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Abstract

The objective of this paper is to study the small-signal
stability of congested TCP networks. The starting
point for this analysis is a fluid model describing the
interaction of TCP-controlled traffic with congested
routers. Assuming integral action in the active queue
management scheme, we compute the network’s equi-
librium point about which we determine the network’s
small-signal dynamics. Specializing to networks com-
prised of m links and m + 1 sources, we study closed-
loop stability, study network scaling, and evaluate ro-
bustness to variations in network parameters.

1 Introduction

Recently, there has been a focus on analyzing the dy-
namic behavior of congestion control in the Internet;
e.g., see the tutorial article [1] and the articles cited
therein. For the most part, this work has been lim-
ited to transmission control protocol (TCP) networks
having a single congested link. A departure was taken
in [1], where a network of multiple sources and links
were considered; however, in the treatment, the authors
sidestepped the existing TCP and proposed an alterna-
tive protocol, having possibly advantageous scalability
properties. In this paper, we content ourselves with the
status quo1, thereby acknowledging the entrenchment
of TCP, and analyze dynamic behavior beyond the case
of a single congested link. By way of introduction to
more complex networks, we first recall from [3] the
fluid-flow model for N homogeneous TCP-controlled
sources interacting with a single congested link. These
TCP-controlled sources adjust their aggregate packet
flow r as a function of the probability of packet mark

1This work is supported in part by the National Science Foun-
dation under Grant CMS-9800612 and by DARPA under Con-
tract DOD F30602-00-0554.

1We restrict our attention to the additive-increase, multiplica-
tive decrease (AIMD) behavior of TCP, ignoring timeouts and
slow start. Also, we assume that routers communicate conges-
tion using the explicit congestion notification (ECN) mechanism;
e.g., see [2].
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where W is the TCP window size, R is the round-trip
time and where pR(t) ! p(t−R) is the delayed probabil-
ity. The round-trip time is composed of both queuing
and transport delays R = q

C + Tp where C is the link
capacity, Tp the propagation delay and where the queue
length q of the congested router satisfies

q̇ =
{
−C + r, q > 0
[−C + r]+ , q = 0.

The router description is completed by introducing an
AQM rule that relates a link or router quantity, such
as the queue length q, to the marking probability p.
Some examples include drop tail, random early discard
(RED), random exponential marking (REM) and PI
control, which all react to queue length. The block
diagram in Figure 1 puts these dynamics together to
emphasize the feedback nature of TCP/AQM.
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Figure 1: AQM signals TCP sources to change sending
rate in response to router queue length.

For more general networks, we again appeal to the
model in [3] and consider a network comprised of n
aggregate TCP flows and m congested routers. To de-
scribe the interconnection between sources and routers



we let vector Vj denote the ordered set of links traversed
by the jth flow rj . These paths can be represented by
a binary routing matrix A = {aij} where aij = 1 if the
ith link handles the rj flow; i.e., i ∈ Vj . We assume
that A is full rank and has no zero column, and write

r̂ ! Ar (1)

where r̂ denotes the link flows. Conversely, with pi

denoting the marking probability at the i-th congested
router, the marking probability at the jth TCP source
is

p̂j = 1−
∏

i∈Vj

(1− ajipi).

If pi # 1, this simplifies to

p̂ = AT p. (2)

The queue length qi of each of the i = 1, 2, . . . , m
routers satisfies

q̇i =
{

r̂i − Ci, qi > 0
[r̂i − C1]

+ , qi = 0 (3)

where C = {Ci} is the vector of link capacities. Con-
versely, each of the j = 1, 2, . . . , n sources controls Nj

packet-flows, whose aggregate rate rj is described by
the window-dynamic:

Ẇj =
1

Rj
−

W 2
j

2Rj
p̂jR

rj =
Nj

Rj
Wj (4)

where Wj is the window length and where the round-
trip time Rj satisfies

Rj = Tpj +
∑

i∈Vj

qi

Ci
(5)

with Tpj the propagation delay. The delayed marking
p̂jR is defined by p̂jR(t) = p̂j(t−Rj) where we account
for the aggregated round-trip time delay at the sources.
Finally, an AQM marking rule, possibly dynamic in na-
ture, relates the queue lengths q to the marking prob-
abilities p, thus tying the source and router dynamics
together as illustrated in the feedback interconnection
of Figure 2.

The objective of this paper is to study the small-signal
stability of the TCP/AQM network dynamic described
by (1) – (5). This first requires computation of the net-
work’s operating point which is described in the next
section, and, leads to a general description of the net-
work’s small-signal dynamics. Subsequently, we will
specialize the analysis to a network comprised of m
links, m + 1 sources and common parameters Nj , Ci

and Rj . This allows us to study closed-loop stability,
study the impact of network scale, and to evaluate ro-
bustness to variations in these network parameters.
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Figure 2: A network of n TCP sources interacting with
m links.

2 Linearization

In this section we linearize the open-loop dynamics of
the congested network (1) – (5) about its operating
point.

2.1 Operating point
The operating point (r0, p0, q0) of the network is ob-
tained by setting q̇i = 0 and Ẇj = 0 in (3) and (4) to
yield the constraints

C ≥ Ar (6)

and

Λ





1
r2
1
...
1

r2
n



 = AT p (7)

where

Λ ! diag

{
2
N2

j

R2
j

}
.

Solutions (r, p, q) = (r0, p0, q0) to the above define the
network’s operating points, and, in this paper, we fix
the operational queue level q0, anticipating the use of
integral action in the AQM control law. Thus, for net-
work parameters (N, C,R), we seek feasible solutions
(r0, p0) to (6) and (7) which are characterized by the
following result:

Proposition (See Appendix A for proof): Given net-
work data (N, C,R), the operating point (r0, p0) of the
congested network dynamics (1) – (5) is unique, where
p = p0 maximizes the concave function

z(p) ! 2
n∑

j=1

√
(ΛAT p)j − pT C (8)

and r = r0 verifies (7). The operating point is feasible
if r0j > 0 and p0i ∈ [0, 1).

Now, we consider linearization about this operating
point.

p. 1



2.2 Small-signal dynamics
Linearizing (1) – (5) about the operating point satisfy-
ing (6) and (7) gives

[
δẆ

δq̇

]
=

[
−D11 0

AD21 −AD22LAT D22R

] [
δW

δq

]

+
[
−DBAT

0

]
δp (9)

where

D11 = diag
{

2Ni

r0iR2
i

}
; D21 = diag

{
Ni
Ri

}
;

D22L = diag
{

r0i
Ri

}
; D22R = diag

{
1

Cj

}
;

DB = diag

{
Rir

2
0i

2N2
i

}
.

In the next section we analyze these linear dynamics
for the special case of m links and m + 1 flows.

3 Analysis of a Network with m Links and
m + 1 Sources

The previous proposition and linearization (9) allows
one to practically analyze the small-signal behavior of
arbitrarily-sized networks. In an effort to explicitly re-
late such behavior to network parameters, we presently
consider the case n = m + 1; i.e., when there is one
more source than link, and assume a routing matrix
with structure:

A =




I

1
1
...
1




.

In this case, each of the first m sources passes through
a distinct router, with the m+1th source visiting each
of the m routers. Furthermore, we consider Cj = c,
Ri = ρ and Ni = η for all j and i.

3.1 Aggregate loss and throughput
This network’s operating point is found from the propo-
sition where the maximization of (8) gives

p0i =
2η2

ρ2c2

(1 +
√

m)2

m

for all i = 1, 2, . . . , m, and, from (7):

r0j =

{
c
√

m
1+
√

m
j = 1, 2, . . . ,m

c
1+
√

m
j = m + 1.

The aggregate network loss and throughput is then

m+1∑

j=1

p̂0j =
4η2

ρ2c2
(1 +

√
m)2;

m+1∑

j=1

r0j = c
1 + m

√
m

1 +
√

m
.

In comparison, recall the loss and throughout for a
single-source, single-link case (see [4]):

p0 =
4η2

ρ2c2
; r0 = c.

3.2 Dynamic analysis
We now analyse the feedback nature of TCP/AQM de-
picted in Figure 2 using the linearized dynamics (9).
Let δq(s) = P (s)δp(s) be a transfer function represen-
tation for this dynamic and consider the block-diagram
representation of TCP/AQM in Figure 3 where the
AQM rule is k(s)I which, in addition to being de-
centralized, implements the same dynamic δpi(s) =
k(s)qi(s) at each congested router. A computation

ρsesP −)(Isk )(
pδ qδ

Figure 3: Block diagram representation of a TCP/AQM
network where k(s)I denotes the AQM rule.

gives the 2m + 1 poles of P (s) to be:

λk =






− 2η
ρ2c (

√
m

1+
√

m
) k = 1, 2, . . . ,m

− 2η
ρ2c ( 1

1+
√

m
) k = m + 1

− 1
ρ (

√
m

1+
√

m
) k = m + 2,m + 3, . . . , 2m

− 1
ρ (m+

√
m

1+
√

m
) k = 2m + 1.

which compares to the pole-pair for the single-link,
single-source case:

− 2η

ρ2c
; −1

ρ
.

An explicit representation of P (s) in terms of network
parameters is

P = −%(w + 1)
[
I +

w

w + 1
E

]

where

%(s) =
c2m

2η(1+
√

m)2

(s + 2η(1+
√

m)
ρ2c

√
m

)(s +
√

m
ρ(1+

√
m)

)
,

w(s) = −
1

ρ(1+
√

m)

s +
√

m
ρ

+
1
m (s +

√
m

ρ(1+
√

m)
)(s + 2η(1+

√
m)

ρ2c
√

m
)

(s +
√

m
ρ )(s + 2η(1+

√
m)

ρ2c )
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and

E =





0 1 · · · 1

1 0 · · ·
...

...
...

. . .
...

1 · · · · · · 0




.

The closed-loop characteristic function is

φ = (1 + φ̃) det(I + T̃E)

= (1 + φ̃)
m∏

i=1

(1 + T̃ λi[E])

= (1 + φ̃) (1 + (m− 1)T̃ )(1− T̃ )m−1 (10)

where
φ̃(s) = %(s)(w(s) + 1)k(s)e−sρ

and

T̃ (s) ! %(s)w(s)k(s)e−sρ

1 + %(s)(w(s) + 1)k(s)e−sρ
.

Now we consider some examples using specific network
parameters.

3.3 Numerical example
Consider nominal values of η = 60 flows, ρ = 250 ms
and c = 3750 packets/sec. In the case of a single con-
gested link, the PI AQM controller

k(s) = 3.71× 10−5
s

0.499 + 1
s

stabilizes the network and provides 30 degrees of phase
margin; see [4] for details. With this PI controller
fixed, we plot stability boundaries for variations in net-
work parameters (η, ρ, c) in Figure 4. Parameters be-
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Figure 4: Stability boundaries for a single-link network
under PI AQM. Parameters below curves cor-
respond to stable networks.

low the curves correspond to closed-loop stability while

parameters above correspond unstable networks. Sta-
bility margins decrease with increased link capacity, in-
creased round-trip time, or decreased number of TCP
flows. It is interesting to compare these stability mar-
gins to the case when this same PI controller is ap-
plied, in a decentralized way, to the m routers in our
more complex network. To do this, we first consider a
congested 2-link, 3-source network; i.e., m = 2. The
Nyquist plots of φ̃, (m− 1)T̃ and −T̃ in Figure 5 show
that φ(s) in (10) has only stable zeros, and, that the
network is stable. With this decentralized PI controller
fixed, and designed on the basis of nominal parame-
ters (η, ρ, c) = (60, 0.25, 3750), we now plot stability
boundaries for variations in (η, ρ, c) as shown in in Fig-
ure 6. This 2-link network appears to be more robust
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Figure 5: The Nyquist plots of φ̃, (m−1)T̃ and −T̃ show
that φ(s) in (10) is stable when m = 2 links.

than the single-link case. For example, from Figure 4,
the single link network is unstable for the parameters
(η, ρ, c) = (60, 0.3, 4000), while, in Figure 6, the 2-link,
3-source network is stable. Let’s explore the conse-
quences for a larger network by repeating the analysis
for a 20-link, 21-source network as shown in Figures 7
and 8. Figure 7 shows that this larger network is stable.
Figure 8 indicates that this 20-link network is more ro-
bust than the single-link network, but has compressed
stability regions when compared to the 2-link, 3-source
network.

4 Conclusions

In this paper, we have analyzed the dynamics of a mul-
tiple link, multiple flow TCP network. Our work de-
parts from the existing body of work in analyzing the
multiple congested link scenario. Using a simplified
fluid flow model to describe the network, our analy-
sis reveals several interesting observations. Under the
assumption of integral action by controllers at the con-
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Figure 6: Stability boundaries for a 2-link, 3-source net-
work under PI AQM. Parameters below curves
correspond to stable networks.
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Figure 7: The Nyquist plots of φ̃, (m − 1)T̃ and −T̃
show that φ(s) in (10) is stable for a 20-link,
21-source network.
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Figure 8: Stability boundaries for a 20-link, 21-source net-
work under PI AQM. Parameters below curves
correspond to stable networks.

gested link, we cast the rate assignment problem in
this network as an optimization problem and demon-
strate that there exists an equilibria which is unique.
Further, we give feasibility conditions on achieving the
equilibria. Next, focusing our attention on a specialized
network with m congested links and m + 1 flows, we
have studied the closed loop properties of the system.
One surprising observation is that the controller ap-
pears to be more robust under the multiple congested
link setting as compared to the single congested link
case.

While our work yields several insights, there are a num-
ber of avenues for future work. There are a num-
ber of TCP details that we do not model, e.g. slow
start and time out. Also, our model considers the case
where marks are the feedback mechanism, as opposed
to packet drops, which is the prevailing scenario on the
Internet. Finally, extending our study to the more gen-
eral case of m links and n flows is of deep interest.

Acknowledgement The authors would like to thank
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plification in the dual optimization problem.

Appendix A

Consider the following optimization problem2

minr≥0
∑n

j=1
2N2

j

R2
jrj

subject to C −Ar ≥ 0

2See also [1] where the equilibrium structure of networks is
related to utility optimization.
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where the cost is strictly convex over a closed and con-
vex constraint set. Let r∗ be the global minimizer.
Then, there exists Lagrange multipliers λ = λ∗ mini-
mizing the adjoined function L(r∗, λ) where

L(r, λ) !
n∑

j=1

2N2
j

R2
jrj

+ λT (Ar − C)

and
λ∗i

{
≥ 0, i = 1, 2, . . . , m
= 0, i /∈ Vc

where

Vc ! {i : (Ar∗)i − Ci = 0, i = 1, . . . ,m}.

Conditions for (r, λ) to yield a stationary value of L are

∇rL = −





2N2
1

R2
1r2

1
...

2N2
n

R2
nr2

n



 + AT λ = 0;

∇λLi = (Ar − C)i = 0; j ∈ Vc

which are precisely (6) and (7). As noted in [1], the role
of the Lagrange multipliers is played by the network’s
loss probabilities p.

Computational complexity can be reduced by consid-
ering the dual optimization problem

max z(p)
subject to p ≥ 0 (11)

where
z(p) ! min

r>0
L(r, p).

The stationary condition ∇rL = 0 gives (7) from which

rj =
√

2Nj

Rj

√
(AT p)j

, j ∈ Vc. (12)

The full-rank assumption on A assures these rj to be
well-defined. Using (7), we substitute for AT p in L(r, p)
to obtain

z(p) =
n∑

j=1

2N2
j

R2
jrj

+
[

2N2
1

R2
1r

2
1

. . .
2N2

n

R2
nr2

n

]
r − pT C

=
n∑

j=1

4Nj

R2
jrj

− pT C.

Substituting (12) into this gives

z(p) =
n∑

j=1

2
√

2Nj

Rj

√
(AT p)j − pT C

which is (8). This proves the proposition.

The innovation here is that the transmission rates r do
not appear in z(p), in contrast to the standard dual
formulation followed in [1]. The Lagrangian for the
dual problem is

L̃(p, µ) =
n∑

j=1

2
√

2Nj

Rj

√
(AT p)j − pT C + µT p

with gradients

∂L̃

∂pj
=

n∑

j=1

aijrj − Ci + µi.

For any congested router, pi > 0; hence, µi = 0 and we
obtain

∇λLi = (Ar − C)i = 0; j ∈ Vc

which brings up back to our original set of network
equations (6) and (7). The advantage in the dual prob-
lem is that we have at most 2m equations which is
computationally attractive when m# n.

References
[1] S. Low, F. Paganini, and J.C. Doyle, “Internet
Congestion Control,” IEEE Control Systems Magazine,
Vol. 22, no. 1, pp. 28-43, 2002.
[2] K.K. Ramakrishnan, S. Floyd. “A Proposal to
add Explicit Congestion Notification (ECN) to IP,”
RFC 2481, Jan. 1999.
[3] V. Misra, W. B. Gong, and D. Towsley, “ Fluid-
based Analysis of a Network of AQM Routers Support-
ing TCP Flows with an Application to RED,” in Pro-
ceedings of ACM/SIGCOMM, 2000.
[4] C. V. Hollot, V. Misra, D. Towsley, and W. B.
Gong, “On Designing Improved Controllers for AQM
Routers Supporting TCP Flows.” in Proceedings of
IEEE INFOCOM 2001 a longer version of this paper
is to appear in a special issue of IEEE Transactions on
Automatic Control on “Systems and Control Methods
for Communication Networks.”.

p. 5


