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Abstract

In this paper, we examine the performance benefits of using parity encoding for
reliable delivery of data to multiple receivers, where the receivers have heteroge-
neous loss and delay characteristics. First, we examine the effect of sending parity
loss repairs proactively to receivers before it is known whether or not the repairs are
needed to repair losses. We show that in many cases, proactive repair can reduce
feedback implosion and the expected delay of reliable delivery without increasing
bandwidth usage. Next, we examine how proactive repairs can be used to meet end-
to-end deadlines to within a tunable probability. Last, we examine several receiver
feedback mechanisms for parity repairs in a heterogeneous networking environment,
and find that the various mechanisms offer different levels of robustness. Our ex-
aminations take into account temporally correlated (bursty) loss, as well as loss of
feedback messages from receivers.

Key words: Forward Error Correction (FEC), Reliable Multicast, Real-time
delivery

1 Introduction

The Internet enables the transmission of a variety of types of data. In partic-
ular, there is a growing need to reliably transmit real-time data to numerous
receivers where data must be received within a bounded amount of time. Ex-
amples range from video and audio communication to reliable delivery of stock
data. Using multicast instead of multiple point-to-point unicast connections
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to distribute this information reduces network bandwidth required to sup-
port such applications. However, dealing with packet loss for time-constrained
multicast applications remains an open and challenging research problem.

There are several issues that reliable multicast protocols must address. First,
protocols must avoid feedback implosion: an aggregation of feedback from nu-
merous receivers to the sender. For instance, it is well understood that pro-
tocols that require each of a large number of receivers to notify the sender
of a packet loss (NAK) will overwhelm the networking resources close to or
at the sender [TKP97]. It is also important to reduce the bandwidth used
for retransmissions. Previously proposed solutions solve this problem by in-
troducing delay [TKP97], or by distributing the repair process among the ses-
sion participants in order to reduce the number of requests that must be sent
to the sender [FJLT97,PSLS97, KKT98 PPV98,SBE*98,LDW97]. These works
are targeted toward applications that do not have tight time constraints. The
unpredictability of the location of the repairing participant complicates the
timing and coordination of retransmissions that is required for real-time de-
livery where the deadline is fixed. The STORM protocol [XMZ97] is designed
for real-time delivery, in that it ceases requesting repairs after a deadline has
passed. However, again due to the unpredictability of the location of the re-
pairing participant, a receiver cannot adjust the level of reliability with which
it receives packets, except by modifying the deadline itself.

In this paper, we focus on the use of parity encoding techniques to reduce the
latency of reliable delivery of data to multiple receivers and to reduce feedback
implosion. Such techniques are useful in applications that deliver real-time in-
formation to a large receiver set and can tolerate small transmission delays.
These applications include high quality, non-interactive audio and video, and
stock quote dissemination. First, we examine an approach that sends parity-
encoded loss repairs proactively, i.e., repairs are sent before it is known whether
the transmission of the repair is necessary. If these proactive repairs are in-
sufficient to reliably deliver the data to receivers, additional FEC repairs are
obtained via receiver requests for the transmission (ARQ) of additional re-
pairs. We find that the bandwidth used by the sender for data and repair
transmission does not increase significantly in comparison to that used by a
non-proactive protocol, as long as the number of packets transmitted proac-
tively is kept below a certain bound. At the same time, there is a significant
reduction in both the expected delay of reliable delivery, as well as the amount
of feedback transmitted toward the sender.

Next, we look at how a receiver, with knowledge of its end-to-end loss rate
and round-trip-time from the data source, can proactively request repairs in
order to meet a fixed deadline for reliable delivery to within a high, tunable
probability. We describe the computations that must be performed by the
receiver to determine the number of repairs that it should request in order to



meet such a deadline, taking into account the fact that packet losses occur
in bursts. We determine the bandwidth overhead that results from requesting
these additional repairs, and demonstrate that the bandwidth overhead can be
decreased by having the sender send repairs proactively along with its initial
transmission of data.

Last, we propose and evaluate several feedback mechanisms from the receivers
to the sender that differ in the information that is returned to the sender.
The assumption is made that receivers have different round trip times to
the sender, and feedback requests can be lost. We consider several kinds of
feedback, the largest sequence number received, the number of packets still
needed, and/or a counter that suppresses certain redundant requests. We find
little difference among them except for one version that maintains a separate
counter for each round that tracks the number of repairs sent for that round.
Surprisingly, such feedback causes the sender to transmit a significant number
of additional, unnecessary repairs, due to a lack of coordination of the requests
from the various receivers over the various rounds. Last, we briefly look at
how these techniques can be combined into a single protocol for use in large-
scale multicast applications requiring low latency or having real-time deadline
requirements.

In order to focus on the performance implications of proactive FEC, we make
several simplifying assumptions about the network model and the protocol.
We assume that link loss rates are not affected by the rate at which the pro-
tocol transmits. This is reasonable in a scenario where the congested links
utilized by the protocol are also utilized by many other sessions. We model
link loss as a two-state Markov process, which has been shown to be an ef-
fective means for modeling bursty loss [YMKT99]. We do not consider hybrid
techniques that combine proactive FEC transmission with local recovery tech-
niques [Ker98|. Our work in [RKTK99] demonstrates that in certain multicast
session configurations, a hybrid protocol can further reduce bandwidth re-
quirements of reliable multicast protocols. In contrast, Nonnenmacher et al,
[NLJ*98], demonstrate that in many scenarios, there is no additional benefit
to adding repair servers. It has been argued that specially designed routing
algorithms that provide repair functionality may obviate the need for FEC
techniques [LC99]. These algorithms also require routing changes which have
yet to be implemented. Furthermore, our approach to bounding the delay
on reliable delivery requires conservative estimates of round trip times to re-
pairing entities. This estimation is complicated when repairs originate from
multiple network entities.

The rest of the paper proceeds as follows. Section 2 presents a simple overview
of the use of parity encoding in reliable multicast. In Section 3, we examine
two methods by which proactive transmission of repair packets can be used to
improve protocol performance. In Section 4, we compare the performance of



several feedback mechanisms that can be used by receivers in a heterogeneous
environment. We briefly describe how these ideas can be combined to produce
a scalable real-time reliable multicast protocol for heterogeneous environments
in Section 5. We discuss previous and related work in Section 6, and summarize
the paper in Section 7.

2 FEC primer
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Fig. 1. A sample decoding using a block built from 5 packets.

Error correcting codes were initially developed to correct erroneous or missing
bits. More recently, they have been applied to repair packet losses at the
network layer. The following description is sufficient for understanding how
systems equipped with Reed-Solomon encoders and decoders [Bla83| can make
use of repair packets to recover from loss.

The sender forms blocks containing k data packets, where each block consists
of a subset of the data packets it wishes to deliver reliably. We refer to k as
the block size. The sender inputs a block into its encoder which then generates
repair packets for that block. A receiver uses its decoder to recover the k data
packets from any combination of £ distinct packets consisting of a mix of the
block’s original data packets and repair packets generated for the block. We say
that the set of data packets within a block and repair packets generated from
those data packets belong to the block. When a receiver obtains k packets
(either data or FEC repair packets) for a block of size k, we say that the
receiver has completed receipt of the block.

An example is shown in Figure 1, where a sender forms a block of 5 data
packets, encodes 3 repair packets from this block, and transmits all 8 packets
to the receiver. As soon as the receiver receives any 5 distinct packets related
to the block (in the example, 3 data and 2 repair), it activates the decoder
and recovers the lost data packets.

Detailed discussions of Reed-Solomon coding techniques and of packet-level
FEC techniques can be found in [McA90] and [NBT98| respectively; imple-
mentation issues are considered in [Riz97,NBT98]. For our purpose here, we
simply note that FEC techniques exist that can be used to generate as many
repair packets as needed and that, as of 1997, this could be done at data rates



much higher than 8 Mbytes/sec on commodity PC’s.

3 A Proactive FEC+ARQ Technique

In this section, we look at protocols that use a combination of ARQ and FEC
to reliably deliver data to a set of receivers, R [DL95,NBT98]. The novel
aspect of these protocols is the use of techniques that proactively transmit
FEC repair packets. To simplify our discussion, we restrict our consideration
to protocols in which only the sender transmits repairs, and these repairs are
always multicast. Furthermore, in this section, we assume that the receivers
are homogeneous, i.e., the round-trip time from the sender to each receiver is
fixed and identical across receivers. Hence, feedback from receivers in response
to a given transmission from the sender reaches the sender at the same time,
and repairs and data packets that are multicast by the sender reach receivers
at the same time. We can therefore envision the communication between the
senders and the set of receivers taking place over a series of rounds. In Section
4, we will resolve issues that arise when the assumption that round-trip times
to the sender vary across the set of receivers.

We focus here on a single block of data and determine the number of rounds
that are necessary to reliably deliver the data to all receivers. In the initial
round, the sender multicasts packets (the k data packets and perhaps some
FEC repair packets). Any receivers that fail to receive at least k& packets notify
the sender. If the sender receives any feedback, a subsequent round commences
with the sender transmitting a set of repair packets. This process continues
until all receivers have received at least k packets.

We now describe the basic protocol used by the sender and the receivers to
transmit a block of k data packets. The sender multicasts the k data packets
during the first round, with zero, one, or more FEC repair packets (what deter-
mines this number is discussed below). We say that any repairs transmitted at
this time are transmitted proactively, because it is not known whether or not
receivers will use them. Due to potential loss inside the network, each receiver
receives a subset of these transmitted packets. The subsets received by the
various receivers need not be identical since a multicast packet may be lost at
various points within the network. After the sender’s first round transmission
ends, each receiver assesses the total number of distinct packets that it has
received. If receiver ¢ has received k; < k packets belonging to the block, it
sends a request to the sender to transmit FEC repair packets. Henceforth, we
will refer to this request as a NAK, since such a request acknowledges that
an insufficient number of packets was received. For now, we assume that a
NAK specifies only the number of additional FEC repair packets desired by
that receiver for that block: the use of FEC obviates the need for the sender



to know specifically what packets have been received by the receiver. By re-
questing more than k — k; additional repairs, a receiver is requesting repairs
proactively. In the next round, the sender transmits max;-% k; additional re-
pairs. This process repeats until the receivers have obtained the k packets.
An entire stream of data is transmitted by segmenting the data packets into
blocks, and applying the above steps to each block.

The reduction in bandwidth resulting from the use of FEC-based repairs is
analyzed in depth in [NBT98|. Here, we will show how changing the level
of proactivity affects several attributes of a reliable transmission. These at-
tributes are:

e Expected Delay: We assume that the delay in reliably transmitting a
block to a receiver is proportional to the number of rounds that it takes the
receiver to obtain at least k packets for that block, where k is the block size.
For non-real-time protocols, we will be interested in the expected delay to
reliably deliver a block.

e Deadline Failure Probability: For a protocol that imposes a deadline on
reliable data delivery, we will be interested in the probability that a block
is received reliably before a given deadline.

e Implosion factor: The expected number of NAKs that a sender receives
per block.

e Forward bandwidth: The expected number of packets (repair and data)
sent by the sender per block. Because the sender multicasts each packet it
sends and each packet traverses all links in the multicast tree (except links
on the tree that lie below points of loss of a packet), the bandwidth usage
in the network is approximately a linear function of the forward bandwidth.

We consider two styles of proactive FEC. The first style is sender-oriented, in
which the sender transmits repairs proactively in the initial round. We will ob-
serve that this style of proactivity can significantly reduce the implosion factor
and expected delay while increasing forward bandwidth by only a negligible
amount. The other style is receiver-oriented, in which the receiver requests
a number of repairs that is larger than the minimum necessary to complete
receipt of the block. We will observe that receiver-oriented proactivity is use-
ful in meeting real-time deadlines with high probability. These two styles are
orthogonal and can be easily combined. We now describe each of these styles
separately and in greater detail.

3.1 Sender-oriented proactivity

We associate a proactivity factor p with a sender-oriented proactive protocol.
Here, p is a real number larger than or equal to one. For each block of size k,



the sender initially transmits |pk| packets,! consisting of the k data packets
plus an additional [(p — 1)k] repair packets. At the end of each round, each
receiver requiring additional packets for the block transmits a request for the
number of additional repairs it needs in order to receive k packets.

(a) A modified star topology

1-a 1B

B
(b) A two state loss model

Fig. 2. Network topology and loss model

Let us now quantify the benefits of sender-oriented proactivity. We assume
that the multicast tree is a modified star as illustrated in Figure 2(a). The
sender transmits packets across a shared link that lies on the path to all re-
ceivers. If the packet not lost on the shared link, it is transmitted on each
fanout link. Each transmitted packet is dropped on the shared link with prob-
ability ps. If not dropped on the shared link, the transmission on each fanout
link is dropped with probability p;. We model losses on each link as a discrete
time two-state loss process (Figure 2(b)). This allows us to easily model bursty
losses as they occur on the Internet [YMKT99].

A state transition occurs each time a packet arrives at a link. If the process
transits to state GG, then the packet passes through the link. Otherwise, the
process transits to state L and the packet is lost. Given that the process resides
in state G when a packet arrives, it transits to state L with probability «, and
remains in state G with probability 1 — a. Given that the process resides in
state L when a packet arrives, it transitions to state G with probability 3,
and remains in state L with probability 1 — .

We use two parameters to specify a link’s loss process, the loss rate and the
burstiness. Let p denote the probability that a random packet is lost. Let B

! The notation |z] means round x to the nearest integer.



denote the burstiness if the expected number of packets lost in a row on the
link is B/(1 — p). Note that a Bernoulli process has a burstiness of B = 1.
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The results in [YMKT99] indicate that typical values of B in the Internet are
less than 1.2. We will use B = 1.2 in the results presented here. Hence they
are expected to give pessimistic results regarding the gains in performance
due to proactive FEC.

Figures 3(a), 3(b), and 3(c) plot simulation results from 10,000 experiments.
These figures respectively plot the expected number of rounds (our measure
of expected delay for round-based protocols), implosion factor, and forward
bandwidth per block for various multicast group-sizes as a function of the
sender’s proactivity factor. The block size is 10, and the loss probability on
each link is .02532 (roughly an end-to-end loss probability of .05). From Figure
3(a), we see that a protocol using a proactivity factor slightly larger than
one requires a significantly smaller number of rounds than one that uses a
proactivity factor of one. The expected number of rounds quickly converges
to one as the proactivity factor is increased. In Figure 3(b), we see that the
implosion factor decreases exponentially as a function of the proactivity factor,
so that it can be significantly reduced by a small increase in the proactivity
factor. The most interesting result is the effect that the proactivity factor has
on forward bandwidth as shown in Figure 3(c). For large multicast groups,
initially increasing the proactivity factor has an insignificant effect on the
expected number of packets transmitted to reliably deliver data to all receivers.
This is because, with a large group, a certain number of repairs must be
expected. With proactive FEC, these repairs are simply sent before it is known
for certain that they are needed. Note that, after some point, an increase in the
proactivity causes the sender to transmit more packets than are required by
any of the receivers, and the bandwidth begins to increase along the asymptote
y = kx, where k is the block size.

Thus, one can obtain a significant decrease in delay (as shown in Figure 3(a))
without incurring any significant increase in forward bandwidth. Clearly, such
a protocol’s performance compares favorably in every respect to that of a non-
FEC ARQ protocol without local recovery. For example, a non-FEC ARQ
protocol delivering data to 10,000 receivers would require on average approxi-
mately 4 rounds to reliably deliver a block of 10 packets to all receivers, would
transmit approximately 30 repairs, and would generate on the order of 6,500
NAKs.? In contrast, we observe from Figure 3 that a hybrid FEC-ARQ pro-
tocol using a proactivity factor of 1.6 requires on average approximately two
rounds, 7 repairs, and 10 NAKs.

We emphasize that our results present expected values and transmitting re-

2 The count of 6,500 NAKs assume that receivers do not suppress the transmission
of NAKs. NAK suppression is commonly used in reliable multicast protocols to
reduce implosion, but can add additional and unpredictable latencies that would
complicate real-time reliable delivery.



pairs proactively does not lower the worst case bounds on implosion and delay.
For instance, consider the case where packet loss occurs on a link near the
sender that lies on the transmission path to a large set of receivers. While
increasing the proactive factor decreases the likelihood that these receivers
will transmit NAKs, when they do need additional repairs, they all trans-
mit NAKs. For cases where there is significant spatial correlation of packet
losses among the receivers, increasing the proactive factor decreases the fre-
quency with which implosion occurs, but does not reduce the number of feed-
back messages when additional transmissions are required. Feedback suppres-
sion techniques that introduce randomized delays such as those discussed in
[BTW94,NB99] can significantly reduce the expected number of receivers that
transmit feedback even when packet losses are spatially correlated. However,
these techniques increase the expected delay and also fail to lower the worst
case bounds. Tree-based solutions that aggregate feedback from receivers as
the feedback moves up the multicast tree can alleviate the feedback problem
altogether (e.g., see [LPGLA98 LLGLA96]). However, these solutions impose
additional processing and state at intermediate nodes within the tree. By
combining a tree-based solution with proactive FEC techniques can reduce
the expected amounts of processing and state that these intermediate nodes
incur.

Extensive simulation over a variety of loss rates and various homogeneous and
heterogeneous network topologies appears in [RKT98|. This extensive testing
has shown that the network topology has little impact on performance, as long
as the end-to-end loss rates and burstiness of the loss are fixed. In [RKT98|, we
also conclude that bursty loss can have a significant impact on the protocol’s
performance. The performance improvements achieved by using FEC are less
evident as the burstiness increases. This is because an increase in burstiness
increases the variance of the number of packets that require retransmission at
the end of a round. This means that for any fixed proactivity factor, as the
burstiness is increased, there is an increase in both the expected number of
additional repairs that must be transmitted during successive rounds and in
the expected number of repairs that are transmitted unnecessarily in the first
round.

3.2 Receiver-oriented proactivity

We have seen how sender-oriented proactivity reduces the expected latency
and feedback in reliable multicast delivery without significantly increasing the
forward bandwidth from the sender. We now consider how proactive delivery
can be applied at the receiver side to meet real-time guarantees. We consider
an application in which there is a deadline, 7, by which a complete block
of packets must be received by each receiver, and a lower bound, P, on the

10



probability that the receiver receives the entire block without loss before the
deadline.

We assume here that the deadline is specified as a number of rounds. The
receiver must be able to calculate the probability of receiving n out of m
packets, which we define as Q(m,n). We now present a recursive construction
for Q(m, n): the probability that at least n of m packets are received given that
the loss process is described by a two-state loss model as discussed previously.

Let Qg(m,n) to be the probability that the receiver successfully receives at
least n of m transmitted packets, and that the last repair is received (i.e., the
burst loss model ends in state ). Similarly, let Q1 (m, n) to be the probability
that the receiver successfully receives at least n of m transmitted packets, and
that the last packet transmitted is not received (i.e., the burst loss model
ends in state L). We further assume that the probability of being in a given
state at the start of the transmission equals the steady state probability for
that state. In effect, this states that the time between sender transmissions
of separate feedback messages is large enough to remove any temporal loss
correlation between the transmissions. Define mg and 7y to be the steady
state probabilities of being in states G and L, respectively. Then

mg = p/(a+B) m=af(a+f)

r

0, m=n>0
Qr(m,n) =1 7, n=0
\QL(m_lan)(l_B)—i_QG(m_17n)a7m>n>0

’

ng(l — )t

, m=mn>0
QG(mJn):< TG, nZO
\QL(m—l,n—l)ﬂ—f-QG(m—l,n—l)(l—a),m>n>0

Q(m,n)=Qr(m,n) + Qg(m,n)

3.2.1 Ewvaluation

We begin by evaluating the use of Q(m,n) to meet a deadline in an environ-
ment where losses are bursty. We define the failure ratio, F, = ps/(1 — P),
where p; is the probability that a receiver fails to recover a block of data
within the deadline. A failure ratio less than or equal to one indicates that
the receiver fails to meet deadlines with probability less than P.

Figure 4(a) shows that using Q(m, n) to meet deadlines keeps the failure ratio

11



[any

Failure ratio
© O 0 o0 0o o oo
P N W 01O N 0O O

o
u

1 1.1 1.2 1.3 14
Burst length (B)
(a) Using Q(m,n)
'P= 0999, p=0.1 ~x—
147 P=.999 p=0.1 —+— e
b =.999, p=0.05 ¥
12 P=.999, p=0.1, tho=1.2 =
210 r ;
o 8t ¥
£er L
4 L
2 L
l L
0

1 11 1.2 1.3 14
Burst length (B)

(b) Using Qp(m,n)
Fig. 4. The degradation of Q(m,n) and of @p(m,n) as loss becomes bursty

well below 1, even as the burstiness (B) of the loss process is increased. We vary
the normalized burst length, B, on the z-axis, and give the resulting failure
ratio on the y-axis. The different curves represent various combinations of loss
rate, p, and receiver deadline probability, P. All curves have p = 1, except for
the bottom curve, for which p is 1.2. For simplicity, we consider a multicast
network with a single receiver. Point estimates and 95% confidence intervals
are generated from 30 experiments, each consisting of 2/(1 — P) rounds of
simulation. The number of rounds per sample point is inversely proportional
to the bound on the probability that the deadline fails so that most samples
contain a small number of failed attempts at meeting the deadline.

The failure ratio, F;., lies below 1 because the minimum value of m is chosen
such that Q(m,n) > P. Hence, the actual probability that the block of data is
received before the deadline is often larger than P. We verified that Q(m,n)
was the minimum acceptable value to meet the deadline within the specified
probability by simulating receiver-oriented proactivity where the receiver re-
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quests Q(m,n) — 1 packets in the last round (instead of requesting Q(m,n)).
We found the failure ratio in this case to often be larger than 1.

Let us consider what happens if a receiver does not take into account the
burstiness of the loss process. Define Qp(m,n) to be the probability that at
least m of n packets are received given that packet loss is described by a
Bernoulli loss process with rate p. It is easy to verify that

Qn(m,m) =" <n;> (1—p)'p™. (1)

i=n

Figure 4(b) shows the failure ratio as the burstiness of loss increases when a
receiver assumes that losses are described by a Bernoulli loss process. In this
case, the receiver uses Qg(m,n) instead of Q(m,n) to compute the proba-
bility of receiving m of n packets. We observe that, by using Qg(m,n), the
receiver is less likely to meet deadlines as the burstiness, B, of the loss pro-
cess increases. The failure ratio increases in a bursty loss environment as P
increases, and also increases slightly when the end-to-end loss rate increases.
We find that the addition of sender-proactivity decreases the failure ratio. This
is because adding sender-proactivity decreases the likelihood that additional
packet transfers will be necessary in subsequent rounds. Also, having addi-
tional receivers increases the likelihood of a given receiver meeting a deadline,
since the inclusion of other receivers only increases the aggregate number of
packets transmitted by the end of a given round.

Figures 5(a) and 5(b) show the expected number of transmissions by the
sender in a network where the normalized burst length, B, equals 1.2, and
the block size is 10, for respective end-to-end loss rates of .05 and .1. Each
receiver requires that it receives a block of packets (so that it can perform
decoding) by the end of the second transmission round with probability 0.999.
We vary the proactivity factor of the sender on the z-axis. The various curves
correspond to different numbers of receivers.

We observe that when receivers attempt to meet hard deadlines, the sender can
reduce the expected number of transmissions of data and repairs per block by
increasing the proactivity factor. This is because, in the absence of proactivity,
the number of packets requested by a receiver to meet its deadline is significant
whenever a second round is required. By sending a few extra packets in the first
round, the sender often obviates the need for the second round altogether. This
reduction of forward bandwidth due to sender proactivity is less pronounced as
the end-to-end loss rate is decreased, as is shown by contrasting the slopes of
the curves in Figure 5(b) with those in Figure 5(a). The reduction in forward
bandwidth due to the use of receiver-oriented proactivity also becomes less
significant as the receiver’s deadline increases (i.e., as more rounds of packet

13



20

g
S 19 |
@ 18 ¢
= o o
g w7t et
[%2]
< 16 |
a
= 15
5
z Ms ., 1rcvr ——
2 10 revrs -
K 137 100 revrs e
o 12 b 1,000 revrs -
s |7 10,000 rcvrs -»--
s 11t
o
L 10 ‘ ‘ ‘ ‘
1 1.2 1.4 1.6 1.8 2

Proactivity Factor

(a) e2e loss rate .05

22 -

T T I
© -
c A
3 20+ A, s
£ T
2
E 18 +
<
o
< 16 s
S
2
T 14 L 1revr —
g e 10 revrs -+
= 100 rcvrs =
5 12 1,000 rcvrs -
s 10,000 revrs -4~
o
L 10 . . . .
1 1.2 1.4 1.6 1.8 2

Proactivity Factor

(b) e2e loss rate .1

Fig. 5. Bandwidth consumption meeting deadlines in a bursty-loss environment

transmissions are permitted). As the deadline increases, the expected number
of transmissions decreases, converging to the expected number of transmissions
when there is no deadline.

The guarantee we present here ensures that the conditional probability that
a block is received, given that the block has not been received by the last
round, is larger than P. It may be of more interest to simply ensure that
the probability that a block is received over all rounds is larger than P. In
[RKT98|, we refer to the latter as a block goodput guarantee, and present a
method for reducing the number of packets to meet this type of guarantee.
Further studies have shown that using a goodput guarantee rarely reduces the
number of packets that the receiver requests in its final round. The reduction
in the number of packets requested is significant only when loss rates are very
high or P is very close to 1 (e.g. within 1079).

We conclude our discussion on receiver-oriented proactivity by pointing out
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that the implosion factor can only decrease as receivers increase the number
of repairs requested proactively. A receiver transmits a NAK for a block in the
first round of the block’s transmission only if it fails to receive at least k packets
for that block in the first round. Since the number of packets transmitted in
the first round is unaffected by the “level” of receiver-oriented proactivity,
this “level” does not effect the number of receivers that transmit NAKs in
the first round. In each subsequent round, a higher “level” of receiver-oriented
proactivity results in an increase in the number of packets transmitted by the
sender for that round. This in turn increases the likelihood that a receiver will
have received at least k packets by the end of that round. The decrease in the
number of receivers that need additional packets results in a decrease in the
number of receivers that request additional repairs.

3.8 Summary

In this section, we have analyzed the benefits of using proactive repair in
round-based protocols. By using proactive FEC at the sender, we can reliably
deliver data sooner than is possible using traditional ARQ and with consid-
erably less bandwidth. Furthermore, proactivity provides large decreases in
repair bandwidth and reduces latency in reliable delivery of data when com-
pared to a non-proactive FEC-ARQ hybrid approach. The proactive approach
achieves these gains without using significantly more forward bandwidth than
its non-proactive counterpart. By using proactive FEC at the receiver, re-
ceivers can meet hard deadlines up to a given probability. When receivers are
attempting to meet deadlines, adding proactivity at the sender can reduce the
expected number of packets that the sender transmits. The optimal level of
proactivity for a session, both at the sender and at the receivers, is a function of
loss rate. It is known that the loss rate will vary over time [YKT96,YMKT99].
Adjusting the level of proactivity over time such that it remains optimal for
the network loss rate at each particular time remains an open issue.

4 Handling Heterogeneity in the network

In Section 3, we demonstrated the effectiveness of proactivity when coupled
with a round-based protocol. Because the protocol is round-based, it adapts its
delivery rate to the requirements of the most distant receiver (e.g., the receiver
with the largest round trip time), reducing the protocol’s effectiveness for
closer receivers. We now examine how to eliminate this synchronous behavior.
We describe and compare several feedback mechanisms that allow each receiver
to communicate with the sender at a rate that does not depend on the number
or locations of other receivers.
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We first formalize a packet sequencing format used by the sender. Each packet
(data or repair) is assigned a sequence pair, (i, ), where i is an integer indicat-
ing the block to which the packet belongs, and j is an integer indicating the
packet’s position within that block. If the 7th block contains k packets, then
data packets are assigned sequence pairs (7,0) through (i,k — 1), and FEC
repairs for that block are assigned sequence pairs (¢, j), where 5 > k. This
mechanism for sequencing is commonly used in packet-level FEC protocols
[NBT98|. The typical approach for requesting the number of additional re-
pairs is as follows: at the end of each round, each receiver requiring additional
repairs notifies the sender of the number of additional repairs that it requires.
We assume that a technique, such as proactive FEC, has been employed to
keep the implosion factor low so that the sender can effectively handle the re-
quests for feedback that it receives. The sender collects this information from
all receivers for that round and sends out a number of repairs equal to the max-
imum number requested. Such an approach works well when rounds are well
defined. However, if receivers have differing round trip times and the sender
does not delay retransmission to collect the information from all receivers,
such an approach becomes considerably more complicated to coordinate.

We first describe the scalable feedback mechanism presented in [RKT98],
which we refer to as Largest Desired Sequence Number, (or LDSN). Rather
than requesting the number of additional repairs required, a receiver requests
a packet sequence pair (7,j). The sender responds to any request (¢,j) by
transmitting all repairs (7, j') that have not been previously transmitted for
all j/ < j. Immediately prior to sending a feedback message, the receiver es-
timates the sequence pair (i,n) with the largest n that has been transmitted
by the sender, and has or would have arrived at the receiver, barring loss. The
receiver then returns (7,n +m) (i.e., j = n+m), to the sender. Here m is the
number of additional repairs desired by the receiver (the number of repairs
required to complete the block plus any proactive quantity being requested).
Note that some or all of the repairs (¢,n+1),---, (i,n+m) are either already
en-route to the receiver (perhaps due to some other receiver’s request), or will
be transmitted when the receiver’s request reaches the sender. The burden of
success or failure of this approach is moved to the receiver: it must correctly
estimate the set of packets which have already arrived or are lost. Barring re-
ordering, each receiver’s estimate is recalibrated each time it receives a packet
from the sender.

We consider three remaining approaches that make use of NAK round coun-
ters to coordinate repair transmissions from the sender. NAK counters are
used loosely to maintain a round-by-round structure for repair transmission.
Each NAK request from the receiver contains the number of repairs, n,, that
it requests for transmission, as well as a NAK round, N,. The NAK round
indicates the current “round” of the block transmission as perceived by the
receiver. When the sender transmits repairs, it includes a NAK round number,
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Nj, in its packet, corresponding to the largest NAK round it has received from
any receiver for that block.

A receiver’s NAK round counter, V,, is initially 1. After sending a NAK, it
increments its NAK counter (N, = N, + 1). Upon receiving a packet from
the sender with a NAK round number larger than or equal to its own current
value, the receiver updates its NAK round counter to the sender’s current
value plus one (Ny > N, — N, = N, + 1). By doing so, the receiver assigns a
value to its NAK counter that it has not previously seen.

We consider three ways in which the sender can respond to a NAK requesting
n, repairs that has just arrived with round number N,:

round-forward If N, < N, then the sender ignores the NAK. Otherwise,
set N; = N, and transmit the n, repairs requested by the NAK.

round-current The sender maintains a count, n, of the total number of
repairs transmitted whose round number equals the current sender round
number, N,. For the arriving NAK, if N, < Nj, then ignore the NAK.
If N, = Nj, transmit max(0,n, — n) packets, and set n = max(n,n,). If
N, > Ni, set n = n,, Ny = N,, and transmit n, packets.

round-all For each integer ¢ > 0, the sender maintains a count, n;, of the ag-
gregate number of packets transmitted by NAKs whose NAK round number
was ¢. For the arriving NAK where N, = i, let n, = Z;-V:si n;. If ny < n,,

then transmit n, — n, repairs, and set n; to n; + n, — n,. Otherwise, do

nothing.

We say that repairs that are transmitted in response to a NAK with round
number N, are transmitted in the N,th round. Round-forward only provides
repairs in response to a NAK with a new, larger round number. As such, only
one receiver can make a request per round. Round-current responds to new,
larger round numbers in a manner similar to round-forward, but also trans-
mits additional repairs in response to NAKs whose round number equals the
largest round number seen previously. The number of repairs sent in a round
equals the maximum number requested by receivers for that round. Round-all
permits the transmission of repairs for round ¢ after repairs have already been
transmitted for round j where ¢ < 5. However, when sending repairs for round
1, the number of packets transmitted is reduced by the number of packets that
has been transmitted in any round j > %, since the receiver could not have
possibly known about any of these transmissions, or it would have chosen a
larger round number.

Let us discuss the pros and cons of the various approaches. We begin with
the case that no NAK is lost. As long as ample time is given to allow repairs
to reach the receiver that issues the repair request, LDSN and round-forward
will transmit the minimum number of repairs necessary to repair all receiver
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losses whereas one can easily construct scenarios where round-current and
round-all can wind up transmitting unnecessary repairs. When NAKs can be
lost, scenarios exist where LDSN and round forward will transmit unnecessary
repairs.

Figure 6 compares the four approaches in terms of the number of packets sent
by the sender and the time it takes for all receivers to receive the block as a
function of loss rate. measuring the number of packets sent by the sender. The
sender continues to transmit packets as long as NAKs are received, and each
receiver continues to send NAKSs until it receives a number of packets equal to
the block size. We also measure the time it takes for all receivers to receive a
block of packets from the start of the initial transmission of the block of data.
In these simulation experiments, losses are described by a Bernoulli process.
There are 100 receivers, where the r-th receiver’s round trip time is .01r.
All packets transmitted (data, repair, NAK) are lost with equal probability,
regardless of origin and destination. The block size is 10.

In Figure 6(a), we illustrate the average number of packets transmitted by
the sender as a function of the packet loss rate. 95% confidence intervals are
shown, where each sample point used to compute the confidence intervals is
the average of 20 simulation runs. We see that the number of packets sent
by the various approaches is roughly the same, except for the round-current
approach, which, at loss rates less than .2 (i.e., at loss rates that are typical
in the Internet), transmits more packets than the other approaches. At very
high loss rates, LDSN transmits a few more packets than the other approaches.
The inefficiency of the round-current approach can be understood through the
following scenario: Let receiver A have a round trip time smaller than that of
receiver B. Both receivers send NAKs with round number 1, with B requesting
ny repairs, and A requesting n, repairs with n, > n,. Assume the sender gets
the request for n, repairs first, and multicasts out the repairs. If some of these
repairs are lost on the path to A, then A will request an additional set of
repairs with round number 2, prior to the arrival (or its knowledge) of the
ny — n, additional repairs being transmitted with round number 1. Hence,
the repairs requested in round 2 are not all necessary, but because the round
number in the NAK is larger, all packets are transmitted. We suspect that
such a scenario can occur frequently in practice.

Figure 6(b) illustrates the completion time, the minimum time by which all
receivers will be able to decode the block, as a function of loss rate. We see
that for moderate loss rates, the round-forward approach takes the most time,
due to its conservative nature of releasing additional packets. In contrast,
the round-current and round-all approaches take less time due to their more
optimistic approach at repairing losses. The LDSN approach maintains a low
repair time even when loss rates are high. This is likely due to its lack of
reliance on round numbers. When using round numbers, NAKSs from a receiver
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with a small round trip time that experiences a single loss per round causes
the sender to ignore the requests of a distant receiver (with large round trip
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time) that loses a large set of packets in the initial transmission, and hence
requests a large number of repairs in its NAK.

In Figure 6(c), we plot the completion time (z-axis) versus the average number
of packets transmitted by the sender (y-axis). We omit the confidence intervals
for clarity. We see that round-forward is the best approach to reduce the num-
ber of packets transmitted. However, if we also want to limit the completion
time for moderate to high loss rates with only a small number of additional
packet transmissions, LDSN is the best approach. It is interesting to also note
that LDSN and round-forward both require the sender to only maintain one
data value per block being transmitted: under round-forward, it must main-
tain the largest round number yet seen for the block, and under LDSN, it
must maintain the largest sequence number transmitted so far. Our studies
indicate that LDSN and round-forward are the two most effective means for
receivers to send feedback to the sender.

5 Discussion

In this section, we briefly discuss how the techniques described in the previous
sections can be combined to produce a real-time, reliable multicast protocol for
heterogeneous networking environments. We have developed such a protocol.
However, details of the protocol are omitted and can be found in [RKT98|.

Our protocol operates on a block-by-block basis. Each block is handled sepa-
rately by the protocol. The sender chooses a proactivity factor and transmits
a proactive set of repairs along with the block of data. Doing so reduces the
expected delay of receipt by receivers and also reduces the expected amount of
implosion. The proactivity factor can be chosen such that the forward band-
width from the sender (including subsequent retransmissions for the block)
does not increase. The sender can adapt the proactivity factor to account for
network conditions. If the sender is being heavily inundated with feedback,
then it should increase the proactivity factor. If the sender is receiving little
feedback, then it should reduce the proactivity factor.

Receivers solicit repairs from the sender using one of the heterogeneous feed-
back mechanisms discussed in Section 4. If receivers require the data before a
given deadline, d, then they should develop conservative estimates of the loss
rate and their round trip time, and use the techniques presented in Section 3
to meet these deadlines.

We briefly address several open issues not addressed in this paper, and present
previous and ongoing works of other researchers that may solve these issues.
First, we do not address the issue of NAK loss when a receiver attempts to
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meet a hard deadline. No matter how many packets a receiver requests, its
probability of receiving the block is compromised by the loss of the NAK.
This impact of NAK loss can be reduced by transmitting the NAK several
times. Note that the final NAK should be sent at a time that allows ample
time for repairs to arrive prior to the deadline. However, there is often a gap
between the transmission of the final NAK and the point in time where repairs
have insufficient time to return. The receiver can minimize the possibility of
NAK loss by periodically transmitting the NAK several times within this time
interval. If the interval of time is not sufficient, then the receiver can begin
transmitting its final NAK before the point in time we recommend. Note
that the heterogeneous feedback mechanisms presented in this paper do not
transmit additional repairs if the sender receives duplicate copies of a NAK.

We also do not directly address how one can apply these techniques to lay-
ered encoding schemes [MJV96]. We believe, however, that one can apply our
proactive FEC techniques to each layer separately.

6 Related / Previous Work

In this section we discuss previous work that addresses various issues that
arise when attempting to reliably multicast data in the Internet. Much of
the work presented in this paper arises from observations that we made in
[RKT98]. There is a significant body of previous work that discusses var-
ious mechanisms of providing reliable multicast in a scalable manner to a
large numbers of receivers using randomly delayed transmissions [FJLT97],
retransmission hierarchies [PSLS97, KKT98 PPV98 SBE198|, representatives
[DO97], parity-encoding (FEC) [NBT98|, and FEC-hierarchy combinations
[Ker98 NLJ"98 RKTK99]. The primary concern of these works is to reduce
bandwidth consumption and feedback implosion of a reliable multicast session.
Often, the mechanism that provides this scalability also reduces the expected
latency of reliable delivery. However, it is often difficult to determine a bound
on the latency for each receiver, making it difficult to use the mechanism to
enforce reliable delivery before a given deadline.

There has also been recent interest in providing resilient multicast service
for real-time data, where retransmissions occur only if data can be delivered
before the real-time deadline. Two protocols that are designed to provide
resilient multicast are STORM [XMZ97] and LVMR [LPA99]. Both approach-
es form virtual trees with the source as the root and receivers as internal
and leaf nodes. Recovery is implemented by sending all repair requests and
retransmissions via unicast along this tree. Low latency repairs often can be
performed provided that they do not need to traverse numerous links within
the receiver-based tree. However, substantial delays occur when losses occur
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close to the source. In such cases, the transmission path to a receiver can be
significantly longer than the multicast route direct from the source. This is
because repairs occur as a series of unicast transmissions between receivers.
Hence, it is difficult to make time-bounded guarantees for reliable delivery.

Forward error correction (FEC) [Bla83] is a technique that reduces the band-
width overhead of repairing errors or losses in bit streams. It has been shown in
[NBT98]| that a hybrid approach combining FEC with ARQ can significantly
reduce bandwidth requirements of a large reliable multicast session. Hybrid
approaches that combine FEC and ARQ have been proposed and classified for
repairing loss and noise at the bit-level [DL95]. The Type I Hybrid approach
involves sending repair bits within a packet that can correct bit errors or era-
sures, and retransmitting packets if the number of repair bits is insufficient to
reliably receive the packet. Type IT Hybrid approaches place the repair bits in
packets that are distinct from the packets that contain the data. Our approach
can be thought of as a Type II Hybrid approach. However, our forwarding of
repair packets before their necessity incorporates certain favorable features of
a Type I approach as well.

In [LDW97], real-time performance of reliable multicast techniques that only
use FEC are compared to those only using ARQ techniques; [LDW97] does not
consider hybrid approaches. An interesting approach using FEC is presented
in [RV98], where data is delivered reliably without requiring ARQ through
multicast group joins and leaves. A more recent implementation utilizes ARQ
as a last resort to obtain any data that could not be obtained via the joining of
a particular multicast group. A similar approach that uses layers to transmit a
small number of proactive repairs is presented in [RJL100]. However, present
join-leave latencies for multicast groups make the approach too bandwidth in-
efficient to support real-time applications. Other works also show the promise
of the proactive FEC technique. One such work is [Ker98], in which a round-
based proactive FEC approach is combined with a receiver-based hierarchical
recovery scheme.

7 Conclusions

We have demonstrated three fundamental ways in which parity encoding can
be used to improve reliable delivery of data to multiple receivers, where the
receivers have heterogeneous loss and delay characteristics. Our examination
took into account two features of the Internet that can have a significant effect
on protocol performance are commonly not considered: the impact of bursty
loss on performance, and the effects of lossy feedback. We showed that proac-
tive FEC techniques can alleviate the feedback implosion problem which is a
major concern in large-scale reliable multicast protocols. At the same time,
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the technique reduces delivery latency without significant increases in the ag-
gregate bandwidth that the sender injects into the network. We demonstrated
how receivers could apply proactive FEC techniques to meet real-time dead-
lines up to a desired probability, and how they could solicit repairs from the
sender in an efficient manner when their round trip times differ.
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