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Abstract

Power laws have been observed in various contexts in the Internet. There has been con-
siderable interest in identifying the mechanisms behind these power laws. Most of these have
focused on the tail behavior of the distributions. We argue that the the tails and their asymp-
totic behavior is very hard to substantiate in realistic engineering systems. In this paper we
describe some of the proposed mechanisms for producing power law tails. We show that these
mechanisms are not particularly robust. Furthermore, we argue that the data ususally available
for classifying a distribution is insufficient to classify the tail. Fortunately, the tail has little
impact on Internet performance. Thus it is sufficient to focus on mechanisms leading to power
law like “waists” of the distributions.

1 Introduction
Power laws have recently been discovered for web file sizes, web site connectivities, and the router
connection degrees, see, for example, [5, 4, 19, 7].

These discoveries are important in the study of various protocols and algorithms. For example,
the web file size distribution is important for web-server scheduling. More importantly, these
discoveries motivate us to identify the mechanisms behind the observed power laws and therefore
enable us to design mechanisms to improve the current operational structure of the Internet.

In the past few years there has been a significant amount of research on the issue of power laws.
Various mechanisms have been proposed including reflected or drifted multiplicative processes,
exponentially stopped geometric Brownian motion, self-organized criticality, preferential growth,
and highly optimized tolerance among others [4, 13, 1, 17, 3]. There is also a group of researchers
advocating lognormal rather than power law distribution as the correct description of the data (see,
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for example, [6]). The debate has focused on the “tail” behavior since, for example, the primary
difference between a lognormal distribution and a power law distribution lies in the tail. We believe
that this debate on the nature of the tail (power law vs lognormal) is of little practical interest or
consequence. Expanding on this is the subject of this paper.

Our view on the “tail debate” is as follows: First, we believe that there is never sufficient data
to support any analytical form summarizing the tail behavior and therefore any summary could
be misleading and dangerous. For instance, one could fit a set of webfile size data as power law
(Pareto) tailed, and give the distribution to a simulation engineer to estimate queueing delays. The
simulation engineer would generate service times according to the given power law tail and as
a consequence, the simulation results will depend heavily on how long simulation is run, as the
longer the simulation length runs the greater the possibility of generating an unrealistically large
service time. Second, all mechanisms aimed at explaining the power law or lognormal tail are
fragile in the sense that minor perturbations to their assumptions will lead to different analytical
forms for the tail. We will make this concrete in the paper. It is important to understand that
such perturbations seem to always exist in engineering settings. For example, in the case of expo-
nentially stopped Geometric Brownian motion one needs a stopping time that has an asymptotic
exponential tail, which can never be the case in engineering settings since such a stopping time has
to end at some finite value. In general, many of the conclusions in the above mentioned studies are
statements about the asymptotic tail behavior, which never occur in practice.

Given the difficulty to identify the tail of a distribution from limited data, the fragility of mech-
anisms to explain different tails, what is one to do as an engineer. Fortunately, as we will observe
in this paper, there is little evidence that the tail impacts the design of various algorithms and in-
frastructure on the Internet. This leads to our final point, which is that engineers should focus on
the behavior of the “waist” of a distribution, not its “tail”.

The rest of the paper is organized as follows. In Section 2, we introduce the terminology used
in the rest of the paper. We describe mechanisms to generate long-tailed distributions in Section
3. Section 4 identifies the fragilities in these mechanisms that can lead to the wrong analytical tail
distribution. Next, in Section 5 we look at the difficulty in estimating the tail from a limited dataset.
In Section 6 we explore the impact of power law tails on configurations of various algorithms in
the Internet. Section 7 explores the concept “power law waist” - causes and effects on traffic
characteristics. Finally, we present our conclusions in Section 8.

2 Terminology
We introduce terminology that will be used in the remainder of the paper. First, consider two
functions . We say that iff , . We say
that iff .

The complementary cumulative distribution function (CCDF)of a random variable is defined
as . We say that is characterized by a power law distribution if

, where , . The Pareto distribution is the canonical power law distribution. It has
has probability density function



If , it has infinite mean; if , it has finite mean and infinite variance; if , both
the mean and variance are finite. The corresponding CCDF. is .

A positive random variable is said to be lognormally distributed with two parameters and
if is normally distributed with mean and variance . The probability density

function of is

3 Mechanisms for Generating Long-tailed Distributions
Multiplication Mechanism. Consider a sequence of independent and identically distributed posi-
tive valued random variables (rvs) with finite first two moments. Let be defined as

(1)

with . Taking the logarithm of both sides yields

which, by the central limit theorem, converges in distribution to a normally distributed random
variable. Consequently, converges in distribution to a lognormally distributed random variable.
Mixture Mechanisms. Let be an independently distributed sequence of lognormally dis-
tributed random variables where has mean 0 and variance as might be produced by a ge-
ometric brownian motion process. Let be a nonnegative rv with density , . Reed
[17] showed that if is exponentially distributed with parameter , (here

).
Optimization-based mechanisms. Constrained optimization has been proposed as a mechanism
behind many observed power law like data set [4]. The basic idea is that optimization of an
expected performance index would decrease the probabilities of events contributing significantly to
such mean value, and increase the probabilities of certain rare events correspondingly. This leads
to heavy tailed distributions under appropriate assumptions. For example, it has been shown in a
simplified forest fire control model that an optimal resource allocation indeed leads to power law
tail under certain assumptions, which includes that the form of the pre-optimization distribution
tail is known exactly.

4 Fragility of Analytical Tail distributions
Analytical forms of the tail behavior are nice for many purposes. However they could be fragile to
the perturbations in the assumptions leading to the tail formulas. We give several examples below
to illustrate this point.
The Monkey Text Problem. One of the oldest power laws characterizes the usage of English
words. Briefly, the frequency of word usage plotted against rank exhibits a power law.... Zipf is



usually accredited for this discovery. To study Zipf’s law researchers has developed the so-called
“Monkey text” model in which each of letter keys is struck with a certain probability. In [10],
Li showed that when such striking probabilities are exactly equal then the frequency of the words
against the rank of the words exhibits a power law. He pointed out that this is actually quite
straightforward. Basically the occurrence probability of a word with length is .
The rank of such a word, denoted by , in terms of occurrence frequency is proportional to
since we have

Combining these two facts together we see that the frequency or probability against the rank in a
perfect monkey text is a power law. However this power law is “shallow” in Li’s words, since the
key trick here is the exponential stretching performed by the rank-length transformation

. More importantly, as R. Perline pointed out in [16], if the hitting probabilities for different
letters are different, then one would obtain an asymptotic lognormal distribution for the frequency-
rank relation instead. The high sensitivity of the distribution tail is due to the multiplicative nature
of the model. For example, if one letter has a slightly smaller probability than other letters, then
very long words consisting of this particular letter only will generate very small probabilities due
to the multiplication, which makes the tail much “thinner” than in the equal hitting probability
case. Therefore we see that Zipf’s law in the monkey text context is very fragile when subject to
perturbations in the letter striking probabilities.
The multiplication mechanism - fragility of the lognormal distribution. Recall the multipli-
cation mechanism as defined by 1. Suppose that we add a reflection of the form that is never
allowed to fall below a threshold . In other words, we modify the construction to be:

Gabaix, [8] has shown that converges to an rv with a Pareto distribution as . Therefore,
the multiplication process for generating a lognormal distribution i very fragile to a perturbation
on the reflection; if , it produces a lognormal distribtuion and otherwise a Pareto distribution.
The mixture mechanismWe revisit the mechanism described in Section 3. We have the following
result (see [18] for proof).

Theorem 1 Let be a nonnegative rv with density and let denote when .
Then

1. implies that ,

2. implies that ,

Thus we observe that the distribution of is sensitive to the tail behavior of ; if it deviates
from an exponential decay, the power law disappears. This points to the fragility of a power law to
the assumptions regarding the specific mixture.
Fragility of the optimization mechanism Optimization leads to a power law. While optimization
processes do lead to power law tails with suitably choosen objective functions and under appro-
priate assumptions, it appears to be a fragile mechanism against the assumptions. For example,



one may need to know exactly the apriori distribution model in order to perform the optimization
procedure leading to power law tail. Moreover these apriori disibution models often need to have
infinite tails themselves. These assumptions are difficult to satisfy in an engineering system.

5 Difficulty of Estimating Tail
The “waist” of the lognormal distribution and power law distribution could look very similar. When
the variance is big, the body of a lognormal CCDF is very close to a straight line in the log-log
plot. Given a dataset of real web file sizes, we can fit most of the samples into either a lognormal
model or power law model by tuning the parameters. The dramatic difference between these two
distributions lies in the tail of their CCDFs. In a log-log plot, the CCDF of a power law decays
with constant slope; the CCDF of alognormal distribution decays with increasing slope. However
in any set of sample data, we only have a small number of samples in the extreme tail, which means
it would be hard to determine which one is a better fit.
To further illustrate, suppose we have a dataset of file sizes: . Assume all
samples in the dataset are i.i.d samples of some random variable with CCDF . We can
estimate by the empirical CCDF , where is the indica-
tor function of set . is an unbiased estimation of with variance

. When is big, should approach a normal distribution .
The -confidence interval for is

where and . When we plot the confidence interval in the log-log
plot and let , the width of the confidence interval is:

where is the expectation of number of files with size greater than . keeps increasing when
decreases. will blow up when .

We plotted confidence interval in Figure 1 for both the pareto and the lognormal model used
in [6] to fit Crovella’s web file size dataset [5]. We observe that the confidence intervals of both
models diverge when file sizes grow. At the tail, the two confidence intervals have a large overlap,
which makes it difficult to distinguish them.

6 Effect of tail behavior on the design and dimensioning of al-
gorithms and protocols on the Internet:

An important factor to consider in support of our arguments is what effect does the extreme tail of
a job size distribution have on the configuration or design of existing mechanisms on the Internet.
There don’t appear to be any design problems or adjustment to existing algorithms or protocols
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that depend upon the fact whether a (job size) distribution has infinite variance or not, whether the
tail is described by a power law or not. We look at two particular cases where, at first glance, the
heavy tailed nature of filesize distribution can lead to a significant change to the existing design.

6.1 Buffer dimensioning at routers
There have been numerous studies investigating the effects on the queue length of a multiplexer fed
by a heavy-tailed input [14], [9]. All studies show that the tail of the queue length distribution is
significantly heavier for a heavy tailed input as opposed to a light tailed or exponential tailed input.
For a finite buffer, this implies that to maintain performance guarantees in terms of drop probability
buffers of significantly larger sizes would be required with a heavy tailed input as opposed to a light
tailed one. However, all the studies performed assumed an open-loop transport protocol. Files, on
the Internet, are (invariably) transported by TCP which is a closed-loop transport protocol. The
arguments fall apart when we consider the closed loop case, and loss rates in fact do not depend on
the tail of the flow length (file size) distribution. Buffer dimensioning on the Internet is done more
in tune with the bandwidth-delay product of the output link of the router (typical values are 2-8
times bw*delay). A major consideration is to limit the amount of queueing delay for TCP flows,
since the delay affects the overall throughput of a feedback based flow control protocol like TCP.
Hence the buffers are kept relatively small, and these small buffers then filter out the tail effects.
This implies that even if we consider open-loop transport protocols, the performance difference
between a heavy tailed input and a light tailed one is likely to be negligible because of the small
buffers. TCP itself, is configured or tuned according to fine timescale behavior, of the orders of a
typical round trip time. Longer timescale effects, where the extreme tail of a distribution is likely
to show up, are not considered at all in the design of TCP.

6.2 Web server scheduling
Recently there has been a lot of interest [2] in changing the job scheduling of web servers to
exploit the underlying power law distribution of job sizes. Specifically, Shortest Remaining Pro-
cessor Time (SRPT) has been proposed as an alternative to Processor Sharing (PS) or round-robin



scheduling. In [2] the authors investigate analytically the benefits of SRPT over PS under a “heavy
tailed” job size distribution assumption. A persuasive argument is made for SRPT over PS. How-
ever, a closer look at their results reveal that the “heavy tailed distributions” that they considered
are not really heavy tailed, but instead have a “heavy tailed property” (HT property) which is
defined as follows in the paper:

One key property of heavy-tailed distributions and (many) Bounded Pareto distribu-
tions is that a tiny fraction ( ) of the very largest jobs comprise over half of the
total load. We will refer to this as the heavy tailed property (HT property)

All their results hold for distribution which have this “HT property”. However, this is not
a heavy tailed property, but is really a high variance property. This property is exhibited, for
instance, by a simple hyperexponential distribution. A large subset of this class of distributions is
light-tailed, and in fact the distribution considered in [2] is the lightest tail of all: it is a bounded
distribution with compact support, i.e. no tail at all! Thus, we again observe that the power law
decay of the tail of the distribution does not play a critical part in the design of algorithms, the
results are equally applicable for distributions with a “heavy enough” waist or high variance.

7 The Effect of a Power Law “Waist” on Traffic
In this section we study the impact of web file size distributions on the traffic correlation structure.
In particular, we evaluate how the tail of the web file size distribution affect the self-similarity of
the resulting web traffic. Because of its simplicity, we use the input process to model web
traffic. An input process is the busy server process of a discrete time infinite server
system fed by Poisson arrivals of rate and with generic service time distributed according to

. One can think of this as modeling the arrival of web sessions according to a Poisson process
where each session desires to transfer a file of size and is given a rate of one unit per second.
The input process has been shown to be versatile and tractable [15]. The auto-covariance
of has been established as:

(2)

To obtain strict sense self-similar traffic, must have a power tail, i.e., . In
order to evaluate the impact of the tail of on the auto-correlation of , we generate two

input processes with two service time distributions: , where r.v.
follows a pareto distribution, with CCDF , , and , where the

distribution of is the mixture of a pareto body and an exponential tail. The CCDF of is

for
for
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where .
Then CCDFs of are

(3)

(4)

The auto-covariance functions of the processes can be computed from (2)
For this experiment, we set the arrival rate , pareto parameters , , the turning
point for the exponential tail , and the rate of exponential tail .
Figure 2 shows the two CCDFs in log-log scale. and are plotted in Figure 3.

We simulate by generating arrivals for each service time distribution
and running them through the server system.

In Figure 4 and 5 we show the evolution of over different time scales. On time scale ,
is averaged in windows of length

We observe that the shapes of both and are similar on timescales from to . This
suggests that a power tail is not necessary for visual self-similarity within finite range.
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8 Conclusions
In this paper we have argued that the focus on power law tails in the Internet is misguided. First,
many mechanisms have been proposed to explain where they come from. However, they are all
very fragile, sensitive to the underlying assumptions. Second, it is extremely difficult if not im-
possible to statistically characterize a distribution tail based on a finite amount of data. Third, in
many applications, the tail plays little role in determining design and performance. Instead, it is
the power “waist” that does. The latter was illustrated through a simple example.

We are currently investigating mechanisms for predicting power waists. Our preliminary work
indicates that a clusteredmultiplicative model may be the source for the “power law” waist that
has been observed. This model suggests that hierarchies and proportional growth could be the
mechanisms behind the multiplications in the model, and in-homogeneity of the hierarchies and
the growth could be handled by appropriate clustering. One important feature of the multiplicative
model is that it is similar to the central limit theorem based models where many “small” random
effects add to the very robust Gaussian “body”. In our case we would say that the observed power
law or lognormal “waist” is due to many “small” random effects multiplied together. To this end
we would also like to point out that the Gaussian distribution in engineering practice refers to its
bell, and not the tail. The latter is also for the mathematical convenience and is as unrealistic as
any other tail.
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