The Time-Correlated Update Problem

Joshua Reich, Vishal Misra, and Dan Rubenstein
{reich, misra, danr}@cs.columbia.edu

1. INTRODUCTION

Recent advances in the fields of sensor networks and mobile
robotics have provided the means to place monitoring/sensing
equipment in an increasingly wide variety of environments -
a significant proportion of which can reasonably be expected
to lack traditional network connectivity characteristics [5] [8].
Challenged networks, operating under significant sets of con-
straints in which disconnected paths and long delays are nor-
mal events, have come to be known as Delay/Disruption Tol-
erant Networks (DTN) [2]. Some examples of environments
in which DTN techniques may be required include remote or
vast domains such as underground, underwater, outer-space,
Arctic, and mountainous environments.

Most often DTN are used to address data collection and
monitoring tasks [6]. Among other possibilities, the end user
of the data produced by DTN nodes may be interested in
either (1) retrieving the maximal amount of data (long-term
system monitoring - e.g., carbon dioxide consumption in tem-
perate rain-forest) or (2) retrieving the most up-to-date data
(situational awareness - e.g., current weather conditions at
a mountain peak). While there has been significant exam-
ination of the former case, our work is the first of which
we are aware to examine the latter [7] [9] [1]. Instead of
total throughput, our metric of interest is the expected lag
between the data available to the end user and the most cur-
rent data produced by the monitoring equipment. In other
words, we examine the problem of engineering a DTN to pro-
vide minimal-lag situational awareness.

The class of DTN we examine are defined by four essen-
tial characteristics of their end-to-end connections. Specifi-
cally the end-to-end connections experience high latency, low
bandwidth, high loss rates, and are only intermittently con-
nected. As a direct consequence of these characteristics, the
RTT of connections in the DTN may often be too long to
allow for the effective use of a feedback loop in the form of
an acknowledgment-retransmission scheme. By the time re-
transmissions sent from the source are received, the retrans-
mitted information is in all likelihood too old to be of sig-
nificant utility. Consequently, we examine techniques that
improve the throughput of up-to-date data without use of
feedback from the recipient. This being achieved through
the combination of forward error correction (FEC) techniques
and exploitation of time correlations in the underlying data
stream. Note, each of these characteristics is considered in
light of the underlying application needs and data stream,
which implies even networks with fairly high performance
may be challenged domains for certain classes of applications.

In this study, we define an end-to-end DTN model and
an accompanying data production model. We then consider
the performance of patterned memory-clearing sending poli-
cies. Subsequently we examine an oracle-based policy, de-

riving the theoretical optimum performance bound of such a
system. We compare this bound with the class of o param-
eterized stochastic sending policies and show a convergence
of this policy class with the theoretic bound as node memory
windows increases towards infinity.

2. MODEL

0.2 0.4 0.6 0.8 1&

Figure 1: E[Y] for optimal a approaches oracle
policy as memory window increases from 1 to 15
(ptg = 0.1, ptu = 0~3)

; Time

X0 u_1 usb Transmission Decoded
X_0 X_1 Symbol Recovered
X_0 X_0 X_1 Symbols in
X_1

Memory Window

Figure 2: graphical depiction of model with m =
2m' =1,1=2

We model the communication between a source S and a
sink 7" as transmission over a channel with Bernoulli losses,
perhaps the most basic channel loss model. While this model
can be most straightforwardly applied to DTN in which S and
T directly connect to one another, it may also be applied to
connections in an overlay network.

We examine a discrete-time model in which at every time-
step S produces a new collection of data items, referred to
as a snapshot. The snapshot produced by S at time i is
denoted by the symbol z;. All x; are assumed to have the

EA

same size and can be sent in m packets where m = &= and
MSS is the maximum segment size of the packets. In each
time-step, S can send a total of k packets to T'. Packet loss
across the channel is Bernoulli with probability ¢ (probability
of successful transmission being p = 1 — ¢) [3]. Through the
use of standard FEC/coding approaches S may encode z; in
n > m total packets, any m of which when received at T" will
successfully decode to produce z;. We call such a success a
recovery.

If the underlying data is time-correlated (i.e., the underly-
ing data stream is drawn from some underlying physical phe-
nomenon such as a vector of physical measurements taken at
a weather observatory), an update based on previous snap-
shots may be sent in lieu of an entire snapshot. We assume
that symbol z; is related to symbol x;_; in such a way that z;
can be produced given z;_; and a subsequent update symbol
u; where |u;| < |z;|]. Specifically we consider the case where
[updates can fit in m’ < m packets. Consequently, if a col-
lection of m’ packets containing {Wizi41,...,ui} is received
at T, x; can be decoded if any of {x;_;41,...,zi—1} has been
previously recovered by T'.

Let Y; = t — i be the data delay (delay the data experi-
ences in arriving at T') at time ¢, where i = maxi’ for all
x; that have been received at T by time ¢t. Assuming no
feedback channel is available, successful transmissions take
approximately constant time, and that a node is limited to
either encoding a snapshot or an update in a given time-step
- what sending policy should S adopt in order to minimize
E(Y:)?

2.1 Update and Snapshot Transmission Prob-

abilities
Let: pie be the probability successful snapshot transmis-
sion, pty, be the probability successful update transmission,
and X; be the r.v. corresponding to whether snapshot ¢ is
recovered.
Following immediately from these definitions, we see that

Pe = pa(i) = po = P{Xi =1} = Y (f) gt

j=m

while for an update

pu(i) = P{X; =1}

= P{X»L = 1|Xi71 =1V.. .Xi_l+1 = 1}
*P{X;—1=1V...Xi_1y1 =1}
ptuP{Xi71 =1V... X1 = 1}

k

k S
> <j>quk P{Xis1=1V... Xi—pp1 =1}

j=m'

When not discussing a particular time ¢ we simply refer to
the probability of successful recovery from transmission of an
update as py,.

While specific values for k,I,m,m’,q will determine the
values of the transmission probabilities p:; and piy, for the
remainder of our discussion we will examine the relationship
of a policy to the transmission probability values. This will
provide our results with maximal generality, applicable also
to observed values of piz and p¢, across a channel structure
potentially more complex than the one used to motivate our
model.

2.2 Non-optimality of Snapshot-only Sending
Policies

Clearly, the first thing worth proving is that utilizing up-
dates will help improve the sending policy’s performance,
which we now show. Consider a policy ¢ sending a sequence
of two snapshot packets followed by an update packet where
I = 2, pte = 0.1, and pry, = 0.9. Then py, = pru(l —
(1 = pez)?) = (0.9) % (1 — (1 — 0.1)) = 0.171 and E(py) =
pm"'pg"'p“ = 0'1+0'§+0'171 = 0.124, proving the snapshot-only
policies may prove non-optimal (in fact, this holds true in
almost all realistic scenarios).

2.3 Update-Memory Clearing Policies

Initially one might wonder if there exist values of py, for
which an update-only policy might conceivably converge to
some py (i) = pu(i—1). But this is clearly not the case as the
pu for a sequence of packets comprised solely of updates that
starts with a known success X¢ = 1 will be p¢,, times 1 minus
the probability of having at least [consecutive failures in i —1
Bernoulli trials where each trial has probability ¢ of failure,
a product which converges to zero as [approaches infinity.

This provides an alternate formulation of p, (i) where we
first solve for P{run(i)}: the probability of at least ! con-
secutive successes in ¢ Bernoulli trials with probability q.
P{run;(i)} is equal to the probability of at least ! consec-
utive successes in i — 1 trials plus the probability the "
consecutive success was achieved on the i** trial. The former
quantity is simply P{run(i — 1)} while the latter is ¢ times
the probability of a run ending in exactly [— 1 consecutive
successes which contains no larger run in ¢ — 1 trials. But this
probability is the probability of one failure followed by I — 1
successes with a sequence of i—1—[(I—1)+1] = i—1—1 trials
in which fewer than [consecutive successes occur - which is
simply 1 — P{run(i — ! — 1)}. Hence:

P{run(i)}
= P{run(i—1)}+qgxq¢ 'p(1 — P{run(i —1 —1)})
= P{run(i — 1)} +¢'p(1 — P{run(i —1 —1)})
and
pu(@) = p'(1 = P{run(i — 1)})

As it turns out this recursion was first noted in 1718 by De
Moivre and has not yielded an analytical solution yet [4].
However it can be numerically approximated with relative
ease, making the above analysis a useful one.

2.4 Stochastic Policies

In empirical comparison with several classes of non-memory
clearing policies, the probability of successful recovery for the
best memory clearing policy is almost always dominated by
that of policies which do not clear the memory window . This
is because memory clearing policies fail to take full advantage
of updates (although they do provide a useful lower bound
on the best achievable policy). As patterned policies that do
not clear the update-memory window are significantly more
difficult to analyze, we examine the set of stochastic policies.

Under an a-snapshot sending policy the source will choose
to send a full snapshot with probability o and an update with
probability 1 — a.

We wish to determine P{X; = 1} in the steady-state. In
other words, we want to calculate the probability of successful
snapshot recovery under an a-snapshot sending policy.

Let {N(3),7 > 0} be a counting process and Y, denote the
time between the (n — 1)* and n*" events of this process.
Initially the only way for a success to occur is if a snapshot is
successfully sent. Thus the time taken until the first success
at Y1 can be considered the start-up phase. However, once

the first success has occurred all subsequent inter-arrival pe-
riods Y, have identical and independent distributions. This
is because the probability of the successful recovery of a snap-
shot sent more than j time-steps after the last success is:

) g 1<
P{Y>’L}—{q(llq£,l ’L>l}
letting pe = apiz + (1 — @)ptusqa = 1 — Pa, Db = ADts, G =
1 — pp - which is identical and independent for all Y,,,n > 1.
Consequently, after the start-up phase, N (i) is a renewal
process and the probability of success at any point in time ¢
during this process is:

. N; 1 1
P{X; =1} = lim — = = — = ~ =
t—oo t lim¢—co N limy_, oo Elitl Y; E[Yn]
We now solve for E[Yr]
B, = YiP(y =i}
=1
l oo
= Y P{y>i}+ Y P{Y>i}
i=0 i=l+1
l . ol .
= D dat Y dagy
=0 i=1+1

l . © .
= D gty a
i=0 =0

2.5 Optimal Policy

We provide a theoretic upper bound on performance for
any sending policy ¢. Consider a situation in which perfect,
instantaneous feedback is available to S. Formally, if at the
beginning of time-step i+ 1, S can consult an oracle that an-
swers TRUE if x; was recovered by T" and FALSE otherwise.
Then by keeping track of the last [answers, S can choose
the optimal action, defining a policy ¢optimai: if any of the
past [snapshots were successfully received, send an update;
otherwise send a snapshot.

(1 —pu)' i<
(1= peu)! (1 — prayi—t i>l} M

and by analogous logic to the derivation of E[Y;]

P{y<f>opt7’,maz > ’L} — {

E[y<f>opt7’,maz]
-1 1
i, (1= pu
= - puy 4 L)
i=0 Ptz
1—pra) — (1 = pra)'™* 1
Dtu DPtx

2.6 Convergence

We now prove that for the optimal value of «, a-policies
¢« approach the oracle policy as memory window goes to

infinity.
IV EST
lim B[Y,,] = lim 1+ Jo "9 4 gt <i - z)

l—o0 1-— qa Db
a . 1 - T = 1 - u
= lim 1+ g = lim 1+ ope ()pe
S0 1—gqa =00 apie + (1 — @)pru

which is clearly maximized by a = 0. Consequently as | — oo

and a — 0

1 - u
BYa,] = 1+ 2 = B[V,
tu

This convergence has the intuitive explanation that as the
memory window increases to a very large size there will al-
most always be a recovery within the memory window en-
abling the sender to send almost all updates. But this, of
course is the best even an oracle policy can do. Consequently
for very large memory windows, one would expect a stochas-
tic policy that sends a very low proportion of snapshots to
updates to achieve almost optimal performance. This trend
can be seen in figure 1 as the expected inter-arrival time of re-
coveries for a given memory window size [(the curved lines)
continually decrease their distance from the corresponding
optimal bounds (the straight lines) for that [, as [increases
from 1 to 15.

3.

CONCLUSIONS AND FUTURE WORK

Ideally we would like to provide an analytic solution for

determining the optimal « value of a stochastic policy, along
with bounds on the difference between an optimal stochastic
policy and the theoretically achievable limit. Unfortunately
the fact that solution form of the stochastic policy is a [+ 1-
degree polynomial in o does not bode well for analytic solu-
tion. It does appear clear from extensive empirical sampling
that « takes only a single optimal value in the domain [0, 1]
for all values 0 < piz < ptu < 1. Moreover there are no other

local minimal for «, as can be seen in figure 1.

This ob-

servation implies that in practice a numerical solution could
be found through binary search across the domain within e
accuracy in O(log(1)) time.

4.
(1]

2]

REFERENCES

J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine.
Maxprop: Routing for vehicle-based disruption-tolerant
networks. In ITEEE INFOCOM, 2006.

K. Fall. A delay-tolerant network architecture for
challenged internets. In Applications, Technologies,
Architectures, and Protocols for Computer
Communication. ACM / SIGCOMM, 2003.

C. Fragouli, J.-Y. L. Boudec, and J. Wildmer. Network
coding: An instant primer. Technical Report
LCA-REPORT-2005-010, LCA, 2005.

A. Hald. History of Probability and Statistics and Their
Applications before 1750. John Wiley and Sons, Inc.,
2005.

K. Pister.

http://robotics.eecs.berkeley.edu/ pister/SmartDust/.
H. Qi, S. Iyengar, and K. Chakrabarty. Distributed
sensor networks - a review of recent research. In Journal
of the Franklin Institute. Elsevier, 2001.

R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data
mules: Modelling a three-tier architecture for sparse
sensor network. In Sensor Network Protocols and
Applications. IEEE, 2003.

A. Vahdat and D. Becker. Epidemic routing for
partially-connected ad hoc networks. Technical report,
Duke University, 2000.

W. Zhao, M. Ammar, and E. Zegura. A message
ferrying approach for data delivery in sparse mobile ad
hoc networks. In MobiHoc. ACM, 2004.

