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Competitive Market Equilibrium 

 In a competitive economy, buyers decide 
how much to buy and producers decide how 
much to produce 

A market competitive equilibrium is 
characterized by price 
Higher prices induce lower demand/consumption 

Higher prices induce higher supply/production 

 Prices can be thought of indicators of 
congestion in system  a congestion 
equilibrium generalization 



An Internet Ecosystem Model 

 Three parties system (𝑀, 𝜇,𝒩): 1) Content 
Providers (CPs), 2) ISPs, and 3) Consumers. 

 

 

 

 

 𝜇 : capacity of a bottleneck ISP.  

 𝜆𝑖 : throughput rate of CP 𝑖 ∈ 𝒩. 

𝑀 : number of end customers using the ISP. 



What drives traffic demands? 

User drives traffic rates from the CPs.  

User demand depends on the level of 
system congestion denoted as Γ 
 

 Given a fixed congestion Γ, we characterize 
𝜆𝑖 𝑀, 𝜇,𝒩 = 𝜆𝑖 Γ = 𝛼𝑖𝑀𝜌𝑖(Γ) 

 

Assumption 1: 𝜌𝑖(⋅) is non-negative, 
continuous and non-increasing on 0, 𝜃𝑖  with 

𝜌𝑖 0 = 𝜃𝑖     𝑎𝑛𝑑   lim
Γ→∞

𝜌𝑖 Γ = 0 



Unconstrained Demand 𝜃𝑖  

 Goggle Search 
 Search Page 20 KB 

 Search Time .25 sec 

 Unconstrained 
demand 600 KBps 

Netflix 
HD quality Stream 

 Unconstrained 
demand 6 MBps 

 



Interpretation of 𝜌𝑖(⋅) 

𝜆𝑖 Γ = 𝛼𝑖𝑀𝜌𝑖(Γ) 

 𝛼𝑖 is the % of users that are interested in 
content of CP 𝑖. 

 𝜌𝑖(Γ) can be interpreted as the per-user 
achievable throughput rate, which can be 
written as  

𝜌𝑖 Γ = 𝑑𝑖 Γ 𝜃𝑖 Γ , 

where 𝜃𝑖 Γ ∈ [0, 𝜃𝑖 ], is the throughput of 
an active  user and 𝑑𝑖 Γ ∈ [0,1] is the % of 
users that are active under Γ. 

 



What affects congestion Γ? 

 Let Λ = (𝜆1, ⋯ , 𝜆𝑁) be the rates of the CPs. 

 Γ of system (𝑀, 𝜇,𝒩) is characterized by  
 Throughput rates Λ and system capacity 𝜇 

Higher throughput induces severer congestion 

 Larger capacity relieves congestion 
 

Assumption 2: For any 𝜇1 ≤ 𝜇2 and Λ1 ≤ Λ2, 
Γ(⋅) is a continuous function that satisfies 
Γ Λ, 𝜇1 ≥ Γ Λ, 𝜇2    𝑎𝑛𝑑   Γ Λ1, 𝜇 ≤ Γ Λ2, 𝜇 .  

 

 



Unique Congestion Equilibrium 

Definition: A pair Λ, Γ  is a congestion 
equilibrium of the system (𝑀, 𝜇,𝒩) if 
𝜆𝑖 𝑀, 𝜇,𝒩 = 𝛼𝑖𝑀𝜌𝑖 Γ  ∀𝑖 ∈ 𝒩 and Γ = Γ(Λ, 𝜇) 
 

 Theorem 1: Under assumption 1 and 2, system 
(𝑀, 𝜇,𝒩) has a unique congestion equilibrium.  
 

 Intuition:  
 A1: decreasing monotonicity of demand 

 A2: increasing monotonicity of congestion 

 System balances at a unique level of congestion 
 



Further Characterization 

Assumption 3 (Independent of Scale): 
Γ Λ, 𝜇 = Γ 𝜉Λ, 𝜉𝜇    ∀𝜉 > 0. 

 

 Theorem 2: Under assumption 1 to 3, if 
Λ, 𝜇  is the unique equilibrium of 𝑀, 𝜇,𝒩 , 

then for any 𝜉 > 0, 𝜉Λ, 𝜇  is the unique 
equilibrium of 𝜉𝑀, 𝜉𝜇,𝒩 .  
 

 Equilibrium Λ, Γ  can be expressed as a 
function of the per capita capacity 𝜈 ≝

𝜇

𝑀
. 



 Congestion in equilibrium Γ𝒩 𝑀, 𝜇 ≝
Γ 𝑀, 𝜇,𝒩  is a homogenous function of 
degree 0, i.e. 

Γ𝒩 𝜈 = Γ𝒩 𝜉𝑀, 𝜉𝜇  ∀ 𝜉 > 0. 
 

 Γ𝒩 𝜈  is a continuous non-increasing 
function of 𝜈 that satisfies 

Γ𝒩1
𝜈 ≤ Γ𝒩2

𝜈   ∀𝒩1 ⊆ 𝒩2. 
 

 Rates in equilibrium Λ𝒩 𝑀, 𝜇 ≝ Λ 𝑀, 𝜇,𝒩  
is a homogenous function of degree −1, i.e. 

Λ𝒩 𝑀, 𝜇 = 𝜉−1Λ𝒩 𝜉𝑀, 𝜉𝜇  ∀ 𝜉 > 0. 
 

Equilibrium as a Function of 𝜈 



Interpretations of Congestion 

 The concept of congestion is very broad 
 depends on the system resource mechanism 

 can be functions of delay, throughput and etc.  
 

 

1. System mechanism: M/M/1, FIFO queue;      
Congestion metric: queueing delay; 

Γ Λ, 𝜇 = Γ𝒩 =
1

𝜇 − 𝜆𝒩
 



Interpretations of Congestion 

2. System mechanism: Proportional rate 
control, i.e. 𝜃𝑖: 𝜃𝑗 = 𝜃𝑖 : 𝜃𝑗  for all 𝑖, 𝑗 ∈ 𝒩; 
Congestion metric: throughput ratio; 

Γ Λ, 𝜇 = Γ𝒩 =
𝜃𝑖 

𝜃𝑖
− 1 ∀ 𝑖 ∈ 𝒩 

3. System mechanism: End-to-end congestion  
control, e.g. max-min fair mechanism; 
Congestion metric: function of throughput; 

Γ Λ, 𝜇 = Γ𝒩 =
1

max{𝜃𝑖: 𝑖 ∈ 𝒩}
 



PMP-like Differentiations 

 𝜅 percentage of capacity dedicated to 
premium content providers 

 𝑐 per unit traffic charge for premium content 

$𝒄 /unit traffic 

$𝟎 

Premium Class 

Ordinary Class 

Capacity Charge 

𝜿𝝁 

(𝟏 − 𝜿)𝝁 



Two-stage Game 𝑀, 𝜇,𝒩, ℐ  

 Players: ISP ℐ and the set of CPs 𝒩 
 

 Strategies: ISP chooses a strategy 𝑠ℐ = (𝑘, 𝑐). 
CPs choose service classes with 𝑠𝒩= (𝒪 , 𝒫).  
 

 Rules: 1st stage, ISP announces 𝑠ℐ. 2nd stage, 
CPs simultaneously reach a joint decision 𝑠𝒩. 
 

Outcome: set 𝒫 of CPs shares capacity km 
and set 𝒪 of CPs share capacity (1- k)m. 

 



Payoffs (Surplus) 

 Content Provider Payoff: 
 

𝑢𝑖 𝜆𝑖 =  
𝑣𝑖𝜆𝑖 if 𝑖 ∈ 𝒪,

(𝑣𝑖−𝑐)𝜆𝑖 if 𝑖 ∈ 𝒫.
 

 

 ISP Payoff:  𝑐  𝜆𝑖𝑖∈𝒫 = 𝑐𝜆𝒫 

 

 Consumer Surplus:   𝜙𝑖𝜆𝑖𝑖∈𝒩  



CPs’ strategy 

 Choose which service class to join 

 Congestion-taking assumption: Competitive 
congestion equilibrium in each service class 

 

k m 

(1-k) m 

$c /unit traffic 

$0 

Capacity Charge 



Best response, Nash equilibrium 

 Lemma: Given 𝒪,𝒫 , CP 𝑖’s best response 
to join the premium service class if 
𝑣𝑖 − 𝑐 𝜌𝑖 Γ𝒫∪ 𝑖 𝜅𝜈 ≥ 𝑣𝑖𝜌𝑖 Γ𝒪∪ 𝑖 1 − 𝜅 𝜈 . 
 

 Nash equilibrium: 
 

𝑣𝑖 − 𝑐

𝑣𝑖

≤
𝜌𝑖 Γ𝒪 1 − 𝜅 𝜈

𝜌𝑖 Γ𝒫∪{𝑖} 𝜅𝜈
if 𝑖 ∈ 𝒪,

>
𝜌𝑖 Γ𝒪∪{𝑖} 1 − 𝜅 𝜈

𝜌𝑖 Γ𝒫 𝜅𝜈
if 𝑖 ∈ 𝒫.

 

 



Competitive equilibrium vs Nash 

Under the congestion-taking assumption: 

 Competitive equilibrium: 
 

𝑣𝑖 − 𝑐

𝑣𝑖
 ≤
>

𝜌𝑖 Γ𝒪 1 − 𝜅 𝜈

𝜌𝑖 Γ𝒫 𝜅𝜈
if 𝑖 ∈ 𝒪,
if 𝑖 ∈ 𝒫.

 
 

Advantages of competitive equilibrium: 
 Does not assume “common knowledge” 

 Like the price-taking assumption, valid for large 
number of players (CPs) 



Solving Competitive Equilibrium 

 Each CP has a binary choice, state space 
size is 2|𝒩|, exhaustive search not feasible 
 

 If for any Γ1 and Γ2, 𝜌𝑖 ⋅  satisfies 
𝜌𝑖 Γ1
𝜌𝑖 Γ2

= 𝐹𝑖 𝐺 Γ1, Γ2 , 

where 𝐹𝑖 is continuous and invertible 
 

 Sort the CPs by 𝐹𝑖
−1(

𝑣𝑖−𝑐

𝑣𝑖
) and use binary 

search to find a competitive equilibrium 



Solving Competitive Equilibrium 

A general searching method in the 
“congestion space” 
 

 Initialize at step 0, assume the congestion 

in service classes to be Γ[0] = Γ𝒪
0
, Γ𝒫

0 . 

At step 𝑡, take previous congestion Γ[𝑡 − 1], 
calculate induced equilibrium (𝒪 𝑡 , 𝒫 𝑡 ). 

Update the congestion level Γ[𝑡] based on 
the previous estimate Γ[𝑡 − 1] and the 
induced congestion level (Γ𝒪 𝑡

, Γ𝒫 𝑡
).  



Finding competitive equilibrium 

1. Initialize Γ[0] = Γ𝒪
0
, Γ𝒫

0 ; 𝑡 = 0; 

2. Calculate induced equilibrium (𝒪 0 , 𝒫 0 ); 

3. Do 
4.     Γ′ 𝑡 = (Γ𝒪 𝑡

, Γ𝒫 𝑡
) ; 

5.     Γ 𝑡 + 1 = Γ 𝑡 + 𝑔[𝑡] Γ′ 𝑡 − Γ 𝑡  ; 

6.     𝑡 = 𝑡 + 1; 

7.     Calculate the induced equilibrium (𝒪 𝑡 , 𝒫 𝑡 ); 

8. Until 𝑡 > 𝑇 or 𝒪 𝑡 , 𝒫 𝑡 == (𝒪 𝑡−1 , 𝒫 𝑡−1 ); 

9. Return 𝒪 𝑡 , 𝒫 𝑡 ; 
 

 Parameters: gain 𝑔[𝑡] and maximum steps 𝑇. 



Applications 

 Congestion equilibrium serves a building 
block of more complicated game models 
 

 Analyze strategic behavior of a 
monopolistic ISP 
 

 Analyze strategic behavior of ISPs under 
oligopolistic competition 
 

 Compare social welfare under different 
policy regime, e.g. Network Neutrality Vs. 
non neutral policies. 

 


