## Congestion Equilibrium for Differentiated Service Classes

#### **Richard T. B. Ma**

School of Computing National University of Singapore

Allerton Conference 2011



Characterize Congestion Equilibrium

Modeling Differentiated Service Classes

□ Solve Congestion Equilibrium

Applications

## Competitive Market Equilibrium

- In a competitive economy, buyers decide how much to buy and producers decide how much to produce
- A market competitive equilibrium is characterized by *price*
- Higher prices induce lower demand/consumption
  Higher prices induce higher supply/production
  Prices can be thought of indicators of
- congestion in system  $\rightarrow$  a congestion equilibrium generalization

## An Internet Ecosystem Model

Three parties system  $(M, \mu, N)$ : 1) Content Providers (CPs), 2) ISPs, and 3) Consumers.



- $\square \mu$ : capacity of a bottleneck ISP.
- $\Box \lambda_i$ : throughput rate of CP  $i \in \mathcal{N}$ .
- $\square M$  : number of end customers using the ISP.

#### What drives traffic demands?

- User drives traffic rates from the CPs.
  User demand depends on the level of system congestion denoted as Γ
- **Given a fixed congestion** Γ, we characterize  $\lambda_i(M, \mu, \mathcal{N}) = \lambda_i(\Gamma) = \alpha_i M \rho_i(\Gamma)$
- ★ Assumption 1: ρ<sub>i</sub>(·) is non-negative, continuous and non-increasing on [0, θ<sub>i</sub>] with ρ<sub>i</sub>(0) = θ<sub>i</sub> and lim<sub>Γ→∞</sub> ρ<sub>i</sub>(Γ) = 0

# Unconstrained Demand $\hat{\theta}_i$









Goggle Search

- Search Page 20 KB
- Search Time .25 sec
- Unconstrained demand 600 KBps

Netflix

- HD quality Stream
- Unconstrained demand 6 MBps

## Interpretation of $\rho_i(\cdot)$

 $\lambda_i(\Gamma) = \alpha_i M \rho_i(\Gamma)$ 

 $\square \alpha_i$  is the % of users that are interested in content of CP *i*.

 $\Box \rho_i(\Gamma)$  can be interpreted as the per-user achievable throughput rate, which can be written as

 $\rho_i(\Gamma) = d_i(\Gamma)\theta_i(\Gamma),$ 

where  $\theta_i(\Gamma) \in [0, \hat{\theta}_i]$ , is the throughput of an active user and  $d_i(\Gamma) \in [0,1]$  is the % of users that are active under  $\Gamma$ .

## What affects congestion $\Gamma$ ?

Let Λ = (λ<sub>1</sub>, ..., λ<sub>N</sub>) be the rates of the CPs.
 Γ of system (M, μ, N) is characterized by
 Throughput rates Λ and system capacity μ
 Higher throughput induces severer congestion
 Larger capacity relieves congestion

\* Assumption 2: For any  $\mu_1 \leq \mu_2$  and  $\Lambda_1 \leq \Lambda_2$ ,  $\Gamma(\cdot)$  is a continuous function that satisfies  $\Gamma(\Lambda, \mu_1) \geq \Gamma(\Lambda, \mu_2)$  and  $\Gamma(\Lambda_1, \mu) \leq \Gamma(\Lambda_2, \mu)$ .

## Unique Congestion Equilibrium

- □ Definition: A pair (Λ, Γ) is a congestion equilibrium of the system ( $M, \mu, \mathcal{N}$ ) if  $\lambda_i(M, \mu, \mathcal{N}) = \alpha_i M \rho_i(\Gamma) \forall i \in \mathcal{N}$  and  $\Gamma = \Gamma(\Lambda, \mu)$
- □ Theorem 1: Under assumption 1 and 2, system  $(M, \mu, \mathcal{N})$  has a unique congestion equilibrium.

#### Intuition:

- A1: decreasing monotonicity of demand
- A2: increasing monotonicity of congestion
- > System balances at a unique level of congestion

#### Further Characterization

- \* Assumption 3 (Independent of Scale):  $\Gamma(\Lambda,\mu) = \Gamma(\xi\Lambda,\xi\mu) \quad \forall \xi > 0.$
- Theorem 2: Under assumption 1 to 3, if ( $\Lambda, \mu$ ) is the unique equilibrium of ( $M, \mu, \mathcal{N}$ ), then for any  $\xi > 0$ , ( $\xi\Lambda, \mu$ ) is the unique equilibrium of ( $\xi M, \xi\mu, \mathcal{N}$ ).
- > Equilibrium ( $\Lambda$ ,  $\Gamma$ ) can be expressed as a function of the per capita capacity  $\nu \stackrel{\text{def}}{=} \frac{\mu}{M}$ .

## Equilibrium as a Function of $\nu$

□ Congestion in equilibrium  $\Gamma_{\mathcal{N}}(M,\mu) \stackrel{\text{def}}{=} \Gamma(M,\mu,\mathcal{N})$  is a homogenous function of degree 0, i.e.  $\Gamma_{\mathcal{N}}(\nu) = \Gamma_{\mathcal{N}}(\xi M, \xi \mu) \forall \xi > 0.$ 

□  $\Gamma_{\mathcal{N}}(\nu)$  is a continuous non-increasing function of  $\nu$  that satisfies  $\Gamma_{\mathcal{N}_1}(\nu) \leq \Gamma_{\mathcal{N}_2}(\nu) \ \forall \mathcal{N}_1 \subseteq \mathcal{N}_2.$ 

□ Rates in equilibrium  $\Lambda_{\mathcal{N}}(M,\mu) \stackrel{\text{def}}{=} \Lambda(M,\mu,\mathcal{N})$ is a homogenous function of degree -1, i.e.  $\Lambda_{\mathcal{N}}(M,\mu) = \xi^{-1}\Lambda_{\mathcal{N}}(\xi M,\xi\mu) \forall \xi > 0.$ 

## Interpretations of Congestion

The concept of congestion is very broad
 depends on the system resource mechanism
 can be functions of delay, throughput and etc.

1. System mechanism: M/M/1, FIFO queue; Congestion metric: queueing delay;  $\Gamma(\Lambda,\mu) = \Gamma_{\mathcal{N}} = \frac{1}{\mu - \lambda_{\mathcal{N}}}$ 

## Interpretations of Congestion

- 2. System mechanism: Proportional rate control, i.e.  $\theta_i: \theta_j = \widehat{\theta_i}: \widehat{\theta_j}$  for all  $i, j \in \mathcal{N}$ ; Congestion metric: throughput ratio;  $\Gamma(\Lambda, \mu) = \Gamma_{\mathcal{N}} = \frac{\widehat{\theta_i}}{\theta_i} - 1 \forall i \in \mathcal{N}$
- 3. System mechanism: End-to-end congestion control, e.g. max-min fair mechanism; Congestion metric: function of throughput;  $\Gamma(\Lambda,\mu) = \Gamma_{\mathcal{N}} = \frac{1}{\max\{\theta_i : i \in \mathcal{N}\}}$

## **PMP-like Differentiations**

κ percentage of capacity dedicated to premium content providers

 $\Box$  c per unit traffic charge for premium content



#### **Two-stage Game** $(M, \mu, \mathcal{N}, \mathcal{I})$

 $\square$  Players: ISP  $\mathcal I$  and the set of CPs  $\mathcal N$ 

- □ Strategies: ISP chooses a strategy  $s_{\mathcal{I}} = (k, c)$ . CPs choose service classes with  $s_{\mathcal{N}} = (\mathcal{O}, \mathcal{P})$ .
- □ Rules:  $1^{st}$  stage, ISP announces  $s_{\mathcal{I}}$ .  $2^{nd}$  stage, CPs simultaneously reach a joint decision  $s_{\mathcal{N}}$ .
- **Outcome:** set  $\mathcal{P}$  of CPs shares capacity κμ and set  $\mathcal{O}$  of CPs share capacity (1- κ)μ.

## Payoffs (Surplus)

**Content Provider Payoff:** 

$$u_i(\lambda_i) = \begin{cases} v_i \lambda_i & \text{if } i \in \mathcal{O}, \\ (v_i - c) \lambda_i & \text{if } i \in \mathcal{P}. \end{cases}$$

**ISP Payoff:** 
$$c \sum_{i \in \mathcal{P}} \lambda_i = c \lambda_{\mathcal{P}}$$

**Consumer Surplus:**  $\sum_{i \in \mathcal{N}} \phi_i \lambda_i$ 

## CPs' strategy

Choose which service class to join

**Congestion-taking** assumption: Competitive congestion equilibrium in each service class



#### Best response, Nash equilibrium

- ★ Lemma: Given (O, P), CP i's best response to join the premium service class if (v<sub>i</sub> - c)ρ<sub>i</sub>(Γ<sub>P∪{i}</sub>(κν)) ≥ v<sub>i</sub>ρ<sub>i</sub>(Γ<sub>O∪{i}</sub>((1 - κ)ν)).
- > Nash equilibrium:

$$\frac{v_{i}-c}{v_{i}} \begin{cases} \leq \frac{\rho_{i}(\Gamma_{\mathcal{O}}((1-\kappa)\nu))}{\rho_{i}(\Gamma_{\mathcal{P}\cup\{i\}}(\kappa\nu))} & \text{if } i \in \mathcal{O}, \\ > \frac{\rho_{i}(\Gamma_{\mathcal{O}\cup\{i\}}((1-\kappa)\nu))}{\rho_{i}(\Gamma_{\mathcal{P}}(\kappa\nu))} & \text{if } i \in \mathcal{P}. \end{cases}$$

## Competitive equilibrium vs Nash

Under the congestion-taking assumption:

Competitive equilibrium:

$$\frac{v_i - c}{v_i} \begin{cases} \leq & \frac{\rho_i \left( \Gamma_{\mathcal{O}} \left( (1 - \kappa) v \right) \right)}{\rho_i \left( \Gamma_{\mathcal{P}} \left( \kappa v \right) \right)} & \text{if } i \in \mathcal{O}, \\ & \text{if } i \in \mathcal{P}. \end{cases}$$

Advantages of competitive equilibrium:

- Does not assume "common knowledge"
- Like the price-taking assumption, valid for large number of players (CPs)

## Solving Competitive Equilibrium

- Each CP has a binary choice, state space size is  $2^{|\mathcal{N}|}$ , exhaustive search not feasible
- \* If for any  $\Gamma_1$  and  $\Gamma_2$ ,  $\rho_i(\cdot)$  satisfies  $\frac{\rho_i(\Gamma_1)}{\rho_i(\Gamma_2)} = F_i(G(\Gamma_1, \Gamma_2)),$

where  $F_i$  is continuous and invertible

> Sort the CPs by  $F_i^{-1}(\frac{v_i-c}{v_i})$  and use binary search to find a competitive equilibrium

## Solving Competitive Equilibrium

- A general searching method in the "congestion space"
- ✤ Initialize at step 0, assume the congestion in service classes to be Γ[0] = (Γ<sub>0</sub><sup>[0]</sup>, Γ<sub>P</sub><sup>[0]</sup>).
- \* At step t, take previous congestion  $\Gamma[t-1]$ , calculate induced equilibrium  $(\mathcal{O}_{[t]}, \mathcal{P}_{[t]})$ .
- \* Update the congestion level  $\Gamma[t]$  based on the previous estimate  $\Gamma[t-1]$  and the induced congestion level  $(\Gamma_{\mathcal{O}_{[t]}}, \Gamma_{\mathcal{P}_{[t]}})$ .

## Finding competitive equilibrium

- 1. Initialize  $\Gamma[0] = \left(\Gamma_{\mathcal{O}}^{[0]}, \Gamma_{\mathcal{P}}^{[0]}\right); t = 0;$
- 2. Calculate induced equilibrium  $(\mathcal{O}_{[0]}, \mathcal{P}_{[0]})$ ;

3. Do

4. 
$$\Gamma'[t] = (\Gamma_{\mathcal{O}_{[t]}}, \Gamma_{\mathcal{P}_{[t]}});$$

- 5.  $\Gamma[t+1] = \Gamma[t] + g[t](\Gamma'[t] \Gamma[t]);$
- 6. t = t + 1;
- 7. Calculate the induced equilibrium  $(\mathcal{O}_{[t]}, \mathcal{P}_{[t]})$ ;
- 8. Until t > T or  $(\mathcal{O}_{[t]}, \mathcal{P}_{[t]}) == (\mathcal{O}_{[t-1]}, \mathcal{P}_{[t-1]});$
- 9. Return  $(\mathcal{O}_{[t]}, \mathcal{P}_{[t]})$ ;

**D** Parameters: gain g[t] and maximum steps T.

## Applications

- Congestion equilibrium serves a building block of more complicated game models
- > Analyze strategic behavior of a monopolistic ISP
- > Analyze strategic behavior of ISPs under oligopolistic competition
- Compare social welfare under different policy regime, e.g. Network Neutrality Vs. non neutral policies.