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Abstract— In this paper we use a previously developed nonlinear dy-
namic model of TCP to analyze and design Active Queue Management
(AQM) control systems using RED. First, we linearize the interconnection
of TCP and a bottlenecked queue and discuss its feedback properties in
terms of network parameters such as link capacity, load and round-trip
time. Using this model, we next design an AQM control system using the
random early detection (RED) scheme by relating its free parameters such
as the low-pass filter break point and loss probability profile to the network
parameters. We present guidelines for designing linearly stable systems
subject to network parameters like propogation delay and load level. Ro-
bustness to variations in system loads is a prime objective. We present ns
simulations to support our analysis.

I. INTRODUCTION

In [1] leading researches in the networking community have
proposed implementation of RED in IP routers for Active Queue
Management (AQM). It is believed that RED will alleviate prob-
lems related to synchronization of flows and also provide some
notion of quality of service by intelligent dropping. The analy-
sis of RED has generated several interesting papers. Tuning of
RED parameters has been an inexact science for sometime now,
so much so that some researchers have advocated against using
RED because of this tuning difficulty [2], [3]. Numerous RED
variants [4], [5], [6], [7] have also been proposed, perhaps mo-
tivated by the difficulty in understanding the dynamics of RED
completely.

In [8], the authors investigated the issue of recommendations
of RED parameters, and gave thumb rules and guidelines for
choosing them. In this paper we investigate similar issues, how-
ever from a more formal, control theoretic standpoint. We use a
previously developed model of TCP and RED dynamics [9] as a
starting point to perform our analysis. The inherently non-linear
model presented in that paper is converted to a linear system via
the technique of linearization, and we subsequently apply the
well developed tools in classical linear feedback control theory.
We are able to give guidelines on designing linearly stable sys-
tems as well as provide metrics indicating stability and robust-
ness of the linear system. Our analysis also reveals tradeoffs
in various parameter choices. We support our analysis via non-
linear simulations using the well known ns-2 simulator [10].

The rest of the paper is organized as follows. In Section II
we develop the linearized model for the AQM control system.
Section III deals with with application of the earlier developed
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model to an AQM system implementing RED. We present de-
sign guidelines in this section. Next, in Section IV we present
simulation results done using ns-2 that verify our analysis and
design recommendations. Finally, we present our conclusions in
Section V.

II. MODEL

We begin our discussion of AQM by first introducing a dy-
namic model for TCP’s congestion-avoidance mode.

A. A fluid-flow model of TCP behavior

In [9], a dynamic model of TCP behavior was developed us-
ing fluid-flow and stochastic differential equation analysis. Sim-
ulation results demonstrated that this model accurately captured
the dynamics of TCP. In this paper we use a simplified version
of that model which ignores the TCP timeout mechanism. This
model relates the average value of key network variables and is
described by the following coupled, nonlinear differential equa-
tions:

(1)

where denotes the time-derivative of and

expected TCP window size (packets)
expected queue length (packets)

round-trip time (secs)

link capacity (packets/sec)
propagation delay (secs)
load factor (number of TCP sessions)
probability of packet mark/drop

The queue length and window-size are positive and
bounded quantities; i.e., and where
and denote buffer capacity and maximum window size re-
spectively. Also, the marking probability takes value only in

. We illustrate these differential equations in the block di-
agram of Figure 1 which highlights TCP window-control and
queue dynamics. We now approximate these dynamics by their
small-signal linearization about an operating point to gain in-
sight for the purposes of feedback control (AQM).

B. Linearization

Taking as the state and as input, the operating point
is defined by and so that

(2)
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Fig. 1. Block-diagram of TCP’s congestion-avoidance flow-control mode.

where

Assuming and as constants,1 we lin-
earize (1) about the operating point to obtain (see Appendix I
for details)

(3)

where

Performing a Laplace transform on the differential equations,
the linearized dynamics are illustrated in a block diagram form
in Figure 2.
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Fig. 2. Block-diagram of the linearized TCP connection.

Remarks 1:

this assumption will be in force for the duration.

1. In [11] a model for TCP’s window-control mechanism was
developed and argued that it contained a Smith regulator struc-
ture; see [12]. However, our model in (3) and Figure 2 does not
support this claim. Indeed, for the TCP window control in Fig-
ure 2 to act like a Smith regulator structure, the term

should be replaced with .
2. In [13] a model for the TCP window-control mechanism was
developed which is similar to that in (3). However, that model
does not contain a queue dynamic. The dynamical system con-
sidered is thus a little different from ours, and hence their anal-
ysis and results do not agree with the conclusions we arrive in
this paper.
3. In Appendix II we show that the delay term in the TCP
window-control dynamic in Figure 2 is not significant when

Since

this delay term can be ignored if . For typical network
conditions, is a reasonable assumption and hence, for
the remainder of the paper, we will ignore this delay term and
consider the simplified dynamics

(4)

as illustrated in the block diagram of Figure 3.
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Fig. 3. Block-diagram of the linearized TCP connection when .

4. The eigenvalues of the linearized TCP and queue dynamics
(4) are, respectively,

or and

Since all the network parameters are positive quantities, these
negative eigenvalues indicate that the equilibrium state of the
nonlinear dynamics is locally asymptotically stable. An inter-
pretation of the TCP window-control time constant comes
from expressing the linearization of the equation above as:



where is the equilibrium packet-marking rate as discussed in
[9]. Therefore, the window-control time constant can be equiv-
alently expressed as . In equilibrium, implies that the
multiplicative decrease in window size balances its ad-
ditive increase . Consequently, . It can be loosely
interpreted as the average frequency of the TCP congestion-
avoidance cycle.
5. Finally, it is interesting to note that linearization of the queue
dynamic does not yield a pure integrator, as one may expect and
as one sees in the literature (for example, [11]) but produces a
leaky integrator with time constant . This can be partially
explained in noting that the flow into the queue is a function of
the queue length. That is, this flow is where part of the
round-trip time is due to the queuing delay .

III. THE AQM CONTROL PROBLEM

The objective of this section is to analyze the TCP dynamic
described in (4) in terms of network parameters such as TCP
load , round-trip time and queue capacity , and in terms
of the feedback nature of AQM. We will also discuss perfor-
mance objectives for AQM.

Using the linearized TCP model (4) an AQM control system
can be modeled as in the block diagram of Figure 5 2. In this
diagram denotes the transfer function from loss probability

to window size and relates to queue length
. The term is the Laplace transform of the time-delay

in the delayed loss probability . In control-system
language, we refer to the AQM Control Law block as the “con-
troller” or “compensator” and the rest of the (uncompensated)
system as the “plant”. The goal of the compensator design is to
provide a “stable” closed-loop system. However, there are con-
cerns beyond stability which impact control design. Firstly, the
system must have an acceptable transient response. Secondly,
the compensator design should be robust to variations in model
parameters and modeling errors. Hence, the goal of control en-
gineers is to design systems with a margin of safety. These mar-
gins are called stability margins. There are two classical metrics
to measure this relative stability. The first of those is the gain
margin, which is the factor by which the open loop gain of a
stable system must be changed to make the system unstable. If
we look at Figure 1, the gain margin is roughly the uncertainty
in the load level that the design can tolerate. The second of
those measures is the phase margin. The definition of the phase
margin is a little bit more complex, but in the context of AQM
we can interpret the phase margin as the amount of uncertainty
in the round trip delay a design can sustain without becoming
unstable. Stability margins of a system can be readily deduced
from Bode plots. A Bode plot is the frequency response plot of
the open-loop system. The magnitude and phase response of the
system are plotted on a double log scale. The gain margin of a
system is equal to the magnitude response of the system at the
point where the phase response is . The phase margin
is defined as where is the phase response at the

This linearized control system assumes an infinite queue-length and allows
queue length to take on negative values. While our subsequent analysis and
design are based on this linear model, they are verified in nonlinear simulations
which include these nonlinear constraints.

frequency where the magnitude response is unity (or 0 dB). The
two quantities are shown in Figure 4. Intuitively, if we don’t
have positive margins, then the feedback control system starts
behaving like a positive feedback system, i.e. one where the er-
ror gets amplified in the loop, leading to divergent and unstable
behavior.

−90

−180

dB

−dB

Gain Margin

M
ag

ni
tu

de
 −

>
Ph

as
e 
−>

Frequency −>

Phase
Margin

Fig. 4. Stability margins on the Bode plot

A. Plant dynamics

In Figure 5 we give a feedback control system depiction of
AQM. The action of an AQM control law is to mark packets
(with probability ) as a function of measured queue length .
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Fig. 5. AQM as feedback control.

From Figure 5, the plant transfer function,
, can be expressed in terms of network pa-

rameters yielding:

(5)

We refer to the two poles and as and
respectively.

The plant dynamics, denoted by the transfer function ,
then relates how this packet-marking probability dynamically



affects the queue length. From (4) and Figure 3 we have

(6)

Remarks 2:
1. The high-frequency plant gain of in (6) is . The
variation in this gain as a function of TCP load should be a
concern in the design of AQM control schemes since it has direct
bearing on stability, transient response and steady-state perfor-
mance. Indeed, a small TCP load increases the hi-frequency
gain leading to decreased stability margins and increased oscil-
latory response. Conversely, larger TCP loads will tend to damp
the closed-loop transient response.
2. Stable AQM in the face of the time-delay can place a hard
limit on the closed-loop control bandwidth and consequently,
on the achievable speed of transient response. Indeed, for stable
behavior, closed-loop time constants are approximately bounded
by seconds.

B. AQM performance objectives

As in any control system design, a first step is to pose per-
formance objectives. For AQM, performance objectives include
efficient queue utilization, regulated queuing delay and robust-
ness.
1. efficient queue utilization: For efficient use, the queue should
avoid overflow or emptiness. The former situation results in
lost packets and undesired retransmissions, while an empty
buffer under-utilizes the link. Both of these extremes should
be avoided in both transient and steady-state operation.
2. queuing delay: The time required for a data packet to be ser-
viced by the routing queue is called the queuing delay and is
equal to . This time, together with the propagation delay ,
accounts for the network delay and it is desirable to keep small
both the queuing delay and its variations. This calls for regu-
lating to small queue lengths; however, doing so may result in
link underutilization and this limitation presents a fundamental
tradeoff to AQM design.
3. robustness: AQM schemes need to maintain closed-loop per-
formance in face of varying network conditions. These condi-
tions include variations in the number of TCP sessions , vari-
ations in the propagation delay and the introduction of short-
lived into the queue.

C. Designing RED

An active queue-management (AQM) system can be mod-
eled as the feedback control system shown in Figure 6. Here

denotes the previously derived small-signal lin-
earization of TCP-queue dynamics (linearized about queue-
length ). is derived previously. and

denote perturbations in the loss probability and queue length
respectively. In Figure 6 the transfer function denotes an
AQM control strategy such as tail-drop or RED.

Tail-drop is an on-off control strategy. In terms of our set-up
in Figure 6, tail-drop amounts to the on-off action .
It is known in control theory that such an on-off mechanism3

also referred to as relay control in the feedback literature.
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Fig. 6. Block diagram of a linearized AQM control system

leads to oscillations (limit-cycles) that can exhibit complex and
chaotic behavior; e.g., see [14]. Such oscillations may be unde-
sirable in queue management, and RED was introduced to sta-
bilize them.

A transfer-function model for RED is:

(7)

where

is the queue averaging parameter and is the sample
time; see [9]. In designing to stabilize the AQM control
system, variations in both the number of TCP sessions and
round-trip time should be taken into account. The variations
in are due to a variable propagation time where

Let’s assume a range for the number of TCP sessions, say
, and the round-trip time, . The objective

is to select RED parameters and in (7) to stabilize the
linear control system in Figure 6 for all these and . The
linear feedback control system in Figure 6 is stable if bounded
exogenous inputs produce only bounded outputs. This in turn
implies that responses to initial conditions will be bounded and
converge exponentially to zero. Under this definition of stability,
we give the following two propositions:

Proposition 1: Let and satisfy:

(8)

where
(9)

Then, the linear feedback control system in Figure 6 using
in is stable for all and all

.

Proof: Consider the frequency response of the compensated
loop transfer function



From this and (9) we have:

Now, given any and any ,

From this and (8) it follows that for all
and for all . Thus, the unity-gain crossover fre-
quency is bounded above by . To establish closed-loop stabil-
ity, we invoke the Nyquist stability criterion [12] and show that

. To this end, we again use (9) to obtain

Remarks 3:
1. The rationale behind this choice of parameters is to force

to dominate closed-loop behavior. This is done by mak-
ing the closed-loop time constant ( ) greater than either
the TCP time-constant or the queue time-constant .
2. Different choices of satisfy the condition above.
For example, Figure 7 illustrates a region of admissible param-
eters4 when secs, , and flows and

packets/sec.
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Fig. 7. Stabilizing RED parameters and .

3. This RED design is linearly robust to the network parameter
variations and . The extent to which this
feedback control system is stable to further variations in these
parameters is characterized in Proposition 2 below.

values of admissible pairs lie below the graphs.

4. The multiplicative factor in the choice of is the one
which provides stability margins. If we choose a higher value
than , we produce a controller with lower stability margins.
The benefit of the more aggressive design is that it gives faster
response times (due to an increase in ).
5. It seems counter intuitive that the system is stable for all load
levels greater than . In fact, the system may oscillate if the
load level makes the system go into a region where the operating
point lies in the discontinuity region of the loss profile. This was
studied in [8]. However, the gentle mechanism recommended
in [15] removes the instability related to the discontinuity.
6. At high load levels, the loss probability becomes sufficiently
high to cause some flows to go into timeouts. We have ignored
timeouts in our model and analysis. Timeouts should not impact
stability from our analysis; indeed, they tend to make the system
less oscillatory.
7. The analysis we presented considered a bound on the round
trip time . However, it does not follow that if the round trip
time of some flows exceed this bound then the system becomes
unstable. In fact, in the presence of heterogenous round trip
times for the flows, this bound should be interpreted for what
we call the equivalent round trip time of the flows. For simple
(single bottleneck) cases, the equivalent round trip time is the
harmonic mean of the individual round trip times of the flows.
Consider a scenario with flows having heterogenous round
trip times . The harmonic mean ( ) of the round trip times
is given by

Now, at the bottlenecked router, the capacity is shared by these
different flows. Thus, at equilibrium, ignoring timeouts and us-
ing the simplified formula for throughput ([16], [17]) we
have

Hence the system behaves in the mean as a system with flows
each having an identical equivalent round trip time that is .

Proposition 2: Consider any RED controller satisfying
conditions and in Proposition 1. Then, the gain margin
GM and phase margin PM of the linear control system in

Figure 6 satisfy:

Consequently, this linear control system will remain stable if
either or .



Proof: Sharpening a phase computation made in the proof of
Proposition 1 gives

Thus, . The phase lag due to
additional round-trip time delay is:

From (9), . Using this and gives
. For the gain margin computation we recall from

the proof of Proposition 1 that

Consequently,

Since

then . Because , then

gives a lower-bound to the gain margin.
Since then

Example 1: Consider the case of network parameters:
packets/sec 5, and sec. From (9),

rad/sec

For , we compute from (8):

Thus, one choice for is

In terms of implementation, we can break this down as

Now, for a link capacity of 3750 , ,
yielding , the averaging weight, as .

. Thus, if we choose as 0.1, then
the dynamic range of the average queue size is approximately
540 packets.

corresponds to a 15 Mb/s link with average packet size 500 Bytes.

Remarks 4:
1. From the viewpoint of steady-state regulation it is desirable
to select in (8) as large as possible. By steady state regu-
lation we mean that should go down to zero in steady state.
However, under the RED mechanism the steady state value of
the queue length (for a stable system) depends upon network
conditions. Thus in our linear model never goes to zero which
is not a desirable feature. We can reduce this steady state error
by decreasing . From (8), allows . In this
limiting case we have

which corresponds to classical integral compensation.
2. A drawback in using RED for stabilizing queue length is that
it has a low control-bandwidth which, from (9), must be less
than the bandwidth of either the queue or TCP dynamic. Conse-
quently, closed-loop responses are commensurately slow6. This
can be improved by introducing lead compensation into RED.
This results in a classical proportional-integral (PI) compensator

The design of such a compensator is discussed in a separate
companion paper [18].

IV. SIMULATIONS

We verify our propositions via simulations using the ns sim-
ulator. Although our analysis was carried out with a linearized
model, the simulations are non-linear in nature. We look at a
single bottlenecked router running RED. In addition to infinite
duration, greedy flows such as the one we model, we introduce
short lived, http flows into the router, to generate a more realis-
tic traffic scenario. The http flows were simulated using the http
module provided with ns. The effect of flows which are very
short lived is essentially that of introducing noise to the queue.
The objective of the control system is to achieve full utilization
of the bandwidth in the presence of these short lived flows. In
all our plots we depict the time evolution of the instantaneous
queue length, with the unit of the time axis being seconds.

A. Experiment 1

In the first experiment, we look at a queue with 60 ftp (greedy)
flows, and 180 http sessions. The link bandwidth is 15 Mb/s, and
the propagation delays for the flows range uniformly between
160 and 240 ms. We attempt to control the queue to provide a
queueing delay of around 50-70 ms, and hence set the
and of the queue as 200 and 250 respectively, with av-
erage packet size being 500 Bytes. The averaging weight and

is retained as “vanilla”, i.e. the values which are the de-
fault in ns. The buffer has a maximum capacity of 800 packets.
We set the gentle parameter in RED as “on”. The instanta-
neous queue length is shown in Figure 8. Observe the oscillat-
ing nature of the queue. It frequently goes down to zero, thereby

In Example 1, the bandwidth was approximately 0.053 rad/sec. Closed-loop
responses are dominated by the associated 20-second time constant.



under-utilizing the link. The large oscillations also add consid-
erable jitter to the round trip times of the packets.
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Fig. 8. Experiment 1

B. Experiment 2

Now we use the design as derived in Example 2. Thus, we set
the averaging weight to be , to and the dy-
namic range ( ) to 150-700 packets. This should
yield a stable mode of operation. The results are plotted in Fig-
ure 9. We indeed see that the system is stable, with small fluctu-
ations about an operating level of the queue. The deterministic
oscillations which were observed in the previous experiment are
absent in this configuration. A point to note however, is that it
takes a long time to “settle” to the operating point. This ini-
tialization is a major “disturbance” and one doesn’t expect to
encounter it in the normal mode of operation. However, it is
related to the responsiveness of the control system to change
in operating conditions. This slow response is related to a low
value of that we use. 7 We can be more aggressive in our
choice of , to get a faster response, however that will lead to
lower stability margins. In the next experiment, we test a design
which has a faster response time.

C. Experiment 3

We increase to 0.2 from 0.05. Recall that is approxi-
mately the time constant of the feedback loop. Thus, increasing

should yield a faster response time. There are a number of
ways of incorporating the effect of the increased . We look
back at Proposition 1, and evaluate the effect of increasing on

. We could either maintain a constant ratio, thereby
increasing (which in turn means increasing ) and maintain

, or we could retain the value of and increase corre-
spondingly. The latter can be achieved in two different ways - by

The settling time is also increased due to the non-linear effects of the tail
drop phenomena happening as the queue size reaches 800. The clamping at 800
results in a longer time for the average to “grow” to a value which can start
providing loss feedbacks
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Fig. 9. Experiment 2

shrinking the dynamic range (recall that )
or by increasing . In our first approach to obtain a faster re-
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Fig. 10. Experiment 3

sponse time, we make the dynamic range shorter, reducing it to
150-250, from the earlier 150-700. The queue size for this sce-
nario is plotted in Figure 10. As we observe, the queue settles
to around the operating point after 60 seconds , compared to 80
seconds in Experiment 2. Notice also the somewhat large devi-
ations in the queue size around the 100-160 second range in the
simulation. This is because our aggressive design has reduced
the stability margins. The presence of http flows introduces a
stochastic element in the load level and hence we can expect to
see those larger variations with lower stability margins.

The non-linear effects of tail drop result in a higher settling
time than predicted by linear analysis. We can reduce the non-
linear effects by moving the dynamic range down, however that
leaves us with a lower margin of error as far as underutilization
of the queue goes. We show the effects of lowering the dynamic
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Fig. 11. Experiment 3a

range to 50-150 in Figure 11 (Experiment 3a). The settling time
has indeed gone down, however the queue length stays closer to
zero and the link is much more likely to be underutilized. Next
we try the alternative approach of increasing and retaining
the original dynamic range of 150-700. This is shown in Figure
12 (Experiment 3b). As we can see, the settling time has come
down and there is also better margin at the lower end of the
queue. Thus, choosing a larger value of appears to be a better
option than lowering .
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Fig. 12. Experiment 3b

D. Experiment 4

Next we begin to investigate the relative stability of the de-
sign, and look at issues relating to “over” designing or being
too conservative. In Experiment 4, we take the base stable de-
sign, but double the round trip times of one fourth of the flows.
The results are plotted in Figure 13. The system remains stable
and the longer round trip times of the fraction of the flows don’t

affect things too much.
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Fig. 13. Experiment 4

E. Experiment 5

In this experiment, we double the round trip times of all the
flows. Thus, our system was designed for a much lower round
trip time and it should show instability. The plot is shown in
Figure 14. Observe the large oscillations. One thing to take
from this experiment is that the phase margins for the non-linear
system seem to be a little lower than the ones we derived for the
linear system.
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Fig. 14. Experiment 5

F. Experiment 6

Now we retain the round trip time, but vary the load level.
First, we reduce the number of ftp flows to 8. This should re-
duce the stability margin according to Proposition 2. The plot in
Figure 15 reveals some oscillations but the system remains rela-



tively stable. The gain margins in the non-linear system seem to
be retained from the linear model.
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Fig. 15. Experiment 6

G. Experiment 7

Now we increase the load level. According to our analysis,
the system should remain stable, however since we have been
too conservative in our design, the performance of the compen-
sator should be slower. Figure 16 exhibits the phenomena, with
the queue length taking a longer time to settle.
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Fig. 16. Experiment 7

H. Experiment 8

Finally, we retain the load level of 60, but reduce the propa-
gation delay to 50ms. This again should have no effect on sta-
bility, but performance should be degraded. Figure 17 displays
the slow response.
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Fig. 17. Experiment 8

V. CONCLUSIONS

In this paper we analyzed a combined TCP and AQM model
from a control theoretic standpoint. We used linearization to an-
alyze a previously developed non-linear model of the system.
We performed the analysis on an AQM system implementing
RED. We are able to present design guidelines for choosing
parameters that lead to stable operation of the linear feedback
control system. We are also able to derive expressions for the
relative stability of the system so designed. We performed non-
linear simulations using ns that verified our analysis. We are
also able to make some comments on tradeoffs of various pa-
rameter choices for RED.

While in our design methodology we focused on the stability
of the queue length as a means to achieve AQM performance
objectives, this may not be the overriding goal of RED imple-
mentations. Indeed, stable designs are also slow designs, and
more responsive systems can be obtained by trading stability for
speed from our guidelines. However, the resulting faster sys-
tems may come with a price of large delay jitter, fluctuating
loss levels and inefficient utilization of resources. The oscil-
lations can also affect the performance of other protocols (for
instance TCP-friendly schemes) that rely on efficient estimation
of loss and delay. Another limitation of RED is the direct cou-
pling between queue length and loss feedback. This results in
load dependent queue levels. Higher load levels results in lower
bandwidth per flow, but this coupling of load level and queue
length in RED imposes an additional performance penalty in
terms of the higher delay that can be avoided. The control the-
oretic model we developed points us in the direction of AQM
schemes more suited for the particular application. There are
well developed tools in classical linear system analysis that help
in designing improved controllers for AQM. Our investigations
in that direction are detailed in [18].
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APPENDIX

I. LINEARIZATION OF THE FLUID-FLOW MODEL

Assuming constant number of TCP flows and round-trip
times , we first define the right-hand sides of the differential
equations in (1) by:

(10)

where . Recall the operating point relation-
ships:

Evaluating partials at this operating point in (2)
gives:

II. JUSTIFICATION OF (4) WHEN

Consider the differential equation

where and is a ficticious input. Denote the transfer
function from to by . Then

If the bandwidth of the transfer function is much less than
; i.e.,

or equivalently, , then

Thus, the approximation (4).
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