Congestion Equilibrium for Differentiated Service Classes

Richard T. B. Ma

School of Computing National University of Singapore

Allerton Conference 2011

Characterize Congestion Equilibrium

Modeling Differentiated Service Classes

□ Solve Congestion Equilibrium

O Applications

Competitive Market Equilibrium

- \Box In a competitive economy, buyers decide how much to buy and producers decide how much to produce
- A market competitive equilibrium is characterized by **price**

 Higher prices induce lower demand/consumption o Higher prices induce higher supply/production **Prices can be thought of indicators of** congestion in system \rightarrow a congestion equilibrium generalization

An Internet Ecosystem Model

 \Box Three parties system (M, μ, \mathcal{N}) : 1) Content Providers (CPs), 2) ISPs, and 3) Consumers.

- $\Box \mu$: capacity of a bottleneck ISP.
- $\Box \lambda_i$: throughput rate of CP $i \in \mathcal{N}$.
- \Box M : number of end customers using the ISP.

What drives traffic demands?

- User drives traffic rates from the CPs. □ User demand depends on the level of **system congestion** denoted as Γ
- Given a fixed congestion Γ, we characterize $\lambda_i(M, \mu, \mathcal{N}) = \lambda_i(\Gamma) = \alpha_i M \rho_i(\Gamma)$
- \cdot Assumption 1: $\rho_i(\cdot)$ is non-negative, continuous and non-increasing on $\left[0,\widehat{\theta}_{i}\right]$ with $\rho_i(0) = \widehat{\theta}_i$ and $\lim_{\Gamma \to \infty}$ $\Gamma \rightarrow \infty$ $\rho_i(\Gamma) = 0$

Unconstrained Demand $\widehat{\theta}_i$ $\widehat{\theta}_i$

□ Goggle Search

- o Search Page 20 KB
- Search Time .25 sec
- Unconstrained demand 600 KBps

Netflix

- HD quality Stream
- Unconstrained demand 6 MBps

Interpretation of $\rho_i(\cdot)$

 $\lambda_i(\Gamma) = \alpha_i M \rho_i(\Gamma)$

- $\Box a_i$ is the % of users that are interested in content of CP i.
- \Box $\rho_i(\Gamma)$ can be interpreted as the per-user achievable throughput rate, which can be written as

 $\rho_i(\Gamma) = d_i(\Gamma) \theta_i(\Gamma)$

where $\theta_i(\Gamma) \in [0, \widehat{\theta}_i]$, is the throughput of an active user and $d_i(\Gamma) \in [0,1]$ is the % of users that are active under Γ.

What affects congestion Γ?

 \Box Let $\Lambda = (\lambda_1, \cdots, \lambda_N)$ be the rates of the CPs. $\Box \Gamma$ of system (M, μ, \mathcal{N}) is characterized by \circ Throughput rates Λ and system capacity μ o Higher throughput induces severer congestion Larger capacity relieves congestion

 \cdot Assumption 2: For any $\mu_1 \leq \mu_2$ and $\Lambda_1 \leq \Lambda_2$, $\Gamma(\cdot)$ is a continuous function that satisfies $\Gamma(\Lambda, \mu_1) \geq \Gamma(\Lambda, \mu_2)$ and $\Gamma(\Lambda_1, \mu) \leq \Gamma(\Lambda_2, \mu)$.

Unique Congestion Equilibrium

- \Box Definition: A pair (Λ, Γ) is a congestion equilibrium of the system (M, μ, \mathcal{N}) if $\lambda_i(M, \mu, \mathcal{N}) = \alpha_i M \rho_i(\Gamma)$ $\forall i \in \mathcal{N}$ and $\Gamma = \Gamma(\Lambda, \mu)$
- □ Theorem 1: Under assumption 1 and 2, system (M, μ, \mathcal{N}) has a unique congestion equilibrium.

□ Intuition:

- A1: decreasing monotonicity of demand
- A2: increasing monotonicity of congestion
- System balances at a unique level of congestion

Further Characterization

- Assumption 3 (Independent of Scale): $\Gamma(\Lambda, \mu) = \Gamma(\xi \Lambda, \xi \mu) \quad \forall \xi > 0.$
- □ Theorem 2: Under assumption 1 to 3, if (Λ, μ) is the unique equilibrium of (M, μ, \mathcal{N}) , then for any $\xi > 0$, $(\xi \Lambda, \mu)$ is the unique equilibrium of $(\xi M, \xi \mu, \mathcal{N})$.
- \triangleright Equilibrium (Λ, Γ) can be expressed as a function of the per capita capacity $\nu \stackrel{\text{\tiny def}}{=}$ μ \overline{M} .

Equilibrium as a Function of ν

 \Box Congestion in equilibrium $\Gamma_{\mathcal{N}}(M,\mu) \stackrel{\text{def}}{=}$ $\Gamma(M, \mu, \mathcal{N})$ is a homogenous function of degree 0, i.e. $\Gamma_{\mathcal{N}}(\nu) = \Gamma_{\mathcal{N}}(\xi M, \xi \mu) \forall \xi > 0.$

 $\Box \Gamma_{\mathcal{N}}(\nu)$ is a continuous non-increasing function of ν that satisfies $\Gamma_{\mathcal{N}_1}(\nu) \leq \Gamma_{\mathcal{N}_2}(\nu) \ \forall \mathcal{N}_1 \subseteq \mathcal{N}_2.$

Rates in equilibrium $\Lambda_{\mathcal{N}}(M,\mu) \stackrel{\text{def}}{=} \Lambda(M,\mu,\mathcal{N})$ is a homogenous function of degree -1 , i.e. $\Lambda_\mathcal{N}(M,\mu) = \xi^{-1} \Lambda_\mathcal{N}(\xi M,\xi\mu) \ \forall \ \xi > 0.$

Interpretations of Congestion

 \Box The concept of congestion is very broad o depends on the system resource mechanism o can be functions of delay, throughput and etc.

1. System mechanism: M/M/1, FIFO queue; Congestion metric: queueing delay; $\Gamma(\Lambda, \mu) = \Gamma_{\mathcal{N}} =$ 1 $\mu-\lambda_\mathcal{N}$

Interpretations of Congestion

- 2. System mechanism: Proportional rate control, i.e. θ_i : $\theta_j = \widehat{\theta_i}$: $\widehat{\theta_j}$ for all $i, j \in \mathcal{N}$; Congestion metric: throughput ratio; $\Gamma(\Lambda,\mu)=\Gamma_{\!\mathcal{N}}=$ $\widehat{\theta_i}$ θ_i $-1 \forall i \in \mathcal{N}$
- 3. System mechanism: End-to-end congestion control, e.g. max-min fair mechanism; Congestion metric: function of throughput; $\Gamma(\Lambda, \mu) = \Gamma_{\mathcal{N}} =$ 1 $\max\{\theta_i : i \in \mathcal{N}\}\$

PMP-like Differentiations

 \Box κ percentage of capacity dedicated to premium content providers

 \Box c per unit traffic charge for premium content

Two-stage Game $(M, \mu, \mathcal{N}, \mathcal{I})$

 \Box Players: ISP \Im and the set of CPs $\mathcal N$

- \Box Strategies: ISP chooses a strategy $s_1 = (k, c)$. CPs choose service classes with $s_N = (0, P)$.
- \Box Rules: 1st stage, ISP announces s_j . 2nd stage, CPs simultaneously reach a joint decision s_N .
- \Box Outcome: set $\mathcal P$ of CPs shares capacity $\kappa\mu$ and set $\mathcal O$ of CPs share capacity $(1-\kappa)\mu$.

Payoffs (Surplus)

Content Provider Payoff:

$$
u_i(\lambda_i) = \begin{cases} v_i \lambda_i & \text{if } i \in \mathcal{O}, \\ (v_i - c) \lambda_i & \text{if } i \in \mathcal{P}. \end{cases}
$$

■ ISP Payoff:
$$
c \sum_{i \in \mathcal{P}} \lambda_i = c \lambda_{\mathcal{P}}
$$

 \Box Consumer Surplus: $\sum_{i\in\mathcal{N}}\phi_i\lambda_i$

CPs' strategy

□ Choose which service class to join

Congestion-taking assumption: Competitive congestion equilibrium in each service class

Best response, Nash equilibrium

- \cdot Lemma: Given $(0, P)$, CP i's best response to join the premium service class if $(v_i - c)\rho_i(\Gamma_{\mathcal{P}\cup\{i\}}(\kappa\nu)) \geq v_i\rho_i(\Gamma_{\mathcal{O}\cup\{i\}}((1 - \kappa)\nu)).$
- \triangleright Nash equilibrium:

$$
\nu_{i} - c \begin{cases} \leq \frac{\rho_{i}(\Gamma_{\mathcal{O}}((1 - \kappa)\nu))}{\rho_{i}(\Gamma_{\mathcal{P}\cup\{i\}}(\kappa\nu))} & \text{if } i \in \mathcal{O}, \\ > \frac{\rho_{i}(\Gamma_{\mathcal{O}\cup\{i\}}((1 - \kappa)\nu))}{\rho_{i}(\Gamma_{\mathcal{P}}(\kappa\nu))} & \text{if } i \in \mathcal{P}. \end{cases}
$$

Competitive equilibrium vs Nash

Under the congestion-taking assumption:

Competitive equilibrium:

$$
\frac{\nu_i - c}{\nu_i} \begin{cases} \leq & \rho_i \big(\Gamma_{\mathcal{O}} \big((1 - \kappa) \nu \big) \big) & \text{if } i \in \mathcal{O}, \\ & \rho_i \big(\Gamma_{\mathcal{P}}(\kappa \nu) \big) & \text{if } i \in \mathcal{P}. \end{cases}
$$

Advantages of competitive equilibrium:

- Does not assume "common knowledge"
- Like the price-taking assumption, valid for large number of players (CPs)

Solving Competitive Equilibrium

- **Each CP has a binary choice, state space** size is $2^{|{\mathcal N}|}$, exhaustive search not feasible
- \cdot If for any Γ_1 and Γ_2 , $\rho_i(\cdot)$ satisfies $\rho_i(\Gamma_1)$ $\rho_i(\Gamma_2)$ $= F_i\big(G(\Gamma_1, \Gamma_2)\big),$

where $F_{\boldsymbol{i}}$ is continuous and invertible

> Sort the CPs by $F_i^{-1}($ v_i-c v_i) and use binary search to find a competitive equilibrium

Solving Competitive Equilibrium

- \Box A general searching method in the "congestion space"
- \cdot Initialize at step 0, assume the congestion in service classes to be $\Gamma[0]=\left(\Gamma^{\mathbb{N}}_{\mathcal{O}}\right)$ 0 , $\Gamma_{\mathcal{P}}^{\mathsf{L}^{\mathsf{t}}}$ 0 .
- \cdot At step t, take previous congestion $\Gamma[t-1]$, calculate induced equilibrium $({\mathcal O}_{[t]},{\mathcal P}_{[t]}).$
- \cdot Update the congestion level $\Gamma[t]$ based on the previous estimate $\Gamma[t-1]$ and the induced congestion level $(\Gamma_{\mathcal{O}_{\lbrack t\rbrack}},\Gamma_{\mathcal{P}_{\lbrack t\rbrack}}).$

Finding competitive equilibrium

- 1. Initialize $\Gamma[0] = \left(\Gamma^{[0]}_{\mathcal{O}},\Gamma^{[0]}_{\mathcal{P}}\right);$ $t=0;$
- 2. Calculate induced equilibrium $(O_{[0]}, P_{[0]})$;
- 3. Do

4.
$$
\Gamma'[t] = (\Gamma_{\mathcal{O}_{[t]}}, \Gamma_{\mathcal{P}_{[t]}}):
$$

- 5. $\Gamma[t+1] = \Gamma[t] + g[t](\Gamma'[t] \Gamma[t])$;
- 6. $t = t + 1$:
- 7. Calculate the induced equilibrium $({\cal O}_{[t]},{\cal P}_{[t]});$
- 8. Until $t > T$ or $(\mathcal{O}_{[t]}, \mathcal{P}_{[t]}) = = (\mathcal{O}_{[t-1]}, \mathcal{P}_{[t-1]});$
- 9. Return $({\cal O}_{[t]},{\cal P}_{[t]});$

 \Box Parameters: gain $g[t]$ and maximum steps T.

Applications

- Congestion equilibrium serves a building block of more complicated game models
- Analyze strategic behavior of a monopolistic ISP
- Analyze strategic behavior of ISPs under oligopolistic competition
- Compare social welfare under different policy regime, e.g. Network Neutrality Vs. non neutral policies.