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ABSTRACT
In this paper, we introduce the notation of a congestion equi-
librium where competing players share a common level of
congestion in the system. We illustrate the concept by de-
veloping a framework under which content providers (CPs)
compete for a last-mile bottleneck capacity of an ISP so as
to service their users. We show that under minor monotonic-
ity assumptions on the system congestion and traffic rates,
a unique congestion equilibrium exists. Under an indepen-
dence of scale assumption, we characterize the congestion
and rates in equilibrium as continuous homogeneous func-
tions. In particular, the congestion in equilibrium can be
characterized by a continuous non-increasing function of the
per capita capacity of the system. Through examples, we
show that various congestion metrics apply to our model,
e.g. M/M/1 delay metric and throughput metrics that re-
sults from work-conserving congestion control mechanism.

By using the congestion equilibrium as a building block,
we further model class-based service differentiations of an
ISP under which CPs choose service class and compete re-
source with other CPs in the same service class. We for-
mulate a two-stage strategic game between an ISP and the
CPs. We characterize the Nash equilibrium and competitive
equilibrium, which is based on a corresponding congestion-
taking assumption, and propose an algorithm to practical
solve a competitive equilibrium.

1. CONGESTION EQUILIBRIUM MODEL
We consider a model of the Internet with three parties: 1)

CPs, 2) ISPs and 3) consumers. We focus on a fixed con-
sumer group in a targeted geographic region. We denote
M as the number of consumers in the region1. Each con-
sumer subscribes to an Internet access service via an ISP.
We consider the scenarios where one monopolistic ISP I
or a set I of competing oligopolistic ISPs provide the In-
ternet access for the consumers. We denote N as the set

1Note thatM can also be interpreted as the average or peak number
of consumers accessing the Internet simultaneously in the region,
which will scale with the total number of actual consumers in a
region. This does not change the nature of any of the results we
describe subsequently, but gives a more realistic interpretation of
the rate equilibrium.

of CPs from which the consumers request content. We de-
fine N = |N | as the number of CPs. Our model does not
include the backbone ISPs for two reasons. First, the bot-
tleneck of the Internet is often at the last-mile connection
towards the consumers [6], both wired and wireless. We fo-
cus on the regional or so-called eyeball ISPs [7] that provide
the bottleneck last-mile towards the consumers. Second, the
recent concern on network neutrality manifests itself in the
cases where the last-mile ISPs, e.g. France Telecom, Tele-
com Italia and Vodafone, intended to differentiate services
and charge CPs, e.g. Apple and Google, for service fees [3].

We denote µ as the last-mile bottleneck capacity towards
the consumers in the region. Figure 1 depicts the contention

Figure 1: Contention at the last-mile bottleneck link.

at the bottleneck among different flows from the CPs. We
denote λi as the aggregate throughput rate from CP i to the
consumers. Because consumers initiate downloads and re-
trieve content from the CPs, we first model the consumer
demands so as to characterize the CPs’ throughput rates λis.
Given a set N of CPs, a group of M consumers and a link
with capacity µ, we denote the system as a triple (M,µ,N ).

1.1 Rate as a Function of Congestion
We denote θ̂i as the unconstrained throughput for a typi-

cal user of CP i. For instance, the unconstrained throughput
for the highest quality Netflix streaming movie is about 5
Mbps [2], and given an average query page of 20 KB and an
average query response time of .25 seconds [1], the uncon-
strained throughput for a Google search is about 600 Kbps,
or just over 1/10th of Netflix. We denote αi ∈ (0, 1] as
the percentage of consumers that ever access CP i’s content,
which models the popularity of the content of CP i. We de-
fine λ̂i = αiMθ̂i as the unconstrained throughput of CP
i. We denote λi as the rate of CP i and define the aggre-
gate rate as λN =

∑
i∈N λi. Without contention, CP i’s
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throughput λi equals λ̂i. However, when the capacity µ can-
not support the unconstrained throughput from all CPs, e.g.
µ <

∑
i∈N λ̂i, each CP’s rate λi ≤ λ̂i. In general, CP i’s

rate λi depends on the level of congestion in the network.
We denote a non-negative real number Γ as the level of con-
gestion caused by the set of competing CPs N . We will see
that Γ can represent various congestion metrics in general.
Each CP’s rate can be expressed as a function2 of Γ as

λi(M,µ,N ) = λi(Γ) = αiMρi(Γ),

where ρi(Γ) can be interpreted as the per-user achievable
rate under congestion Γ.

Assumption 1. For any CP i, ρi(·) is a non-negative, con-
tinuous and non-increasing function defined on the domain
of [0, θ̂i], and satisfies ρi(0) = θ̂i and limΓ→∞ ρi(Γ) = 0.

1.2 Congestion as a Function of Throughput
Rates and Capacity

When multiple flows share the same bottleneck link, they
compete for capacity and therefore, induce a level of con-
gestion in the system. We can also view the congestion Γ
as a function of rates Λ = (λ1, · · · , λN ) of the CPs and the
system capacity µ.

Assumption 2 (MONOTONICITY). Γ : R|N | × R→ R is
a continuous function. For any capacity µ1 ≤ µ2 and rates
Λ
′ ≤ Λ

′′
, the system congestion Γ(·) satisfies

Γ(Λ, µ1) ≥ Γ(Λ, µ2) ∀Λ ≥ 0, and

Γ(Λ
′
, µ) ≤ Γ(Λ

′′
, µ) ∀µ ≥ 0.

Moreover, given a fixed capacity µ, the minimum congestion
ΓN (0, µ) is upper-bounded.

Assumption 3 (INDEPENDENCE OF SCALE). For any ξ >
0, the system congestion Γ satisfies

Γ(Λ, µ) = Γ(ξΛ, ξµ).

The Independence of Scale assumption states that if the ca-
pacity scales at the same rate as the consumer size, the level
of system congestion Γ remains the same.

1.3 Rates and Congestion in Equilibrium
The congestion functions map the throughput rates to a

level of congestion; the rate functions specify rate based on
a given level of congestion. The interplay between a conges-
tion function and the rate functions determines the system
congestion and rates in equilibrium.

Definition 1. A pair (Λ,Γ) is a congestion equilibrium of
the system (M,µ,N ) if λi = λi(M,µ,N ) = αiMρi(Γ)
for all i ∈ N and Γ = Γ(Λ, µ).
2We use λi as a fixed rate and λi(·) as a function. Similarly, we use
Γ and Λ as fixed level of congestion and rates, and Γ(·) and Λ(·)
as functions.

Theorem 1. Under Assumption 1 and 2, a system (M,µ,N )
has a unique congestion equilibrium (Λ,Γ) .
Proof of Theorem 1: We first show the existence of an equi-
librium. Let Λ̂ = (λ̂1, · · · , λ̂N ). If Γ(Λ̂, ν) = 0, then
(Λ,Γ) = (Λ̂, 0) is an equilibrium of the system. We con-
sider the cases where Γ(Λ̂, ν) > 0. Because ρi(·)s are non-
increasing functions, λi(γ) = αiMρi(γ) are non-increasing
functions of γ. We construct a vector parameterized by γ
as Λ(γ) = (λ1(γ), · · · , λN (γ)). Therefore, Λ(γ) are non-
increasing in γ the RN space. By the monotonicity property
of Assumption 2, Γ(Λ(γ), µ) is a non-increasing function
of γ. Since limγ→∞ ρi(γ) = 0, limγ→∞ Γ(Λ(γ), µ) =

Γ(0, µ), which is upper-bounded. Since Λ(0) = Λ̂ and
Γ(Λ(0), µ) > 0, there exists a solution γ∗ that satisfies

Γ(Λ(γ∗), µ) = γ∗.

(Λ,Γ) = (Λ(γ∗), γ∗) is an equilibrium of the system.
Next, we show the uniqueness of the equilibrium by con-

tradiction. Suppose we have two different equilibria (Λ
′
,Γ1)

and (Λ
′′
,Γ2). If Γ1 = Γ2, Λ

′
= Λ(Γ1) = Λ(Γ2) = Λ

′′
,

which implies two equal equilibria. Without loss of gen-
erality, we assume Γ1 < Γ2. By Assumption 1, we have
Λ(Γ1) ≥ Λ(Γ2). By Assumption 2, we have Γ(Λ(Γ1), µ) ≥
Γ(Λ(Γ2), µ). However, this implies Γ1 ≥ Γ2, which contra-
dicts our assumption.

Without confusion, we specify an equilibrium of a system
as its unique congestion equilibrium. By Assumption 3, we
further characterize the equilibrium (Λ,Γ) as follows.

Theorem 2. Under Assumption 1 to 3, if (Λ,Γ) is an equi-
librium of the system (M,µ,N ), then for any ξ > 0, (ξΛ,Γ)
is the unique equilibrium of the system (ξM, ξµ,N ).
Proof of Theorem 2: Let (Λ′,Γ′) be an equilibrium of the
system (ξM, ξµ,N ). In the new system, with rates Λ′ =
ξΛ, the induced level of congestion is Γ(ξΛ, ξµ). By As-
sumption 3, Γ(ξΛ, ξµ) = Γ(Λ, µ) = Γ. This implies that
in the new system λ′i = αiξMρi(Γ) = ξλi and Λ′ = ξΛ.
Therefore, (Λ′,Γ′) = (ξΛ,Γ) is an equilibrium of the sys-
tem (ξM, ξµ,N ). By Theorem 1, it is also the unique equi-
librium of the system.

We define ν = µ/M as the per capita capacity of the
system. Given a fixed set of CPsN , we denote ΓN (M,µ) =
Γ(M,µ,N ) and ΛN (M,µ) = Λ(M,µ,N ) as the unique
level of congestion and rates in equilibrium.

Corollary 1. The system congestion ΓN (M,µ) is a homoge-
nous function of degree 0, i.e.

ΓN (ν) = ΓN (ξM, ξµ) ∀ξ > 0.

Moreover, ΓN (ν) is a continuous non-increasing function of
the per capita capacity ν and for all ν > 0, it satisfies

ΓN1
(ν) ≤ ΓN2

(ν) ∀N1 ⊆ N2.

Proof of Corollary 1: As a result of Theorem 2, linearly
scaled systems will induce the same level of congestion in
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equilibrium; therefore, ΓN can be expressed as a function
of ν = µ/M . To show that ΓN (ν) is non-increasing in ν,
we want to show ΓN (ν1) ≥ ΓN (ν2) for all ν1 ≤ ν2. Be-
cause the system congestion does not change in a linearly
scaled system, we only need to show the case where M1 =
M2 = M and µ1 ≤ µ2. We prove by contradiction and
suppose ΓN (ν1) < ΓN (ν2) which implies Λ(ΓN (ν1)) ≥
Λ(ΓN (ν2)) by Assumption 1. By Assumption 2, we fur-
ther have Γ(Λ(ΓN (ν1)), µ1) ≥ Γ(Λ(ΓN (ν2)), µ2) which is
equivalent to ΓN (ν1) ≥ ΓN (ν2). Therefore, we have a con-
tradiction.

Similarly, we show for any N1 ⊆ N2, ΓN1(ν) ≤ ΓN2(ν)
by contradiction. Suppose ΓN1

(ν) > ΓN2
(ν), by Assump-

tion 1, we have λi(ΓN1
(ν)) ≤ λi(ΓN2

(ν)) for all i ∈ N1.
We create an augmented rate vector Λ′, where λ′i = λi(ΓN1

(ν))
for all i ∈ N1 and virtually assign λ′i = 0 for all i ∈
N2\N1. Thus, we have Λ′ ≤ Λ(ΓN2(ν)). By Assump-
tion 2, we further have Γ(Λ(ΓN1

(ν)), µ) = Γ(Λ′, µ) ≤
Γ(Λ(ΓN2(ν)), µ). This is equivalent to ΓN1(ν) ≤ ΓN2(ν),
which shows a contradiction.

Corollary 2. The system rates ΛN (M,µ) is a homogenous
function of degree −1, i.e.

ΛN (M,µ) = ξ−1ΛN (ξM, ξµ) ∀ξ > 0.

Proof of Corollary 2: By Theorem 2, any linearly scaled
system induces the same level of congestion. We have

λi(ξM, ξµ,N ) = αiξMρi(Γ) = ξλi(M,µ,N ).

Therefore, ΛN (ξM, ξµ) = ξΛN (M,µ).

1.4 Congestion Metrics and Systems
In this subsection, we illustrate various system mecha-

nisms and their corresponding congestion metrics that can be
modeled by our congestion equilibrium. Before presenting
more detailed examples, we mention that there is a natural
decomposition of the per-user achievable rate ρi(Γ) as

ρi(Γ) = di(Γ)θi(Γ), (1)

where θi(Γ) is the achievable rate of an active user and di(Γ)
is percentage of users still being active under congestion Γ.

1.4.1 FIFO with delay as a congestion metric
In the simplistic example, the bottleneck ISP only per-

form a first-come-first-serve service discipline on the packet
flows. Since all data packets encounter the same queueing
delay under the FIFO scheduler, we can naturally measure
the level of congestion by the delay of the system. Under a
M/M/1 model, the congestion function becomes

Γ(Λ, µ) = ΓN =
1

µ− λN
.

1.4.2 Rate control and proportional share mechanism

Besides delay-based congestion metrics, achieved through-
put is another measure of congestion. Suppose the bottle-
neck ISP perform a rate control mechanism that assign through-
put for flows proportional their maximum demand, i.e.

θi : θj = θ̂i : θ̂j , ∀i ∈ N .

Under this system mechanism, we can use the following
system-wide congestion metric:

ΓN =
θ̂i
θi
− 1, ∀i ∈ N .

Moreover, the per-user throughput of CP i could be expressed
as

θi =
θ̂i

ΓN + 1
, ∀i ∈ N .

1.4.3 End-to-end congestion control mechanism
Due to the end-to-end design principle of the Internet [5],

congestion control has been implemented by window-based
protocols, i.e. TCP and its variations. Mo and Walrand [10]
showed that a class of α-proportional fair solutions can be
implemented by window-based end-to-end protocols. Among
the class of α-proportional fair solutions, the max-min fair
allocation, a special case with α = ∞, is the result of the
AIMD mechanism of TCP [4]. Differing round trip times,
receiver window sizes and loss rates can result in differ-
ent bandwidths, but to a first approximation, TCP provides
a max-min fair allocation of available bandwidth amongst
flows.

Given an end-to-end congestion mechanism implemented,
the system-wide congestion metric could be defined as

ΓN =
1

max{θi : i ∈ N}
.

Similarly, the per-user throughput of CP i could be expressed
as

θi = max{θ̂i,
1

ΓN
}.

Notice that for all the three examples, the congestion func-
tion does not have to be unique; however, all of them satisfy
the monotonicity and independent of scale properties.

2. DIFFERENTIATED SERVICE CLASSES
We assume that the monopolistic last-mile ISP I has a

capacity of µ. This ISP can be a retail residential ISP, e.g.
Comcast and Time Warner Cable, or a mobile operator, e.g.
Verizon and AT&T. Regardless of whether it is a wired or
wireless provider, it serves as the last-mile service provider
for the consumers. We assume that the ISP is allowed to al-
locate a fraction κ ∈ [0, 1] of its capacity to serve premium
CPs and charge them at a rate c ∈ [0,∞) (dollar per unit
traffic). For a wired ISP, κ can be interpreted as the per-
centage of capacity deployed for private peering points that
charge a fee of c per unit incoming traffic and 1 − κ can be
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interpreted as the percentage of capacity deployed for public
peering points where incoming traffic is charge-free. For a
wireless ISP, κ can be interpreted as the percentage of capac-
ity devoted for the premium traffic that will be charged at a
rate of c. The pair of parameters (κ, c) can also be thought of
a type of Paris Metro Pricing (PMP) [11, 13], where one or-
dinary and another premium service class have capacities of
(1− κ)µ and κµ and charge 0 and c respectively. In reality,
content might be delegated via content distribution networks
(CDNs), e.g. Akamai, or backbone ISPs, e.g. Level3 is a
major tier-1 ISP that delivers Netflix traffic towards regional
ISPs. Therefore, in practice, the charge c might be imposed
on the delivering ISP, e.g. Level3, and then be recouped from
the CP, e.g. Netflix, by its delivering ISP, e.g. Level3. Our
model does not assume any form of the implementation.

We denote O and P as the two disjoint sets of CPs that
join the ordinary and premium class respectively. We denote
vi as CP i’s per unit traffic revenue. This revenue can be
generated by advertising for media clients, e.g Google, or by
selling products to online consumers, e.g. Amazon, or by
providing services to consumers, e.g. Netflix and e-banking.
Our model does not assume how the revenue is generated
either. Each CP i’s utility function ui can be expressed as

ui(λi) =

{
viλi if i ∈ O,
viλi − cλi if i ∈ P.

(2)

2.1 Content Provider’s Best Response
Given the ISP’s decision κ and c, each CP chooses whether

to join the ordinary service class O or the premium class P .

Lemma 1. Given a fixed set O of CPs in the ordinary class
and a fixed set P of CPs in the premium class, a new CP i’s
optimal strategy is to join the premium service class, if

(vi − c) ρi
(
ΓP∪{i}(κν)

)
≥ vi ρi

(
ΓO∪{i}((1− κ)ν)

)
. (3)

Moreover, when equality reaches, CP i obtains the same util-
ity in both service classes.
Proof of Lemma 1: The utility of CP i joining the premium
and ordinary service classes are (vi − c) λi

(
ΓP∪{i}(κν)

)
and viλi

(
ΓO∪{i}((1 − κ)ν)

)
respectively. By dividing the

constant αiM on both, we obtain the above condition.
Lemma 1 states that a CP will join the premium service

class if that results higher profit, which is per-unit flow profit
(vi − c for the premium class) multiplied by the per capita
throughput ρi. The above decision is clear for a CP only if all
other CPs have already made their choices. To treat all CPs
equally, we model the decisions of all CPs as a simultaneous-
move game as part of a two-stage game.

2.2 Two-Stage Strategic Game
We model the strategic behavior of the ISP and the CPs as

a two-stage game, denoted as a quadruple (M,µ,N , I ).

1. Players: The ISP I and the set of CPs N .

2. Strategies: ISP I chooses a strategy sI = (κ, c). Each
CP i chooses a binary strategy of whether to join the
premium class. The CPs’ strategy profile can be writ-
ten as sN = (O,P), whereO∪P = N andO∩P = ∅.

3. Rules: In the first stage, ISP I decides sI = (κ, c)
and announces it to all the CPs. In the second stage,
all the CPs make their binary decisions simultaneously
and reach a joint decision sN = (O,P).

4. Outcome: The set P of the CPs shares a capacity of κµ
and the setO of the CPs shares a capacity of (1−κ)µ.
Each CP i ∈ O gets a rate λi(M, (1 − κ)µ,O) and
each CP j ∈ P gets a rate λj(M,κµ,P).

5. Payoffs: Each CP i’s payoff is defined by the utility
ui(λi) in Equation (2). The ISP’s payoff is the revenue
cλP received from the premium class.

If we regard the set of CPs as a single player that chooses a
strategy sN , our two-stage game can be thought of a Stackel-
berg game [12]. In this game, the first-mover ISP can take
all the best-responses of the CPs into consideration and de-
rive its optimal strategy sI using backward induction [9].
Given any fixed strategy sI = (κ, c), the CPs derive their
best strategies under a simultaneous-move game, denoted as
(M,µ,N , sI ). We denote sN (M,µ,N , sI ) = (O,P) as
a strategy profile of the CPs under the game (M,µ,N , sI ).
Technically speaking, when κ = 0 or 1, there is only one
service class. When κ = 0, we define the trivial strategy
profile as sN = (N , ∅); when κ = 1, although there is not a
physical ordinary class, we define the trivial strategy profile
as sN = (O,N\O), with O = {i : vi ≤ c, i ∈ N} which
defines the set of ISPs that cannot afford to join the premium
class. Based on Lemma 1, we can define an equilibrium in
the sense of a Nash or competitive equilibrium. To break a
tie, we assume that a CP always chooses to join the ordinary
service class when both classes provide the same utility.

Definition 2. A strategy profile sN = (O,P) is a Nash
equilibrium of a game (M,µ,N , sI ), if

vi − c
vi


≤
ρi
(
ΓO((1− κ)ν)

)
ρi
(
ΓP∪{i}(κν)

) if i ∈ O,

>
ρi
(
ΓO∪{i}((1− κ)ν)

)
ρi
(
ΓP(κν)

) if i ∈ P.

(4)

2.3 Competitive Equilibrium
Notice that a CP’s joining decision to a service class might

increase the congestion level and reduce the throughput of
flows of that service class; however, if the number of CPs
in a service class is big, an additional CP i’s effect will be
marginal. Analogous to the pricing-taking assumption [9]
in a competitive market, we can make a throughput-taking
assumption for the CPs as follows.
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Assumption 4 (CONGESTION TAKING). In a competitive
equilibrium, for any service class X , any CP i /∈ X uses ΓX
as an estimate of the ex-post congestion ΓX∪{i} it will face
in the decision-making.

Based on the above congestion-taking assumption, we can
define a competitive equilibrium of the CPs as follows.

Definition 3. A strategy profile sN = (O,P) is a competi-
tive equilibrium of a game (M,µ,N , sI ), if

vi − c
vi


≤
ρi
(
ΓO((1− κ)ν)

)
ρi
(
ΓP(κν)

) if i ∈ O,

>
ρi
(
ΓO((1− κ)ν)

)
ρi
(
ΓP(κν)

) if i ∈ P.

(5)

Theorem 3. If sN = (O,P) is an equilibrium of a game
(M,µ,N , sI ), it is also a same type of equilibrium (Nash or
competitive) of a game (ξM, ξµ,N , sI ) for any ξ > 0.
Proof of Theorem 3: By Corollary 1, (O,P) would induce
the same level of congestion ΓN in a linearly scaled system
(ξM, ξµ,N , sI ). Therefore, the right hand sides of both 4
and 5 do not change. Since the left hand sides of both 4 and 5
remain the same, all the equilibrium conditions are satisfied.

2.4 Finding a Competitive Equilibrium
We will focus on competitive equilibria rather than Nash

equilibria for two reasons. First, because the number of CPs
in practice is big, the congestion-taking assumption is valid.
Second, the common knowledge assumption [9] for reaching
Nash equilibria might be questionable, because CPs rarely
know the characteristics of all other CPs in practice. Never-
theless, many results apply for both equilibrium definitions.

The difficulty of finding a competitive equilibrium comes
from the large scale of number of CPs. Through exhaustive
search, we need to evaluation 2|N | possible scenarios. Here,
we first introduce a condition under which we can efficiently
obtain a competitive equilibrium and then we explore a more
general method to find a competitive equilibrium.

2.4.1 A special form of ρi(Γ)

Assumption 5. For any two levels of congestion Γ1 and Γ2,
any congestion function ρi(Γ) satisfies

ρi(Γ1)

ρi(Γ2)
= Fi(G(Γ1,Γ2)),

where Fi(·) is continuous and invertible, and G(Γ1,Γ2) is
a common continuous function among all CPs that is non-
increasing in Γ1 and non-decreasing in Γ2.

Two examples of ρi that satisfy the above assumption are

ρi(Γ) = θ̂ie
−(βi)Γ, and ρi(Γ) = θ̂i(βi)

Γ,

where βi can serve as a differentiating parameter that reflects
CP i’s to sensitivity congestion. If the above two forms of

ρi are adopted, the corresponding demand functions di(Γ)
under the proportional rate mechanism would be

di(Γ) = (Γ + 1)e−(βi)Γ, and di(Γ) = (Γ + 1)(βi)
Γ.

Similarly, the corresponding demand functions di(Γ) under
a max-min end-to-end congestion mechanism would be

di(Γ) = max{1, θ̂iΓ}e−(βi)Γ, and di(Γ) = max{1, θ̂iΓ}(βi)Γ.

If Assumption 5 is satisfied, we denote ζi as a relative
priority of CP i under a given charge c, defined by

ζi =

F−1
i (

vi − c
vi

) if vi > c,

+∞ otherwise .
(6)

The smaller priority value a CP has, the larger chance it will
end up in the premium class in an equilibrium. We define
R+
i = {i′ : ζi′ > ζi} and R−i = {i′ : ζi′ < ζi} as the set of

CPs that have bigger and smaller priorities than that of CP i.

Lemma 2. If sN = (O,P) is a competitive equilibrium of
a game (M,µ,N , sI ) with sI = (κ, c), then for any i ∈ O
and j ∈ P , we have ζi > ζj ,R+

i ⊂ O andR−j ⊂ P .
Lemma 2 reveals the structure of a competitive equilib-

rium under whichO always contains CPs with higher values
of ζi. Therefore, to find a competitive equilibrium, we can
first sort the values of ζi in a descending order and relabel
the CPs such that ζi ≥ ζj if i < j, and then, find a partition
of the sorted CPs under which the CPs with lower/higher in-
dices will be in O/P . We denote HL and TL as the set of
the first L and the last L CPs in the sorted list respectively. If
we make a partition L such that the first L CPs are put in the
ordinary class and the lastN−L CPs are put in the premium
class, the congestion difference of the two classes is

∆L = ΓHL
− ΓTN−L

. (7)

By Corollary 1, we know that the congestion level ΓS is
non decreasing with the size of the set S of CPs. Therefore,
{∆0, · · · ,∆N} is a non decreasing sequence.

Lemma 3. Suppose CPs are sorted by ζi in a descending
order. If all ζis have distinct values except for +∞, then
there exist at most one CP l ∈ N such that ∆l−1 < ζl < ∆l.
If no such CP l exists, the game (M,µ,N , sI ) has a unique
competitive equilibrium; otherwise, it does not have any.

The condition of distinct ζis excludes multiple equilibria.
If there exist ζi = ζj < +∞, then i and j might switch
places to generate symmetric competitive equilibria. With-
out loss generality, we can relabel the CPs such that CPs in
O will have smaller indices and still keep ζi in a descending
order. Because ζi is a non-increasing sequence and ∆L is a
non decreasing sequence, there exists at most one crossing
point where a CP l might find itself better off in P when it is
inO and vice versa. This happens because when a CP moves
from one service class to another, the congestion differences
∆L make jumps. Asymptotically, when N increases, the
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sequence of ∆Ls will be smoother and a unique competi-
tive equilibrium will almost always exist (like the compet-
itive market equilibrium under the price-taking assumption
in classic economics). To resolve this technical problem, we
assume that if such a CP l exists, it will eventually calculate
its real ex-post congestion levels as in the Nash equilibrium
condition (4) and stabilize itself in one service class. We
implement the following binary-search algorithm to find the
unique equilibrium for our numerical analysis purposes.

Finding CPs’ Competitive Equilibrium (M , µ, N , sI )
1. Sort CPs based on ζi in a descending order;
2. L1=0; L2 = N ; L = 1

2 (L1 + L2);
3. while L2 > L1

4. if ΓHL
− ΓTN−L+1

< ζL then L2 = L− 1;
5. if ΓHL+1

− ΓTN−L
> ζL+1 then L1 = L;

6. if L == 1
2 (L1 + L2) then L1 = L2 = L;

7. else L = 1
2 (L1 + L2);

8. O = HL; P = TN−L;
9. return (O,P);

2.4.2 General forms of ρi(Γ)

For general forms of ρi(Γ)s, we cannot sort the CPs on a
one-dimensional space to search for a competitive equilib-
rium. However, we could still search in a two-dimensional
“congestion space” as follows.

Finding CPs’ Competitive Equilibrium (M , µ, N , sI )
1. Initialize Γ[0] = (Γ

[0]
O ,Γ

[0]
P )

2. Calculate induced equilibrium (O[0],P[0]) given Γ[0];
3. t = 0;
4. do
5. Γ′[t] = (ΓO[t]

,ΓP[t]
);

6. Γ[t+ 1] = Γ[t] + g[t](Γ′[t]− Γ[t]);
7. t = t+ 1;
8. Calculate (O[t],P[t]) based on Γ[t];
9. until t > T or (O[t],P[t]) == (O[t−1],P[t−1]);
10.return (O[t],P[t]);

The algorithm starts with an estimation Γ[0] = (Γ
[0]
O ,Γ

[0]
P )

on the congestion levels in both service classes. At each
time step t, based on the congestion-taking assumption and
the congestion estimation Γ[t], the algorithm calculate an in-
duced competitive equilibrium (O[t],P[t]) (line 2 and 8) and
the corresponding real congestion level Γ′[t] = (ΓO[t]

,ΓP[t]
)

(line 5). The algorithm updates the congestion Γ[t+1] based
on the previous estimate Γ[t] and the induced real congestion
Γ′[t] (line 6). Notice that the algorithm is flexible that a step
size g[t] for each round (line 6) and a maximum number of
rounds T (line 9) can be specified for the algorithm to trade-
off between convergence time and accuracy.

3. RELATED WORK AND CONCLUSIONS

From the game model for service differentiation devel-
oped in the last section, we can further analyze the strategic
decision of the ISP and the resulting welfare for different
players. In [8], we focus on rate allocation mechanisms of
the system and further analyze the oligopolistic competition
among the ISPs. The results reveal some insight about the
appropriateness of imposing network neutrality regulations.

Besides the use of analyzing differentiated service classes,
the congestion equilibrium is more fundamental, upon which
we can build more sophisticated higher level interaction mod-
els. Moreover, the notion of congestion can be thought as a
generalization of price which determines an equilibrium for
competitive economy of commodity markets [9].
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