receives any 5 distinct packets related to the block (in the
example, 3 data and 2 repair), it activates the decoder and
recovers the lost data packets.

Detailed discussions of Reed-Solomon coding
techniques and of packet-level FEC techniques can be found
in [4] and [6] respectively; implementation issues are con-
sidered in [5, 6]. For our purposes here, we simply note that
FEC techniques exist that can be used to generate as many
repair packets as needed, and that this can be done at data
rates on the order of 8 Mbytes/sec on commodity PC’s.

4 A Proactive FEC+ARQ Technique

In this section, we present a proactive technique that deliv-
ers data reliably to a set of receivers through a combination
of ARQ and FEC, and examine the impact that proactiv-
ity has on the performance of reliable data transfer to large
multicast groups. The technique is proactive in that it al-
lows the sender to send repairs for packet losses prior to
receiving any indication that the repairs are necessary. This
allows receivers to tolerate a certain amount of packet loss
and still receive all data reliably without requiring retrans-
missions. As a result, the average number of receivers that
require retransmissions decreases, reducing implosion. We
will also observe that proactive FEC can reduce the number
of repair packets that are needed.

We first examine the proactive FEC technique using an
idealized round-based protocol. During each round, the send-
er sends data and repairs and awaits feedback from all re-
ceivers needing additional repairs. The sender waits for a

response from the slowest responding receiver before pro-
ceeding to the next round. As a result, the protocol intro-
duces additional latencies in attempting to meet individual
receivers’ real-time deadlines. In Section 5, we study pro-
tocols that do not require such synchronization.

As in most protocols that use FEC, the sender packe-
tizes its data for delivery, and builds blocks of � packets.
For simplicity of presentation, we assume a fixed block size
for the entire data stream, and that blocks are built from
consecutive packets within the data stream.

j=4

i=0 i=1 i=2 i=3

j=0
j=1
j=2
j=3

Figure 2: Partitioning a data set into 4 blocks of size 5 so that
repairs can be generated using FEC.

Each packet transmitted by the sender contains a pair
of identifiers �������	� , where � identifies the block, and � the
position of the packet within the block. For the purpose of
this paper, we assume that � and � are non-negative inte-
gers. The data packets within a block � are assigned values
of ������
	� though ������������ corresponding to their ordering in
the data stream. As repairs are required, the sender creates
and sends them. For a block � , repair packets are assigned
sequence numbers ��������� with ����� . These sequence num-
bers are used by the decoder at the receivers’ end to deter-
mine the operations that must be used to retrieve lost data.
Using a block identifier within a packet permits the inter-
leaved transmission of the various blocks, so that a trans-
mission of a new block can commence before other blocks
have completed their reliable delivery. Figure 2 gives an ex-
ample of a data stream partitioned into four blocks each of
size 5.

Associated with the protocol is a proactivity factor, � ,
which is a rational number larger than or equal to one. For a
block of size � , the sender initially transmits �����	� packets,2

consisting of the � data packets plus an additional ����������� �	�
repair packets. No other repair packets are sent for the block
unless receivers specifically request them.3 Such requests
are unicast by a receiver only when it fails to obtain the en-
tire block of data, either through the reception of the origi-
nal block, or through application of its decoder. Otherwise,
a receiver need not send any feedback to the sender. In or-
der to satisfy all receivers’ requests, the sender responds to
the NAKs by multicasting a number of repair packets that
satisfies the maximum from all of the receivers’ requests for
that round. This process continues until each receiver either

2The notation !#"�$ means round " to the nearest integer.
3Encoders such as the one presented in [5] are capable of generating a

single repair packet at a time (i.e., it is not necessary to know in advance
the number of repairs needed.)

3

Appears in Proceedings of NOSSDAV’98

obtains a sufficient number of packets to perform decoding
or passes some deadline after which there is no point in re-
trieving the block.

(a)

P1 P2 P3 P4 P5 RTT F1

Time
Issue

NAKs
ρ = 1.0

R1

R2

(b)

P1 P2 P3 P4 P5

ρ = 1.2

F1

R1

R2
Time

Figure 3: Illustration of possible savings in time and reduction of
feedback through proactivity

Figure 3 demonstrates the potential benefits of setting
the proactivity factor to a value larger than one. In Figure
3(a), two receivers, R1 and R2, are sent a block of five data
packets, and each receiver loses one of these data packets.
If ��� ���
 , then no repair packets are sent with the initial
transmission, and the receivers must NAK and wait for the
sender to retransmit the data. Alternatively, in Figure 3(b),
if ��� ��� � , then a repair packet is transmitted with the data,
and the receivers do not need to request repairs nor wait a
full round trip time for the sender to transmit the repair. We
point out that the round-based approach creates no interde-
pendencies among the various blocks being transmitted, and
so the sender can deliver multiple blocks at a given time.

Sender and receiver state diagrams depicting the ideal-
ized round-based protocol are given in Figures 4 and 5, re-
spectively.

By sending repairs proactively, more receivers will ob-
tain at least � packets in the initial round, resulting in the re-
turn of fewer repair requests to the sender. Thus, the sender
can effectively control NAK implosion by sending an ap-

YES
NO

[

[

]

]
][

to +max-sent largest-request- 1

Set

max-sent +=

Block Start

largest-request

cur-round

packets

ρk

ρk

ρk

Set max-sent =

k

cur-round++

Send
= 1

Block DoneSet largest-request=
max no. repairs

requested

cur-round

build and send repairsmax-sent

If
and send repairs k to

> then buildk

Do any
NAKs arrive?

Collect NAKs for round

Figure 4: The round-based sender algorithm

NOYES

Set cur-round = 1
Set pkts-recd = 0

+= packetspkts-recd
received round

cur-round

Is

Block Start

pkts-recd

Block Done

< k ?

Unicast NAK for

additional pkts
- pkts-recdk

++cur-round

Figure 5: The round-based receiver algorithm

propriate number of repairs proactively in the initial round.
The sender benefits little from adding proactivity to subse-
quent rounds because the number of repair requests in each
subsequent round is most often significantly smaller than
the number of repair requests in the initial round. On the
other hand, receivers continue to benefit when proactivity
is added in subsequent rounds, since it can often reduce the
number of rounds needed to reliably receive a block.

Receivers can control the amount of proactivity used in
subsequent rounds by requesting more repair packets than
are needed. This allows each receiver to request a level
of proactivity that best satisfies its own requirements. The
amount of needed proactivity can be determined in several
ways. For instance, a receiver could apply the sender’s
proactivity factor to its own request, and if it needs � pack-
ets, request ����� � packets. Alternatively, it could simply re-
quest an additional packet so that it can tolerate the loss
of one repair packet, or if it knows the loss rate from the
sender to itself, it can request a number of repairs such that
it can obtain a sufficient number of repairs with some fixed
probability. In Section 4.1, we show how receiver-initiated
proactivity can be used to allow each receiver to meet its
own hard deadline.

4.1 Meeting hard deadlines

If a receiver can estimate the loss rate from the sender to
itself, it can request more repairs for a block than the min-
imum number needed in order to perform decoding. Doing
so allows the receiver to meet a deadline with probabilities
that are extremely close to one. To do so, the receiver must
be able to calculate the probability of receiving at least �
packets out of a group of � packets. We represent this value
by 	��
� ��� � . If the loss is modeled as a temporally indepen-
dent loss process with packet loss probability � , then we
have:

4

Appears in Proceedings of NOSSDAV’98

	��
� ��� � �
�� � ��� �

�
��� � � � � �

�
��	 ��
 ��

�

Since ����� ����� 	 � � � � � � � (a simple proof is pre-
sented in [25]), a receiver that needs � packets can guar-
antee that the packets are received with a probability larger
than any ��� � by determining an appropriate � that sat-
isfies 	 �
� ��� ���� . A search for an appropriate � can be
performed quickly, since 	 �
� ��� � satisfies the recurrence
relation:

	 � � � � � � 	 �
� � � ��� ��� �
� � �
� � � � � � � � � � � ��
 �

�

with the initial condition 	 �
� � � � � ��� � � � � . The compu-
tation of 	 �
� ��� � for a two-state loss model is presented in
the [25].

A receiver can use a conservative estimate of the length
of a round to determine the last round by which it must re-
ceive repairs in order to meet a deadline. If the receiver still
needs � more repairs upon entering this last round, it makes
a request for � repairs, choosing � large enough so that
sufficient repairs arrive with a high enough probability.

We present two types of guarantees that receivers can
make to meet a hard deadline:

Last round guarantee. Here, the receiver guarantees that if
a last round is necessary, then enough repairs will be deliv-
ered in that round to insure that the conditional probability
of being able to decode all packets in the block, given the
number of packets still needed before starting the last round,
is greater than � . To make this guarantee, the receiver sim-
ply chooses � such that 	��
� ��� � ��� , where it needs �
packets going into the last round.

Block good-put guarantee. Alternatively, the receiver may
wish to achieve some overall block good-put rate, such that
the probability that a block is received on or before the last
round is � . We prove in the Appendix that if a receiver
needs � packets going into the last round, it is sufficient
to choose � such that 	 �
� ��� � � ��� � 	 ����� � � � ����� �
	 ������� � � , where � is the number of packets sent over all pre-
vious rounds, and � is the block size. Simple algebra re-
veals this to often be smaller and never larger than what is
required to meet the last round guarantee. If 	 ����� � � �!� ,
then no attempt is made on the last round to retrieve the
block. We emphasize that these results apply for any model
of loss between source and receiver. The receiver must sim-
ply compute 	 � � using the appropriate loss model.

By attempting to meet a hard deadline, receivers can re-
quest more repairs than it would otherwise, thereby increas-
ing the number of packets that the sender transmits. When
a hard deadline condition exists, added proactivity can re-
duce the expected delay of reliable receipt by receivers as
well as the expected number of packets that are transmitted

by the sender. This is because additional proactivity makes
it more likely that receivers will have already obtained the
entire block before entering the last round, thus obviating
the need to request a large number of repair packets in order
to meet the guarantee probability, � .

4.2 Examination: round-based protocol

The focus of this paper is to demonstrate the effectiveness
and simplicity of using the proactive FEC technique. Per-
formance is measured against a traditional end-to-end ap-
proach where repairs are data packets which are multicast
to the entire multicast group in response to a NAK. In ef-
fect, this traditional approach does not use FEC, and repairs
are not sent proactively. Furthermore, the traditional ap-
proach does not scope repairs, so all receivers in the multi-
cast group will receive each repair transmission (regardless
of where the repair transmission originated from). We be-
lieve that our proactive FEC technique competes well with
many protocols that use scoping approaches such as local
recovery, additional router support, or multiple multicast
groups. However, we avoid direct comparison for two rea-
sons. First, benefits due to scoping are difficult to measure:
they depend heavily on network and multicast group topolo-
gies, as well as on how the various amounts of increas-
ing and decreasing traffic on various links affects protocol
and network performance. Second, we believe it is possi-
ble to combine the proactive FEC technique with a scoped
approach to further improve reliable multicast protocol per-
formance. Since scoping reduces the effectiveness of FEC
techniques, determining the right way to combine FEC with
scoping is still an open problem.

We evaluate the performance of the round-based proto-
col through simulation for networks containing up to 10,000
receivers. Simulation allows us to examine a much richer
set of network scenarios than is possible via a mathematical
analysis, and makes it easier to observe effects of large mul-
ticast sessions than it would be through experimentation.
We have performed an analysis of a star topology network;
it appears in [25]. Results presented here are simulated over
a model which we now describe. Other topologies, receiver
placements, loss models, and block sizes are considered in
depth in [25]. A brief summary of their impact is given at
the end of this section.

The model used in the simulations presented here is a
randomly generated tree network, where nodes on the in-
terior of the tree represent routers with downstream fan-
outs of one, two and three, with loss probabilities at each
outgoing link uniformly distributed between 0.00075 and
0.00125. Nodes on the leaves of the tree that connect to the
sender or receivers had downstream fan-outs ranging from
1 to 5 with loss probabilities uniformly distributed between
.0375 and .0625. These loss rates are similar to those ob-
served in [19], and the fan-outs coincide roughly with what

5

Appears in Proceedings of NOSSDAV’98

Amortized cost to deliver a packet reliably
Multicast Group Size

Blocksize 1 10 100 1000 10000

1 1.09 1.62 2.49 3.35 4.21
5 1.14 1.36 1.60 1.82 2.04

10 1.16 1.29 1.43 1.56 1.70
15 1.11 1.25 1.37 1.46 1.56
20 1.12 1.23 1.34 1.41 1.48

Table 1: Comparison of the amortized, expected forward band-
width used to transmit a packet reliably for various block sizes and
multicast group sizes over the sample tree topology used in the ex-
periments for this paper. There is no proactivity (������� �). Note
that a block size of 1 is identical to having no FEC, where each
multicast retransmission is the sole packet within the block.

is observed within the Internet. These values also provide
for realistic end to end properties within the Internet: the
number of hops from sender to receiver varies from 3 to 28
with a mean hop-count of 15.75 and a mean end to end loss
rate of .0896. The algorithm used to construct the tree is
presented in [25].

Once a tree has been created with 10,000 leaves, where
each leaf node represents a potential receiver, the number of
receivers is varied by selecting a subset of leaf nodes in the
tree of the desired size, and placing receivers only at these
nodes. We have experimented with a set of approximately
20 randomly generated trees, and have found that the re-
sults vary little for the different topologies generated. For
this reason, the results in this Section are computed using a
single, randomly constructed tree.

We fix the set of active receivers that are used to examine
a multicast group of a particular size. The set of receivers
that are active in the smaller multicast groups are proper
subsets of those receivers that are active in the larger multi-
cast groups. We model loss at each router as a Bernoulli pro-
cess, so that there is no temporal correlation between con-
secutive packets being forwarded. The block size is fixed at
10.

For each configuration described above, we performed
several experiments on the same topology (around 20) and
computed the average values of our measuring criteria to
generate a distribution that was close to normal, and then
used as many of these averaged values as needed to calcu-
late 95% confidence interval widths that were within 5% of
the point value.

We will evaluate performance using three general crite-
ria:

Delay. The manner in which delay will be examined will
depend on the goal of the protocol. For protocols that do
not impose hard real-time deadlines, we will be interested
in the expected delay of reliable delivery. For those that do
impose hard deadlines, we will be interested in the expected

percentage of blocks that can be received before the dead-
line expires. We elaborate further on the way we measure
delay later in the paper.

Implosion factor. Here, we will be interested in the ex-
pected number of NAKs a sender receives from the receivers
per block.

Forward bandwidth. This is the expected number of pack-
ets (repair and data) sent by the sender per block. Because
the sender multicasts each packet it sends, and each packet
traverses all links in the multicast tree (except links on the
tree that lie below points of loss of a packet), the bandwidth
usage in the network is roughly linear to this number of
packets transmitted.

We begin by examining the effect of block size on the
expected forward bandwidth used by any protocol that mul-
ticasts repairs to an entire group. We define the amortized
(per packet) expected forward bandwidth to be the expected
number of packet transmissions needed to deliver a block
divided by the blocksize. Table 1 gives the amortized, ex-
pected forward bandwidth needed to reliably deliver a packet
to all receivers as a function of receiver population and block
size, where no proactivity is used (� � � �
). The configu-
ration used to compute the results for the table is the same
as that used to compute the results in the remainder of this
section. An examination of the table reveals that for large
multicast groups, one obtains a significant reduction in ex-
pected forward bandwidth by increasing the block size. We
note that a protocol using a block size of one is equivalent
to a protocol that does not use FEC, where each repair can
be used to repair a single loss. Thus, the top row represents
the amount of forward bandwidth that would be used by a
traditional end-to-end reliable multicast protocol.

Figures 6(a), 6(b), and 6(c) respectively show the ex-
pected number of rounds, implosion factor, and forward
bandwidth per block for various multicast group-sizes as
a function of the sender’s proactivity factor. An increase
in the proactivity factor decreases the expected number of
rounds in a roughly linear manner. The implosion factor de-
creases exponentially as a function of the proactivity factor,
so that NAK implosion can be reduced significantly with
small increases in the proactivity factor. The most inter-
esting result is the effect that the proactivity factor has on
forward bandwidth. For large multicast groups, increasing
the proactivity factor up to a certain value has an insignif-
icant effect on the expected number of packets transmitted
to reliably deliver data to all receivers. We note that for a
block size of 10 and a receiver group-size of 10,000, if the
sender’s proactivity factor is 1.6 then the mean number of
rounds is 2, the implosion factor is approximately 10 NAKs,
and the forward bandwidth is 17 packets (10 original and 7
repair packets). This compares favorably in every respect

6

Appears in Proceedings of NOSSDAV’98

(a)

1

1.5

2

2.5

3

3.5

1 1.2 1.4 1.6 1.8 2

R
ou

nd
s

Proactivity Factor

1 rcvr
10 rcvrs

100 rcvrs
1,000 rcvrs

10,000 rcvrs

(b)

0.1

1

10

100

1000

10000

1 1.2 1.4 1.6 1.8 2

N
A

K
s

(I
m

pl
os

io
n

F
ac

to
r)

Proactivity Factor

1 rcvr
10 rcvrs

100 rcvrs
1,000 rcvrs

10,000 rcvrs

(c)

11

12

13

14

15

16

17

18

19

20

1 1.2 1.4 1.6 1.8 2

F
or

w
ar

d
B

an
dw

id
th

 (
P

kt
s

fr
om

 s
en

de
r)

Proactivity Factor

1 rcvr
10 rcvrs

100 rcvrs
1,000 rcvrs

10,000 rcvrs

Figure 6: Results from a round-based simulation on a tree topol-
ogy of receivers. Note that the y-axis of (b) is plotted on a log-
scale.

to an ARQ protocol without local recovery (i.e., a proactiv-
ity factor of 1.0), which would take close to 4 rounds and
require the transmission of around 40 packets. In addition,
the need for randomized delays to prevent NAK implosion
would further increase the latencies associated with an ARQ
protocol.

We can summarize these observations:

By using proactive FEC, we can reliably deliver data sooner
than with traditional ARQ and with considerably less band-
width. Furthermore, proactivity provides large decreases

in repair bandwidth and delivers data reliably sooner when
compared to a non-proactive FEC-ARQ hybrid approach.
The proactive approach achieves these gains without using
significantly more forward bandwidth than its non-proactive
counterpart.

This is because with a large group, a certain number of re-
pairs must be expected. With proactive FEC, these repairs
are simply sent before it is known for certain that they are
needed. Note that after some point, however, the bandwidth
begins to increase along the asymptote � � ��� , where � is
the block size.

An alternate view of the data in Figure 6 is provided
in Figure 7. Here, we directly plot the tradeoff between
forward bandwidth and implosion factor (Figure 7(a)) and
forward bandwidth and rounds (Figure 7(b)). Each curve
is obtained by varying the proactivity factor. We see clearly
from the flat portions of the curves that the proactivity factor
can be chosen so that the implosion factor and number of
rounds (delay) are low, without significantly increasing the
amount of forward bandwidth required.

(a)

11

12

13

14

15

16

17

18

19

20

0.1 1 10 100 1000 10000

F
or

w
ar

d
B

an
dw

id
th

NAKs (Implosion Factor)

10000 recs
1000 recs

100 recs
10 recs

1 rcvr

(b)

11

12

13

14

15

16

17

18

19

20

1 1.5 2 2.5 3 3.5

F
or

w
ar

d
B

an
dw

id
th

Rounds

10000 recs
1000 recs

100 recs
10 recs

1 rcvr

Figure 7: Tradeoff between forward bandwidth and NAK implo-
sion and number of rounds.

We now examine the performance of the protocol in the
presence of real-time constraints in the same network. Re-
call that in Section 4.1 we presented two ways in which re-
ceivers can use proactivity to guarantee a certain type of

7

Appears in Proceedings of NOSSDAV’98

deadline-driven reliability. Figure 8(a) and (b) respectively
show the expected forward bandwidth needed to meet a last
round guarantee and a block good-put guarantee where � �
� � ��

�� � with all receivers requiring the data in two rounds.
In other words, each receiver only participates in 2 rounds,
sends at most a single NAK, and is able to meet its desired
guarantee with probability greater that � � ��

�� .

It is interesting to note that adding proactivity can actu-
ally decrease the expected amount of bandwidth required in
order to make guarantees. We see that meeting the good-
put guarantee can save bandwidth compared to a last round
gaurantee.

(a)

10

12

14

16

18

20

22

24

1 1.2 1.4 1.6 1.8 2

F
or

w
ar

d
B

an
dw

id
th

 (
P

kt
s

fr
om

 s
en

de
r)

Proactivity Factor

1 rcvr
10 rcvrs

100 rcvrs
1,000 rcvrs

10,000 rcvrs

(b)

11

12

13

14

15

16

17

18

19

20

1 1.2 1.4 1.6 1.8 2

F
or

w
ar

d
B

an
dw

id
th

 (
P

kt
s

fr
om

 s
en

de
r)

Proactivity Factor

1 rcvr
10 rcvrs

100 rcvrs
1,000 rcvrs

10,000 rcvrs

Figure 8: Bandwidth usage to provide (a) last round and (b) block
good-put guarantees of ��� � ���

�

by the end of 2 rounds.

In addition to the results described above, we have ex-
amined the performance of the round-based proactive FEC
protocol in a large variety of alternative network scenarios,
including a variety of heterogeneous and homogeneous net-
work topologies to examine the effects of various spatial
loss correlations among the receivers. We also considered
models where losses on links are similar to what is observed
in [20] (i.e., various links in the backbone have high loss
rates, links near the edges have low loss rates), and we ex-
amined the impact of bursty loss using 2-state loss mod-
els at routers. Finally, we also examined various ways in
which receivers could add additional proactivity by sending

NAKs requesting additional repairs beyond the minimum
that would be necessary to complete the block. The observa-
tions made from these additional experiments vary slightly
from the results presented in this section. The technique was
still effective when using the loss model observed by Hand-
ley in [20] for two reasons. First, receivers that experienced
high losses required high levels of proactivity. Second, the
drop in loss at the link next to the source made using FEC
more effective, even though there was an increase in loss
(which also caused correlated loss at receivers) in the back-
bone. The only drawback is that the disparity in receiver
loss rates caused receivers with lower loss rates to typically
receive many more repairs than they actually require, in or-
der to satisfy the high repair needs of receivers with high
loss rates. In general, we found that the proactive FEC tech-
nique was less effective for very low loss rates, very bursty
loss, and/or highly correlated (i.e., upstream) loss. Details
are provided in [25].

5 Asynchronous Protocol

In Section 4, we demonstrated the effectiveness of the proac-
tive technique in a heterogeneous network using a round-
based protocol. Such a protocol adapts its reliable delivery
rate to the requirements of the slowest receiver, reducing
the protocol’s effectiveness for faster receivers. We now ex-
amine a protocol that eliminates the synchronous behavior
imposed by the use of rounds. This allows each receiver to
communicate with the sender at a rate that is independent
of the number or locations of other receivers. We assume
that all receivers multicast their NAKs for the purposes of
suppression. In [25], we show that this does not provide
considerable benefit over unicasting NAKs.

We are able to allow receivers to operate in an asyn-
chronous fashion by changing the format of the informa-
tion that each receiver reports in its NAK. Other hybrid
FEC/ARQ approaches require each NAK to request the num-
ber of additional repairs needed by the receiver in order to
decode a particular block. We take advantage of the fact that
repair packets must contain sequence numbers for decoding
purposes, and perform the following subtle change to the
way receivers NAK.

We use the packet sequencing format described in Sec-
tion 4, where each data and repair packet contains two se-
quence numbers ��������� , where � indicates the block, and � the
packet’s its position within that block. NAKs also contain
two sequence numbers ����� ��� where � represents the block
to which the NAK pertains. However, rather than � indi-
cating number of additional packets desired, it indicates to
the sender that it should send all data and repair packets for
block � with sequence number less than or equal to � that
it has not already sent. As we shall see below, performing
NAKs in this fashion allows for a simple sender algorithm.

8

Appears in Proceedings of NOSSDAV’98

5.1 Protocol: Sender’s algorithm

The sender’s actions are simple and the only aspect that
depends on network conditions is the value it chooses for
the proactivity factor. A state diagram demonstrating the
sender’s algorithm for a block is given in Figure 9. The al-
gorithm proceeds as follows: For each block � , the sender
sends the data and a number of repairs which is determined
by the proactivity factor. It keeps track of the sequence num-
ber ��������� for the packet it has sent with the largest value for
� . We refer to this value of ����� ��� as the largest sent sequence
number for block � , or LSSN. If a NAK arrives with sequence
number ����� � � ����� ��� � , the sender sends all packets with se-
quence numbers ������� � ��� up to ������� � � , and ������� � � becomes
the new value for the LSSN. It should be clear to the reader
that multiple blocks can be transmitted in the same period
of time, as long as the sender maintains the LSSN for each
block that it is in the process of transmitting.

There are several advantages to having a sender use this
simple protocol. First, the sender maintains one item of
state per block: the LSSN. This makes it easy for the pro-
tocol to scale as the multicast group size grows, since the
sender’s state is constant with respect to the multicast group
size. Second, the sender does not require any knowledge
of the group topology. This is important because topology
information is difficult to obtain and can vary during a ses-
sion. Third, it operates in an event-driven manner, so that
it doesn’t need to maintain timers, except perhaps a single
timer that expires when a block becomes stale and no longer
requires buffering. Fourth, the sender always reacts to the
repair request in a manner that satisfies the request. Alter-
natively, if each NAK uses the approach where it only spec-
ifies a number of repairs that are needed by the receiver, an
additional burden is placed on the sender: it must determine
for each arriving NAK whether or not it has already satis-
fied or partially satisfied that NAK’s request. The answer
depends on loss rates and propagation delays to the receiver
that transmitted the NAK.

m >Is

Receive a NAK

max-sent ?

mRequesting pkt

YES
NO

+ 1

[

[]
]

]

[

- 1

kIf > then buildk

= m

ρkand send repairs k to - 1

max-sent

build and send repairs
max-sent mto

Block Start

ρkSet max-sent =

packetskSend

ρ

Figure 9: The sender protocol

5.2 Protocol: Receiver’s algorithm

The state diagram that describes the receiver’s behavior
while receiving a block is shown in Figure 10. Each receiver
reacts to three possible events: the arrival of a data or repair
packet arrival, a NAK from another receiver, or a timeout.
The way in which the algorithm reacts to these events is de-
termined by two functions: the �����	��
� ����� � function is
used to calculate the sequence number that should appear
in a NAK that is about to be sent. The ��� � ������
�� ����� � -
��
 ����� � �
������ � � function calculates the point in time when
the next timeout for a particular block should occur. After
a timeout, and possibly after a data or repair packet arrival,
a receiver sends a NAK requesting additional repairs, using
the �����!�"
�� ����� � function. After processing an event, the
receiver recalculates the time at which it should timeout us-
ing the ��� � ������
� ����� �#��
 ����� � �$
����� � � function. It then
blocks until it receives another packet or another timeout
occurs, at which time it repeats the process. As with the
sender, multiple blocks can be transmitted at the same time,
as long as the receiver maintains an independent set of states
for each block that is in transmission.

The receiver algorithm is more complicated than that of
the sender. However, the algorithm need only maintain a
small amount of per-block state information: the time of ar-
rival of the most recently arrived packet from the sender, the
maximum sequence number over all repairs received in the
block, and the time of arrival and sequence number of the
NAK received with the maximum sequence number. Addi-
tionally, the receiver must maintain an upper bound on the
round trip time to the sender. To meet hard guarantees, addi-
tional state is required: an upper bound on the loss rate from
the sender. It should be clear that, similar to the sender’s al-
gorithm, the receiver state neither depends on the group size
nor on the topology of the other receivers in the network.

Because NAKs contain intra-block sequence numbers
instead of the number of repairs requested, the receiver must
calculate the appropriate sequence number in order to have
the sender send the appropriate number of repairs. This se-
quence number can be computed at the receiver by deter-
mining the desired number of repairs the sender must trans-
mit to allow for decoding the block, and adding this value
to the receiver’s estimate of the sender’s current LSSN for
the block.

Due to loss and propagation delays, a receiver does not
always accurately determine the sender’s current LSSN. An
overestimate or underestimate of its value respectively
causes an overestimate or underestimate in the desired se-
quence number in the NAK. An overestimate can occur due
to a previous NAK that was processed or sent by a receiver,
but was lost by the sender. It can also occur if repairs incur
larger than expected delays so that the receiver prematurely
considers the repair lost. An underestimate can occur if the
receiver loses a NAK from another receiver that reaches the

9

Appears in Proceedings of NOSSDAV’98

sender. We note that the receiver can adjust its estimate with
each packet arrival, so that the estimates are not likely to
deviate dramatically from the true sender value. Also, there
are several techniques that can be employed to reduce the
damage that can occur due to inaccurate estimates. See [25]
for details.

To prevent unnecessary NAK transmissions, after re-
ceiving a NAK, a receiver waits a conservative amount of
time before reacting to a loss. When at some time � , a re-
ceiver � receives a NAK from another receiver, � � , it must
then give the sender an appropriate amount of time to re-
spond to the NAK. By waiting until time � ��� , where � is
the round trip time from � to the sender, � gives the sender
enough time to provide repairs based on the NAK from � � .
The approach is conservative, since often the sender’s re-
pairs will arrive sooner than � ��� .

YES

NO

YES

NO
YES

NO

YES
NO

YES

NO

YES

NO
?

= -1Set

Set max-seqno-recd

Start block

data + repair pkts ?

Wait for event

k past deadline ?

Decode fails
DONE

Received

< pkt’s seqno ?
max-seqno-recd

= pkt’s seqno

DONE

Set

Decode block

NAKSeqno()

max-seqno-recd

DATA pkt

arrives
t

Timeout triggers

seqno max-seqno-recdseqno max-seqno-recd

max-seqno-recdSet
max-seqno-recdSet

max-seqno-recd

< pkt’s seqno ?

ComputeBlockNextTimeout()=tSet

= pkt’s seqno

pkt’s seqno ?
>

max-seqno-recd

max-seqno-recd

< NAKSeqno()

arrives
N

A
K

 pkt

Send NAK pkt w/

NAKSeqno()

= NAKSeqno()

Send NAK pkt w/

=

Figure 10: Receiver protocol: the different variations are con-
structed using different functions for �����
	����������� and ����� -����� ��� �!��"$#�����% ��&(' �)��� ��� ��� .

P1 P2 P3 P4 P5 F1

Aggressive Rcvr NAKs here

Patient Rcvr NAKs here

Figure 11: Patient vs. Aggressive Receiver: If the block size is 5
and the proactivity factor is 1.2, a patient receiver will allow time
for receipt of all 6 transmissions of the initial packets before send-
ing a NAK, regardless of which packets are lost. An aggressive
receiver will NAK as soon as it detects 2 losses, since it knows it
cannot recover the block with only 4 packets.

We have experimented with two versions of the receiver
algorithm that differ only in a variation of the ��� � ��� ��
 -

� ����� � ��
 ����� � �
������ � � function. The first these, referred
to as the patient receiver protocol, only issues a NAK for a
block when it determines (with the information available to
it) that all repairs issued thus-far have already been received
or lost, and no NAKs are en route to the sender that will trig-
ger additional transmissions. The second variation, referred
to as the aggressive receiver, sends a NAK whenever it de-
termines that the sender’s current LSSN is not large enough
to send enough repair packets to permit decoding for the
block. Figure 11 illustrates the difference in the reaction
rates of the patient and aggressive receivers.

5.3 Performance Evaluation

We now report results from simulation of the asynchronous
protocol for multicast groups containing 500 receivers. The
simulation was written using the TeD network simulator
[22]. The group size is restricted to 500 due to the memory
and time constraints imposed by the multicast group size in
such a simulation.

The results presented here used a randomly constructed
tree topology, where the minimum, average, maximum hops
to the sender were 7, 15.1, and 25 respectively. The topol-
ogy was constructed in a similar manner to the trees used in
the round-by-round simulation in Section 4. We use a sin-
gle tree for all multicast transmissions, including receiver
NAKs. This corresponds a routing protocol like CBT. The
results from our simulation are likely to be pessimistic for
non-CBT-like routing, which would likely result in reduced
NAK propagation delay between receivers.

We have experimented over a small set of such ran-
domly generated topologies. With group sizes containing
hundreds of receivers, we have observed similar results over
the various random topologies. This is not surprising, since
distance to the sender is the factor that we expect to have the
largest impact on performance. Since we randomly select a
large set of receivers within a randomly generated tree, their
distances to the sender form a uniform distribution. All re-
sults presented in the remainder of the paper are based on a
single, randomly generated tree topology.

Here we compare the performance of the patient receiver
and aggressive receiver protocols in a simulation where the
sender’s proactivity factor remains fixed for the entire ses-
sion, and examine how the proactivity factor affects session
performance. First and last hop loss rates varied between
2% and 4% and backbone loss rates varied between 0.05%
and 0.1% per router, giving end-to-end loss rates between
4.4% and 10.4%. Each router added a delay to a packet
passing through it, where this delay fell in a range * � � �,+ : �
was chosen from a uniform distribution between 5 ms and
6 ms for backbone routers and 0.5 ms and 3.5 ms for last
hop routers. � was then chosen by adding a uniformly dis-
tributed value to � between 0 and 5 ms for backbone routers,

10

Appears in Proceedings of NOSSDAV’98

End Host processing rates used in simulation
Operation Time (������") Performed by

Data Send 502 S
Data Process 487 R
NAK Send 87 R
NAK process 86 S & R
FEC code 180 * block size S (build)
1 packet R (decode)
Data rate 5208 S

Table 2: Processing rates used in the simulation. An ’S’ means
the operation is performed by the sender, an ’R’ means by each
receiver.

and between 0 and 10 ms for last hop routers. To prevent
out of order delivery of packets, a packet would always be
delayed beyond its chosen value to prevent its arrival on a
link before a previously injected packet. In other words, if
packet � arrives before packet � at a router, and scheduled
departure times are respectively � and � � with � � � � , then �
is rescheduled to depart at time � plus 170 ��� . Maximum
round trip times varied between 74 ms and 294 ms for the
various receivers.

(a)

1e-05

0.0001

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
lo

ck
 R

ec
ei

pt
 F

ai
lu

re
 R

at
e

Delay buffer required (in seconds)

patient rho = 1.0
aggressive rho = 1.0

patient rho = 1.3
aggressive rho = 1.3

patient rho = 1.6
aggressive rho = 1.6

(b)

0.1

1

10

100

1000

10000

100000

0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 N

A
K

s
tr

an
sm

itt
ed

Block #

patient rho = 1.0
aggressive rho = 1.0
aggressive rho = 1.3

patient rho = 1.3

Figure 12: Examination of 500 aggressive and patient receivers
with sender proactivity factors of 1.0, 1.3, and 1.6 in terms of (a)
likelihood of failure to obtain an entire block vs. delay buffer, and
(b) Number of NAKs transmitted per block.

Figure 12 gives results from 6 different runs of our sim-
ulation that run for 5 seconds of simulated time with a data
rate of 1.5 Mb/s using packets of one kilobyte each (roughly
93 blocks, or 930 data packets are transmitted). In each sim-
ulation, 500 receivers appear in an identical network con-
figuration. In the first three simulations, all receivers exe-
cute the patient protocol and the sender’s proactivity factor
is fixed for each simulation at a level of 1.0, 1.3, and 1.6.
For the last three simulations, all receivers execute the ag-
gressive protocol, and the proactivity factor is again set at
a level of 1.0, 1.3 and 1.6. The protocols are run reliably,
meaning that receivers continue to send NAKs until they
have received all of the data reliably. End-host processing
rates are presented in Table 2, and are taken from measure-
ments from [6, 24].

We examined how the proactivity factor affects delay,
the implosion factor, and wasted forward bandwidth and
found that adding proactivity affected the performance of
the asynchronous protocols in much the same way that it af-
fected the synchronous protocols. We used the same metrics
to measure implosion factor and forward bandwidth as we
used for the round-based protocols in Section 4. However,
the asynchronous nature of the protocols does not permit us
to measure delay using the notion of rounds. Instead, the
delay in reliably receiving a block is measured by taking
the time at which the data packets could be decoded, and
subtracting this from the latest time at which the first packet
within the block could arrive, barring loss (i.e., the longest
time it could take to arrive given its latency distribution in
the model). We refer to this amount of time as the delay
buffer.

We observed that for a proactivity factor of 1.4 or less,
the forward bandwidth averaged around 15 packets, and in-
creased linearly with the proactivity factor when the proac-
tivity factor was at least 1.5. Figure 12(a) plots the fraction
of blocks that cannot be recovered given the delay buffer.
We see that additional sender proactivity decreases the rate
at which blocks fail to be decoded for a fixed amount of
buffer. We also see that for a fixed proactivity factor, the
fraction of blocks that can’t be decoded given a fixed de-
lay buffer is slightly smaller for the aggressive receiver than
for the patient receiver. Figure 12(b) shows the number
of NAKs received per block for proactivity factors of 1.0
and 1.3. We omit plotting results from the cases when the
proactivity factor was 1.6, since for most blocks the num-
ber of NAKs sent was 0, and never rose above 2. As with
the round-based protocol, a linear increase in the proactivity
factor results in an exponential decay in the proactive factor.

5.4 Meeting real-time deadlines

Receivers can meet real-time deadlines with a high prob-
ability by determining a point in time before its deadline
that gives a sufficient amount of time for it to send its NAK

11

Appears in Proceedings of NOSSDAV’98

(a)

0

1e-05

0.0001

0.001

0.01

0.1

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

B
lo

ck
 fa

ilu
re

 r
at

e

Buffer (sec)

Aggressive Receivers

Min
.25

.5
.75

Max

(b)

0

1e-05

0.0001

0.001

0.01

0.1

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

B
lo

ck
 fa

ilu
re

 r
at

e

Buffer (sec)

Patient Receivers

Min
.25

.5
.75

Max

Figure 13: Block failure rates for meeting hard deadline with the
block good-put guarantee set to a failure rate of .9999, where all
receivers allow identical latency for retransmission. 10,000 blocks
were transmitted.

and receive the repairs before its deadline expires. We use
a simple computation to determine what this time should
be. Details on adapting the asynchronous protocols to meet
real-time deadlines are discussed in [25].

Results of applying the real-time algorithms are shown
over the same topology of 500 receivers, with the sender
using a fixed proactivity factor of 1.4. Figures 13(a) and
13(b) demonstrate the block failure rates for patient and ag-
gressive receivers respectively in terms of the fraction of
blocks that a particular receiver fails to decode, where each
receiver employs an identical delay buffer. The plot labeled
Min plots the fraction of lost blocks in each experiment by
the receiver that observed the lowest rate of loss. The plot
labeled Max plots the loss rate as seen by the receiver with
the highest rate of loss, and the others plot the loss rate ob-
served by receivers whose rates of loss lie at the 25%, 50%,
and 75% quartiles when compared with the loss rates of the
remaining receivers.

Figures 14(a) and (b) are similar to Figures 13(a) and
(b), except that each point compares failure rates where the
ratio of each receiver’s delay buffer to its round trip time
to the sender is identical. In all plots, the block good-put

(a)

0

1e-05

0.0001

0.001

0.01

0.1

1

0 0.5 1 1.5 2 2.5

B
lo

ck
 fa

ilu
re

 r
at

e

Buffer (multiples of RTT)

Aggressive Receivers

Min
.25

.5
.75

Max

(b)

0

1e-05

0.0001

0.001

0.01

0.1

1

0 0.5 1 1.5 2 2.5

B
lo

ck
 fa

ilu
re

 r
at

e

Buffer (multiples of RTT)

Patient Receivers

Min
.25

.5
.75

Max

Figure 14: Block failure rates for meeting hard deadline with
with the block good-put guarantee set to a failure rate of .9999,
where each receivers’ allowed latency is a multiple of its RTT to
the sender. 10,000 blocks were transmitted.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300 350 400 450 500

R
T

T
 (

se
c)

Receiver

Network Delay

delay

Figure 15: Variation in receiver round trip times to the source.

guarantee rate is set to .9999, such that the desired prob-
ability of failing to receive a sufficient number of packets
to decode a block is .9999. For each point, we only trans-
mit 10,000 blocks due to the time such an experiment takes
to run on such a large scale simulation. Figure 15 displays
the round trip time delays that can occur for the various re-
ceivers to and from the sender. The delay for each receiver
is uniformly distributed along its vertical strip of the dark-

12

Appears in Proceedings of NOSSDAV’98

ened interval. The delay shown here accounts only for the
propagation time, and does not include any processing that
might occur at end-hosts.

We observe from the graphs that given identical delay
buffers, aggressive receivers typically reduce failure rates
beyond their patient receiver counterparts. Figure 14 shows
that for block good-put guarantees to be successful, receivers
require at least a round trip time in order to be able to meet
the guarantee. This is clearly due to the fact that any time
less than a round trip time does not give a receiver enough
time to send a NAK and elicit a response. We observe from
Figure 13 that receivers with larger round trip times can ex-
pect some improvement in the ability to meet their block
good-put guarantees a result of receivers with smaller round
trip times imposing their own block good-put guarantees.

6 Varying the loss model

So far, we have demonstrated the performance of our proto-
col in a heterogeneous environment. We now examine how
further variations in this environment affect performance.

We begin by reexamining two assumptions that were
made within our model. All previous experiments assumed
that NAKs sent by receivers were never lost. We consid-
ered what happens if NAKs are dropped at a router accord-
ing to a Bernoulli process identical to that used to describe
data and repair packet losses. We found that for large multi-
cast groups, such loss had no noticeable impact. We believe
this is due to the fact that the protocol limits, but does not
suppress, all redundant loss requests. Therefore, there is a
high probability that even when NAKs can be lost, there are
enough duplicate NAKs sent that at least one NAK will still
reach the sender.

We also consider the impact of bursty loss at each router
has through the use of a continuous two-state loss model,
where the expected length of a burst at each router is 6 ms,
while keeping the overall probability of dropping a packet
fixed. Our algorithm that prevents reordering creates packet
trains where the time lag between packets is 1.7 ms, thus
the expected loss burst length can cover 4 packets passing
through a router.

Figure 16 demonstrates the impact that bursty loss has
on protocol performance with all other network features iden-
tical to those used in Section 5. Each plot here is for the case
that all receivers use the aggressive receiver algorithm, and a
proactivity factor of 1.3. In each figure, plots labeled ORIG
assume a Bernoulli process for data and repair loss, whereas
those labeled Bursty use the bursty loss model. As in Fig-
ures 12(a) and 12(b), Figures 16(a) and 16(b) plot perfor-
mance in terms of block receipt failure rate and total NAKs
transmitted, respectively. Figure 16(c) plots the total num-
ber of packets that were transmitted for a block.

We observe that a network that exhibits high amounts

(a)

1e-05

0.0001

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

B
lo

ck
 R

ec
ei

pt
 F

ai
lu

re
 R

at
e

Delay Buffer required (in seconds)

Bursty
ORIG

(b)

1

10

100

1000

0 10 20 30 40 50 60 70 80 90
T

ot
al

 N
A

K
s

tr
an

sm
itt

ed

Block #

Bursty
ORIG

(c)

12

14

16

18

20

22

24

26

28

0 10 20 30 40 50 60 70 80 90

P
ac

ke
ts

 s
en

t

Block #

Bursty
ORIG

Figure 16: How results change as we add features of a more real-
istic network in terms of (a) good-put failure rate vs. buffer latency,
(b) NAKs received per block, (c) packets sent by the sender that
weren’t needed by any receivers (i.e., wasted forward bandwidth),
and (d) Total number of packets sent per block.

of bursty loss can alter the performance substantially. We
see that much of the time, an increasing number of repairs
must be sent to satisfy all receivers. Also, latencies and the
number of NAKs transmitted increases. Similar results hold
for the patient receiver algorithm. One way to minimize
the impact of burstiness is to increase the block size used.
However, increasing the blocksize increases the amount of
time between the first and last packets within a block, which
increases the expected minimum latency between the first

13

Appears in Proceedings of NOSSDAV’98

lost packet and the first repair.

7 Conclusions and Future Work

We have presented a technique that uses a hybrid of FEC
and ARQ approaches that can repair data in an extremely
efficient manner. We show that it is possible to make sig-
nificant improvements over current commonly used tech-
niques, and that FEC can be used to keep bandwidth re-
quirements and NAK implosion to a minimum. We show
that efficient support for large multicast groups can be per-
formed in an end-to-end, unscoped manner, without signifi-
cantly increasing bandwidth utilization over other unscoped
FEC techniques, and uses considerably less bandwidth than
unscoped ARQ approaches such as SRM. Also, we show
that through minor bandwidth increases, receivers can im-
prove upon performance in terms of expected time or relia-
bility and rate of failure to meet their deadlines. We present
a variety of protocols that use the technique and show their
success in medium-sized multicast groups in heterogeneous
networks through simulation. A prototype implementation
has been developed and has been tested on the MBone. A
detailed report of the results can be found in [26].

We have developed and experimented with an adaptive
mechanism that is executed by the sender which varies the
its proactivity factor. The mechanism works well for the
network conditions that we model in this paper. However,
we are exploring alternative mechanisms that are simpler
and more intuitive. For this reason, we do not present an
adaptive mechanism at this time.

Acknowledgments

We would like to thank Rohan Kumar who has converted
our simulation code into a prototype implementation, the
anonymous reviewers, Jon Crowcroft, and Joerg Nonnen-
macher for their helpful comments.

References
[1] S.E. Deering, D.R. Cheriton. Multicast Routing in Datagram

Internetworks and Extended LANs, ACM Trans. on Com-
puter Systems , 8, 2, pp. 85-110, May 1990.

[2] T. Ballardie, J. Crowcroft, P. Francis. “Core based trees
(CBT) An architecture for Scalable Interdomain Multicast
Routing” Proceedings of ACM SIGCOMM’93, pp. 85-95,
September 1993.

[3] Richard E. Blahut, Theory and Practice of Error Control
Codes. Addison-Wesley, Reading, MA, 1983.

[4] Anthony J. McAuley, Reliable Broadband Communication
Using a Burst Erasure Correcting Code. Proceedings of

ACM SIGCOMM’90, pp. 297-306, Sept. 1990 Philadelphia,
PA.

[5] Luigi Rizzo, Effective Erasure Codes for Reliable Computer
Communication Protocols, Computer Communication Re-
view, April 1997.

[6] Jorg Nonnenmacher, Ernst Biersack, and Don Towsley,
Parity-Based Loss Recovery for Reliable Multicast Trans-
mission, Proceedings of ACM SIGCOMM’97, pp. 289-300,
Sept. 1997 Cannes, France.

[7] S. Floyd, V. Jacobson, C. Liu, S. McCanne, L. Zhang. A re-
liable multicast framework for light-weight sessions and ap-
plication level framing, IEEE/ACM Trans. on Networking,
1998.

[8] J. C. Lin and Sanjoy Paul. Reliable Multicast Transport Pro-
tocol (RMTP), IEEE JSAC, 407, 3, 1414-1424,April 1997.

[9] Christos Pappadopoulos, Guru Parulkar, and George Vargh-
ese, An Error Control Scheme for Large-Scale Multicast Ap-
plications. Proceedings of IEEE INFOCOM’98, San Fran-
cisco, CA.

[10] Rex Xi Xu, Andrew C. Myeres, Hui Zhang, and Raj Ya-
vatkar, Resilient Multicast Support for Continues Media Ap-
plications, NOSSDAV 1997.

[11] B.N. Levine, David Lavo, and J.J. Garcia-Luna-Aceves, The
Case for Concurrent Reliable Multicasting Using Shared
Ack Trees, Proceedings of ACM Multimedia 1996 Boston,
MA, November 18-22, 1996.

[12] Xue Li, Sanjoy Paul and Mostafa Ammar, Layered Video
multicast with Retransmissions (LVMR): Evaluation of Hi-
erarchical Rate Control, NOSSDAV, 1997.

[13] Matthew T. Lucas, Bert. J Dempsey, and Alfred C. Weaver,
MESH: Distributed Error Recovery for Multimedia Streams
in Wide-Area Multicast, Proceedings Sixth International
Conference on Computer Communications and Networks
(IC3N), 1997

[14] Luigi Rizzo and Lorenzo Vicisano, RMDP: An FEC-based
Reliable Multicast Protocol for Wireless Environments, Mo-
bile Computing and Communications Review, Volume 2,
Number 2, April 1998.

[15] D. DeLucia, K. Obraczka, Multicast Feedback Suppression
Using Representatives, Proceedings of IEEE INFOCOM’97,
Kobe, Japan, March 1997.

[16] S. Kasera, J. Kurose, D. Towsley, A Comparison of Server-
Based and Receiver-Based Local Recovery Approaches for
Scalable Reliable Multicast, Proceedings of IEEE INFO-
COM’98, San Francisco, CA, March 1998.

[17] J. Nonnenmacher, M. Lacher, M. Jung, E. W. Biersack and
Georg Carle, How bad is reliable multicast without local
recovery?, Proceedings of IEEE INFOCOM’98, San Fran-
cisco, CA, March 1998.

[18] T. Speakman, D. Farinacci, S. Lin, and A. Tweedly, Pretty
Good Multicast (PGM) Transport Protocol Specification, In-
ternet Draft draft-speakman-pgm-spec-00.txt, January 1998.

14

Appears in Proceedings of NOSSDAV’98

[19] M. Yajnik, J. Kurose, D. Towsley, Packet Loss Correlation in
the MBone Multicast Network, IEEE Global Internet Con-
ference. London, UK, November 1996.

[20] M. Handley, An Examination of MBone Performance, Tech-
nical Report, UCL and ISI, January 1998.

[21] R. Kermode, Scoped Hybrid Automatic Repeat Request with
Forward Error Correction (SHARQFEC), to appear in ACM
SIGCOMM’98, Vancouver, CA, September 1998.

[22] K. Perumalla, A. Ogielski and R. Fujimoto, MetaTeD:
A Meta Language for Modeling Telecommunication Net-
works, GIT-CC-96-32, Technical Report, College of Com-
puting, Georgia Institute of Technology, 1997.

[23] H.R. Deng and M.L. Lin, A Type I Hybrid ARQ system
with Adaptive Code Rates, IEEE Transactions on Commu-
nications, COM-43 (2/3/4):733-737, February/March/April
1995.

[24] S. Kasera, J. Kurose, and D. Towsley, Scalable Reliable Mul-
ticast Using Multiple Multicast Groups, CMPSCI Tech Re-
port 96-73, University of Massachusetts, October, 1996 (A
shorter version of this paper appeared in ACM SIGMET-
RICS ’97).

[25] D. Rubenstein, J. Kurose, and D. Towsley, Real-Time Re-
liable Multicast Using Proactive Forward Error Correction,
CMPSCI Tech Report 98-19, University of Massachusetts at
Amherst, March 1998.

[26] R. Kumar, Design and Implementation of a Proactive Real-
Time Reliable Multicast Protocol using Forward Error Cor-
rection (FEC), Masters Thesis, University of Massachusetts
at Amherst, May 1998, in preparation.

[27] Jean Bolot, Private Communication, 1998.

Appendix

The following lemma applies for generating block good-put rates
within hard deadlines. If � is the event that a block is decod-
able, then ensuring that � � � ����� gives a block good-put rate
of at least � . In section 4.1, we propose that a receiver wait until
the last possible moment to send a final NAK for that block. At
this point, the receiver knows the number of packets, � , that it still
needs to recover the block. Regardless of the number of packets
received from this final request, a receiver does not request any
further NAKs.

Lemma 1 If the receiver chooses � such that � � ��� � ��� �	� �

� � �
� #�� ��� � ���� � �
� #�� � , then � � � ����� .

Proof: Let � be an R.V. that equals the number of packets from
the block sent by the sender prior to the final NAK transmission,
and � be an R.V. that equals the number of packets required by the
receiver at this time. Then:

� � ���
� � � � � � �
��
����� � � ��� ��� � � ��� � � � � � �

��� � ��� ��� � � ��� � � � � � ��� � � � � �����
���
 � � �!� � � � � ��� ��� � � � ��� � � � � � ���
��� � � � � �

If � � � , then � is guaranteed to hold, since the receiver
needs no further packets to complete the block. Thus, � � ��"� �
�#� � � � � �$� ��� � �%��� � � � �&� � �
� #,� . It is also the
case that if the final NAK requests � packets, then � � �'� � �
�(�)� � � � �*� � ��� � � . Selecting � as stated in the lemma
therefore gives us that � � �+��� � �,����� � � �-� � �.� � �/�
�	� �.� � �
� #�� ��� � ���� � �
� #�� � . Thus:

� � ��� � � � �0��� � �
� #��1� � � � � �2���
���

� �.� � �
� #,�
���.� � �
� #,� � ��� � �2��� � � �1� � � � � �

�3� � �4� #,��� � � � � ��� � �.� � �
� #,�
���� � �
� #,�(5

� � � � � �
��
���6 � ��� ���1��� � � �

�3� � �4� #,��� � � � � ��� � �.� � �
� #,�
���� � �
� #,� 5

� � � � � � � � �� ��� � ����� � � � �

�3� � �4� #,��� � � � � ���
� �.� � �
� #��
���� � �
� #�� � � � � � � � � �.� � �
� #,� � (1)

�3�7� � � � � � �
It follows that � � � � �!8:9; ��� � � ��� � � � �0�

8 9; ��� �7� � � � � � �<� .

15

