
PBS: A Configurable Scheduling Policy

Hanhua Feng1, Vishal Misra1,2 and Dan Rubenstein2,1

Columbia University

1Department of Computer Science

2Department of Electrical Engineering

Columbia University in the City of New York

Sigmetrics 2007

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 1 / 1



Scheduling Policies in Queueing Models

Scheduling is a compromise . . .
not only between individual tasks, but also . . .

between systems with different workload patterns,

between different performance requirements, including

mean response time, mean slowdown, responsiveness, . . .
fairness measures: seniority, RAQFM, . . .

Our work
Design a flexible scheduling policy to balance these requirements.

Assumptions in this talk
Single-server queueing model

Work-conserving, preemption allowed

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 2 / 1



Blind Scheduling Policies

Non-blind policies
Know required and remaining
service time when tasks arrive.

Blind policies
No information about remaining
service until tasks complete.

Non-blind policy examples
SJF, SRPT, SMART . . .

Blind policy examples
FCFS, PS, LAS, LCFS, . . .

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 3 / 1



How Do We Measure Fairness of a Policy?

Fairness criteria [cf. Raz,Levy&Avi-Itzhak 2004]

Task seniority (emphasis on ti) ⇒ FCFS

Task service requirements (emphasis on xi)

Equal attained service ⇒ LAS/FBPS

Combination of the two: Equal share of processor

Current: dxi (t)/dti (t) ≡ x ′
i (t) ⇒ PS

Aggregated: xi (t)/ti (t) ⇒ GAS

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 4 / 1



How to Measure Fairness of a Policy? (cont’d)

Fairness measures in the literature
Comparison vs FCFS [Wang & Morris 1985]

RAQFM: Comparison vs PS [Raz,Levy&Avi-Itzhak 2004]

A quantitative measure.
Difficult to analyze: with results for FCFS, LCFS, PLCFS, and
Random in M/M/1.
G/D/m [Raz,Levy&Avi-Itzhak 2005]

Expected slowdown for given required service E [S |X = x ]
compared with PS [Wierman&Harchol-Balter 2004]

A classification: always fair/unfair, sometimes fair.
Assume M/G/1.
Extended in [Wierman&Harchol-Balter 2005].

SQF [Avi-Itzhak,Brosh&Levy 2007]

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 5 / 1



Balance Between Two Fairness Criteria

Two fairness criteria (cont’d)

Seniority — Prefer larger sojourn time ti(t)

Service requirements — Prefer smaller attained service xi(t)

Our idea: A configurable balance

Schedule a task with maximal ti(t)− αxi(t).

More general: g(ti(t))− αg(xi(t)), e,g., log ti(t)− α log xi(t).

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 6 / 1



Our Parameterized Scheduler: PBS

The PBS policy with a single server
For every task i , compute its priority value

pi(t) = log ti(t)− α log xi(t), Equivalent to Pi(t) =
ti(x)

[xi(t)]
α

α is a configurable parameter in [0,∞).

At time t, serve the task with the highest priority pi (or Pi).

Randomly choose among equal-priority tasks.
Preempt low-priority tasks, if currently been served.

Can be used in continuous time (theory)
or in discrete time (practice).

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 7 / 1



PBS: Priority-based Blind Scheduling (cont’d)

Why PBS?
Tunable: Parameter α can be changed from 0 to ∞.

Emulate well-known policies: Pi = ti/xα
i

α = 0: First-come first-serve (FCFS) Pi = ti
α →∞: Least attained service (LAS), Pi ∼ 1/xi

a.k.a. Foreground-Background Processor-Sharing (FBPS)
α = 1: Greatest Attained Slowdown (GAS), Pi = ti/xi

closely emulate Processor-Sharing (PS).
α = other values: Hybrid policies.

Blind: Using only past information (ti , xi)

Simple: Easy to implement.

Dimensionless: Not dependent on scale of time unit (minute,
second).

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 8 / 1



Behavior of PBS

An example
Four tasks in 4 colors

Arrival time: 0s,1s,3s,5s

Service: 4.5s,2.5s,3s,2s

How to read the graphs
X-axis: Time

Y-axis: CPU utilization per task.

Area: Service received.

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 9 / 1



PBS: Smoothly Move Across Hybrid Policies

The smoothness of PBS with respect to α
• α varies from 0 to ∞.
• X-axis: Time • Y-axis: CPU utilization per task.
• Area: Service time received.

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 10 / 1



Properties of PBS for 0 < α < ∞

Some properties of PBS proved in the paper
A new task immediately receives service after arrival.

Small CPU fraction for α < 1
Large CPU fraction for α > 1.

Seniority: Earlier tasks get more attained service.

Time-shared: CPU may be shared by two or more tasks.

Hospitality: A new task always gets a CPU share.

Convergence: Converge to PS in a long run for long jobs.

Converge to DPS with an offset to log formula,

No Starvation: Priority values of temporarily blocked tasks
increase towards infinity, and will become highest-priority task.

For α close to 0 (FCFS) or ∞ (LAS), tasks may be blocked
for a long time.

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 11 / 1



PBS Tunability: A Graphical Conclusion

PBS is monotonic in many aspects
Guidelines for tuning α manually.

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 12 / 1



Implementation in Linux Kernel

CPU utilization measurement
Discrete time implementation in Linux 2.6.15.

50ms moving average of measured CPU utilization per task.

Measurement results are close to simulation results.

Difference is the roughness on small time scales.

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 13 / 1



Emulating Existing Linux Scheduler

A small tweak
Add a bonus priority γ to the current task
in order to limit context switch.

With α = 2 and γ = 0.07, PBS looks close to Linux native
scheduler.

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 14 / 1



Experimental model

A closed model
A fixed number of users.

Each user submits a task
after thinking.

Exponentially distributed
thinking time.

Response time of every
task is measured.

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 15 / 1



Experimental Results (Set A)

Computational tasks with almost deterministic CPU usage.

About 3-second processing for each task.

8 users, 25s average thinking time.

For this work load,

small α works best.

PBS (α < 0.7)
outperforms Linux
and Round-robin.

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 16 / 1



Experimental Results (Set B) (1/2)

Apache web server 2.0, dynamic pages with heavy processing.

Overloaded with 30 users, 10s average thinking time.

Processing time is heavy-tailed.

For this workload,

big α works best.

PBS (α > 2)
outperforms Linux
and Round-robin.

Conclusion
Different α’s are better
for different workloads.

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 17 / 1



Conclusion and Future Work

Conclusion of contribution
We introduce a novel configurable policy, PBS.

By varying the single parameter, we can tune for various
performance and fairness requirements.

Demonstrate properties and advantages of PBS by analysis,
simulations, implementation, and experiments.

Current/Future work

Closed form of mean response time in M/G/1.

Design an automatic mechanism to dynamically adapt α to
workload.

Extend PBS to multi-core systems.

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 18 / 1



The End

The End

Feng, Misra, Rubenstein (Columbia) PBS: A Configurable Scheduling Policy Sigmetrics 2007 19 / 1


