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ABSTRACT
In observational data analysis, e.g., causal inference, one often en-
counters data sets that are noisy and incomplete, but come from in-
herently "low rank" (or correlated) systems. Examples include user
ratings of movies/products and term frequency matrices for docu-
ments amongst others. In such analysis, estimating the approximate
rank of the data sets serves an important function of delineating the
signal from the noise. In this paper, we propose a technique to
estimate the rank of observational data matrices, compare it to pre-
viously proposed techniques, and make a specific methodological
contribution of improving the algorithmic parameter estimation in
the robust synthetic control method in [1].

Our most up-to-date code, model, and data can be
found on https://github.com/niloofarbayat/
COVID19-synthetic-control-analysis.

1. INTRODUCTION
Abadie and Gardeazabal [2] and Abadie et al. [3] pioneered the

synthetic control method to address the problem of measuring the
impact of a new regulation or a change in a region, and comparing
it to the case that those changes had not happened. The idea of syn-
thetic control stems from the classical A/B testing, where two ver-
sions of a variable are compared in the otherwise identical environ-
ment [4]. A variation of that would be where one of the variables
is a placebo. In that case, the experimental units are called “treat-
ment” and “control” (placebo) groups, and the variable changes,
i.e., treatments, are applied to the treatment group [5]. Abadie et
al. suggested that since in some problems we cannot have an actual
control group, we construct a “synthetic” control group.

Synthetic control is a statistical method that evaluates the im-
pact of an intervention on observational data. After the occurrence
of an event or intervention (e.g., increasing tobacco tax) on a unit
(e.g., a region), synthetic control estimates the evolution of some
aggregate outcomes (e.g., smoking rate). To measure whether the
outcomes were affected by the intervention, we need to compare
them to the evolution of the outcome without the intervention in
the same unit (control unit). However, if the unit under study is a
unique region, we cannot have an actual control unit, but we can
synthetically construct it. The key to constructing this "synthetic
control" unit is using the data from other regions which did not
have the intervention. [3].

In some cases, the data under study might be noisy or have miss-
ing values. The classical synthetic control method does not per-
form well in those cases, and robust synthetic control (RSC), a
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generalization of the late, has been proposed to address those lim-
itations [1]. RSC performs “de-noising” estimations and uses the
de-noised data for synthetic control analysis. It assumes a latent
variable model for the generation of the data and uses hard singular
value thresholding [6] to perform the de-noising.

Contributions: We find and fix a flaw of picking the algorith-
mic parameter of “singular values” proposed in the robust synthetic
control paper [1]. We also propose a general technique to estimate
the approximate rank of a matrix by analyzing the auto-correlation
of the residual matrix left after extracting a low-rank approxima-
tion. Our method appears general, compares favorably with a pre-
viously proposed technique, and fixes the problem with the RSC
method.

2. RELATED WORK
Abadie et al. first introduced synthetic control to measure the

impact of political instability on economic prosperity [2]. They in-
vestigated the economic impact of conflict using the terrorist attack
data in the Basque Country as a case study. They used the combina-
tion of other regions in Spain to build a “synthetic” control region
that resembles the economic characteristics of the Basque Country
before the outset of the terrorist attack. After that, the method has
been widely applied in econometric of policy evaluations, includ-
ing studying the effects of laws [7], legalized prostitution [8], and
immigration policy [9], as well as biomedical disciplines [10], and
social sciences [11].

Rank estimation for low-rank matrices plays a crucial role in the
de-noising step of the RSC algorithm. In [12] Ubaru et al pro-
posed a computationally inexpensive technique for estimating the
numerical rank of a matrix. They utilized Chebyshev expansion
to approximate the projector on the non-null invariant subspace of
the matrix and then used a stochastic trace estimator to estimate
the rank. This method is efficient, but it is not precise enough for
de-noising time series due to its randomized nature.

2.1 Robust Synthetic Control
The robust synthetic control (RSC) method [1], as mentioned

earlier, is a generalization of the classical synthetic control method.
It makes the synthetic control estimation robust to randomly miss-
ing data and high variance noise. This generalization estimates the
synthetic control weights using the unobserved mean values instead
of the noisy observations. The estimation is done by “de-noising”
the data matrix using matrix completion and then using regression
to determine the synthetic control weights, and has been shown to
be equivalent to principal component regression. Furthermore, the
counterfactual outcome can be estimated by any linear combination
of the donor units, relaxing the convex constraints on the weights
in classical synthetic control.
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3. DENOISING AND ESTIMATING THE AP-
PROXIMATE RANK OF DATA MATRIX

The theory of robust synthetic control and synthetic interven-
tions is built upon the critical assumption that the observational
data is coming from a “nice” (Lipschitz) latent variable function
[1, 13], which uses the so-called “latent tensor factor model”. The
assumption of the Lipschitzness is equivalent to the observational
tensor (or matrix) being low rank. This rank plays a crucial role
in the denoising step of the robust synthetic control algorithm and
its offshoots ( [14]). Restricting the case to a two-dimensional (i.e.
matrix) factor model, the observations are:

Xit = Mit + εit

whereMit is coming from the low-rank system, and εit is iid noise.
The "denoising" step of RSC estimatesMit via a universal singular
value thresholding mechanism proposed in [6]. Since apriori we do
not know the system’s rank, the rank needs to be estimated via the
observation matrix. If the number of singular values retained is
too low, the denoised estimate M̂ does not capture the complexity
of the underlying system. Conversely, if the number of singular
values retained is too high, the estimate overfits on noise, causing
large errors in the prediction/counterfactual estimation step. If one
knows the variance of the noise σ2, and if σ2 ≤ 1, then [6] suggests
retaining the singular values that satisfy

S :=
{
i : si ≥ (2 + η)

√
nq̂

}
(1)

where q̂ := p̂σ2 + p̂(1 − p̂)(1 − σ2), with p̂ being the (iid) proba-
bility of observing a value, n the nominal rank of the matrix, σ2 the
variance of the noise, and η a small constant in the range [0.1, 1].
In [1], this threshold is extended to the case where the noise vari-
ance is unknown. They suggest the following estimator for the
noise variance:

σ̂2 =
1

T0 − 1

T0∑
t=1

(Y1t − Ȳ )2 (2)

where T0 is the number of pre-intervention sample points and
Ȳ denotes the pre-intervention sample mean. Yit is simply Xit

if it is observed with probability p, and 0 if it is unobserved with
probability 1−p. This estimate σ̂ however suffers from a significant
flaw. It assumes that Ȳ is the estimate of the expected value of all
Yit. In general, Yi is a vector, coming from a low dimensional
space plus an additive noise term, and there is no requirement or
assumption that the expected value of observations is constant over
every element of the vector. Even taking the sample average along
the column dimension produces no improvement, since again, there
is no assumption that the expected value of Yit is independent of t.

This flaw can be illustrated by the following toy example. To
represent a dataset with 50 units and 100 time points, we generate
4 independent sinusoidal vectors of size 100, and construct an ob-
servation matrix using a linear combination of those vectors and a
small additive noise to generate 50 rows, resulting in a matrix of
size 50×100. The nominal rank of this matrix is 50, but from con-
struction, the (approximate) rank is 4. We then estimate the noise
as outlined in [1]. As we can see in Figure 1(a), the noise estimate
is nearly indistinguishable from the signal. This is not surprising
because the sample mean of our observation matrix is ≈ 0.

If instead, we estimate the noise by subtracting a rank-4 approx-
imation from the observation matrix (obtained via singular value
thresholding), then the estimate that we obtain, which is shown in
Figure 1(b), is a much better estimate of the noise and its variance.
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Figure 1: Noise estimate obtained via subtracting a rank-4 ap-
proximation of the observation matrix

3.1 Estimating approximate rank via an auto-
correlation test

We now present our technique of computing the approximate
rank building on the assumption that the noise is iid.

The problem with the approach we just presented, is that it is
circular - to estimate the noise (variance), one needs the low-rank
approximation, and to estimate the rank of the matrix, one needs the
noise variance as in Equation 1. To fix this problem, we compute
the noise vector for different singular values. Since the noise vector
is a time series, we can compute the auto-correlation (ACF) of the
resulting rows of the matrix, which represent individual time series
for the units. If the noise ACF is insignificant for different time
lags, then the noise does not have any observable patterns, and we
can assume that our estimation of the iid noise is correct.

We implement the Breusch–Godfrey test where the null hypoth-
esis is that the noise has an insignificant ACF. We then compute
the ACF for different time lags, choosing the cut-off for the signif-
icance of each lag to be a 95% interval, i.e., we conclude the ACF
at each lag is non-zero if it is greater in magnitude than the bound-
ary of the say the 95% confidence interval. We then compute the
p-values; if p − value > 0.05, we do not have enough statistical
evidence to reject the null hypothesis, and we cannot assume that
our noise values are dependent or carry any pattern from the signal.
Conversely, for p−value < 0.05, we can reject the null hypothesis
and conclude that the residual time series is correlated.

To perform a low-rank estimation of the signal, we start by rank
1, compute the noise ACF, and increment the rank until we reach
an iid noise using the aforementioned method. If no rank results in
an iid noise, the method returns the nominal rank. We repeat this
process for every row of the signal and compute the minimum rank
for which the noise vector for that row has an insignificant ACF.
Then we compute the average rank among them and round that
value to the nearest integer as our rank estimate. We compare our
rank estimation method with the work of [12] which focuses on fast
methods of numerical rank estimation. We build 50 random signals
of each rank k = 2 to k = 15 as mentioned in the construction
of our toy example and compute the rank of the matrix using the
two methods. The average MSE of our method is 0.0461, and the
estimated rank is correct 25% of times with the average difference
of 1.68. While the average MSE using [12] is 0.1128, and the
estimated rank is correct 25% of times with the average difference
of 3.22.

We observe that the work of [12] always underestimates the rank
in this case of periodic signals, so we can further improve the per-
formance of our method by setting the rank estimation of [12] as
the lower bound for our method. Integrating these two methods,
the average MSE would be improved to 0.00062, and the estimated
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Figure 2: Average values of rank estimation and MSE across
different models for our example with periodic signals.
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Figure 3: Average values of rank estimation and MSE across
different models for sklearn low rank matrix generator.

rank is correct 23% of times with the average difference of 1.3.
Figure 2 displays a comparison of our method’s average rank

estimation and MSE with those of RSC, and the numerical rank
estimation method in [12]. We ran the simulation 50 times for
each rank and computed the average among them. We observe
that our method’s rank estimation closely follows the actual rank
of the signal, and our MSE is the lowest among the three meth-
ods. We also observe that RSC fails to detect the rank of the signal
as expected since the signal has a periodic non-constant expected
value. In Figure 3 we did the same comparison but this time we
generated the low-rank matrices using a function from the scikit-
learn library in python [15]. For these classes of low-rank matri-
ces, with bell-shaped singular values, the numerical approximation
technique works well and has performance similar to our technique,
but the RSC method again fails to capture the true rank of the ma-
trices.

4. CONCLUSION
In this paper, we provide a way to estimate the approximate rank

of observational data matrices by looking at the auto-correlation
of the residual signal. Our technique has similar performance to a
previously proposed numerical technique for fast estimation of ma-
trix rank and outperforms it when the nature of the (low rank) basis
vectors is periodic. Both those techniques outperform the method
proposed in the RSC paper, where it severely underestimates the
true rank of the data matrix and thereby misses out in capturing
the structure of the underlying signal. Our contribution fixes this
important flaw in the RSC mechanism.
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