Working draft of version to appear in ACM SIGMETRICS’00

Detecting Shared Congestion of Flows Via End-to-end
Measurement’

Dan Rubenstein Jim Kurose Don Towsley
Department of Computer Science
University of Massachusetts at Amherst

htt p: // www net . cs. umass. edu/ { ~drubenst,

ABSTRACT

Current Internet congestion control protocols operate independently
on a per-flow basis. Recent work has demonstrated that cooperative
congestion control strategies between flows can improve perfor-
mance for a variety of applications, ranging from aggregated TCP
transmissions to multiple-sender multicast applications. However,
in order for this cooperation to be effective, one must first identify
the flows that are congested at the same set of resources. In this
paper, we present techniques based on loss or delay observations
at end-hosts to infer whether or not two flows experiencing conges-
tion are congested at the same network resources. We validate these
techniques via queueing analysis, simulation, and experimentation
within the Internet.

1. INTRODUCTION

The recent success of the Internet arguably stems from the philos-
ophy that complexity should be relegated to the endpoints of the
network. In the Internet, data is transmitted using only best-effort
service, with reliability and congestion control being implemented
only within the Internet’s end-systems. Current approaches to con-
gestion control, such as those incorporated into TCP and those pro-
posed for multicast congestion control, have a sender regulate its
transmission rate independently from other senders, based on feed-
back (typically loss indications) received from its receiver(s).

Recent work has demonstrated that cooperative congestion control
strategies among different sessions or among different senders in a
single session (in the case of multicast) can improve performance
for a variety of applications, ranging from aggregated TCP trans-
missions to multiple-sender multicast applications:

e The benefits of performing congestion control over flow aggre-
gates are explored in [1; 2]. Here, an aggregate consists of a set
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of flows that are treated as a single, virtual flow for the purposes
of congestion control. For example, in the presence of contention,
a WWW session with multiple on-going (TCP and/or continuous
media) streams that interfere with each other over a common bot-
tleneck might choose to optimize session utility by more drastically
reducing the rate of one session in the face of congestion, while
only slightly decreasing the rate of another. The server’s aggregate
session rate remains the same as if each session was treated as an
isolated TCP session, but the rate of the individual sessions within
the aggregate can vary (from what would be achieved under vanilla
TCP) according to server policy.

e In many-to-one or many-to-many applications, a receiver within a
single “session” may receive data from multiple senders. When a
receiver detects congestion, the specific actions taken by the senders
to reduce their transmission rates should depend upon whether or
not the senders share a common resource bottleneck on the path to
that receiver. Distributed gaming [3], teleconferencing, and access-
ing data in parallel from multiple mirror sites simultaneously [4]
are examples of such applications.

A key technical issue underlying both of these scenarios is the abil-
ity to detect whether two “flows” (whether individual unicast ses-
sions, or different senders within a single multicast session) share a
common resource bottleneck. In this paper, we address the funda-
mental issue of detecting shared points of congestion among flows.
Informally, the point of congestion (or POC for short) for two flows
is the same when the same set of resources (e.g., routers) are drop-
ping or excessively delaying packets from both flows due to backup
and/or overflowing of queues. We present two techniques that op-
erate on an end-to-end basis and use only end-system observations
to detect whether or not a pair of flows experiences a common
POC. One technique uses observations of packet losses to iden-
tify whether or not packets are being dropped at the same POC.
A second uses observations of end-to-end delays, computed be-
tween end-hosts whose clocks need not be synchronized, to iden-
tify whether or not packets are experiencing significant delays at
the same POC. These techniques assume that the flows share a
common end-point, i.e., it is either the case that flow sources are
co-located, or that flow receivers are co-located.

The key idea underlying the techniques presented in this paper is
the fact that adjacent packets in the same flow experience some
amount of correlation in loss and delay as they necessarily share
any POCs. It follows that if two flows have the same POC, then
adjacent packets in the two flows should similarly experience some
amount of correlation. However, values of standard quantitative
measures of correlation, such as correlation coefficients, depend on
several factors, such as the rate of the flows, the amount of back-
ground (cross) traffic that passes through the flows’ POCs, and the
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POCs’ processing capabilities. Hence, the standard measures of
correlation exhibited both within a flow and between flows that
have the same POC differ under different network conditions. This
makes it difficult to use these values directly to determine whether
or not two flows share a common POC. Our novel insight is to
construct a measure of correlation between flows and a measure of
correlation within a flow with the following property: the measure
between flows is greater than the measure within a flow if and only
if the flows share the same POC. We call this method of identifying
whether or not two flows share a POC a comparison test. We have
also demonstrated how measures similar to those used within our
comparison tests can also be used to estimate the “level” of sharing
between two flows in cases where flows can have multiple POCs,
some of which are shared, and some of which are not. Due to lack
of space, this demonstration is available only in the technical report
of this work [5].

We first use traditional queueing models to prove that, in theory,
our comparison tests can identify whether or not a POC is shared.
Next, we use simulation to examine the performance of the compar-
ison tests in more practical settings, where background traffic in the
network consists of TCP and exponential on-off sources. We show
that over time, (as the number of packet samples increases), the
comparison tests always correctly identify whether or not the POC
is shared, and that the techniques based on delay converge an order
of magnitude faster than those based on loss. Last, we demonstrate
the capabilities of the tests in practice using actual network traces
over simple topology configurations.

To our knowledge, there is no published work that presents tech-
niques for detecting flows that are congested at the same point. In
[6], the authors identify potential benefits of having separate end-
systems share locally observed statistics, such as available band-
width and loss rate. It is observed in [7] that a comparison of IP ad-
dresses might be of some assistance, but the authors subsequently
state, “Determining a better estimate of which flows share a bottle-
neck is an open problem.” While [1] and [2] demonstrate the value
of performing congestion control over flow aggregates, [2] consid-
ers the detection of shared POCs to be future work, while the ag-
gregated flows in [1] are limited to those having identical source-
to-destination network paths: this significantly restricts the set of
flows that can be aggregated. At a recent workshop, Padmanabhan
demonstrated that only flows sharing a point of congestion exhibit
high correlation in packet delay, and hypothesized that this corre-
lation could be used to make such a detection [8]. A recent project
report by Katabi et al [9] presents a clever entropy-based technique
to partition a set of unicast receivers at the same end-system into
clusters that share a common bottleneck. Their technique is very
efficient in the number of packets needed to accurately perform
the clustering, and is robust when the bandwidth to the end-host
constitutes at least 20% of the bandwidth at the bottleneck (i.e.,
light background traffic). In comparison, our loss-based techniques
require more packet transmissions, our delay-based techniques re-
quire a similar number of packet transmissions. Furthermore, our
techniques do not easily scale to large receiver sets. However, our
techniques remain robust under heavier background traffic traffic
loads, and can also detect shared POCs among flows in which the
senders, and not the receivers are co-located.

Our work differs significantly from previous work that, using mul-
ticast loss traces, infers network characteristics, such as multicast
tree topology and the loss rates on individual links within the net-
work. The work by Ratnasamy et al [10] and that of the MINC
project [11] require transmission of multicast probes. Their ap-
proaches identify a shared POC among receivers receiving from a
single source, relying on the fact that a multicast router forwards

a packet on either all or none of the downstream links that are
requesting the multicast transmission. These approaches are not
designed for the case when flow senders are not co-located. Fur-
thermore, because the end-to-end multicast route between a source
and receiver can differ substantially from the unicast route between
the same end-points, results pertaining to shared POCs based on
the multicast route need not apply to unicast traffic.

There are several practical issues that we identify in this paper as
open areas of research and do not solve; these require further con-
sideration before our techniques can or should be applied within
an operational network for the purposes of congestion control. Our
goal in this paper is to make a fundamental first step in solving the
problem of congestion control for aggregated streams.

The remainder of the paper proceeds as follows. Section 2 over-
views the two testing techniques for performing the detection of
a shared POC, and provides a high-level intuition as to why the
techniques work. Section 3 presents queuing analyses that demon-
strate the effectiveness of the tests using theoretical models of the
POCs. Section 4 presents simulation results that demonstrate the
performance of the techniques under more realistic traffic condi-
tions.  Section 5 presents results of experiments conducted over
the Internet. Section 6 briefly discusses some open issues. Last,
Section 7 concludes the paper.

2. TECHNIQUE DESCRIPTION

In this section, we present two techniques, the loss-corr technique
and the delay-corr technique, that respectively use loss and delay
measurements at receivers to determine whether or not a pair of
sessions (a.k.a. flows) have the same POC. The POC for a flow is
the set of locations (routers) at which the flow’s packets are lost or
experience excessive queueing delay. We say we are testing two
flows when we are trying to identify whether or not they have the
same POC. For conciseness, we say that two flows share conges-
tion if their POCs are identical, and that flows do not share con-
gestion if the intersection of their POCs is empty. In this section,
we assume that the flows” POCs are either identical or mutually
exclusive, which means that the question, “Do flow A and flow B
share congestion?” can be answered with a simple “yes” or “no”.
A relaxation of this assumption is examined in [5].

Our findings are that the delay-corr technique converges in much
less time to the correct hypothesis than the loss-corr technique.
However, there are two reasons why an application might prefer to
use a technique that generates estimates using only loss statistics:

e The delay-corr technique requires timestamping of packets. We
have noticed in our experimental results that performing the times-
tamping at the user-level is sufficient, but becomes less reliable if
the hosts are heavily loaded. Thus, the delay-corr technique re-
quires more resources than the loss-corr technique.

e Heavy delay congestion is likely to manifest itself in routers with
larger queues, whereas heavy loss congestion is likely to manifest
itself in routers with smaller queues. While we suspect that the
POC is often the same for both forms of congestion, this need not
be the case. Thus, the best way to determine that the POC that
causes loss is shared is to apply the loss-corr technique (and wait
the extra time). Similarly, the best way to ensure that the POC that
causes delay is shared is to apply the delay-corr technique (and use
the additional resources).

We consider only topologies in which either the pair of senders or
the pair of receivers of both flows are co-located at the same host.
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Figure 1. Virtual topologies

This assumption does restrict the set of pairs that can be considered.
However, as compared to a randomly chosen pair of flows for which
neither the senders nor the receivers are co-located, flows that have
at least one set of of co-located hosts i) are easily located from the
point of co-location, ii) are more likely to share congestion, since
portions of their paths are guaranteed to overlap, and iii) require
less communication overhead (i.e., they can communicate over a
LAN) to perform aggregated congestion control.

Figure 1 gives a pictorial representation of sample topologies
formed from the paths of the two flows with co-located hosts. Si
and S are the senders of the two flows, R; and R: are the two
receivers, and the little black balls are routers at the intermediate
hops. In the Inverted-Y topology (Figure 1(a)), the senders are co-
located. Packets transmitted by the senders traverse a set of com-
mon links up to some point in the network, after which the flows
travel along separate paths. In the Y topology (Figure 1(b)), the re-
ceivers are co-located. Packets transmitted by the senders initially
traverse a separate set of links. At some point along each flow’s
data-path, the flows meet and the remaining path to the receivers is
identical.

A shared POC exists if congestion occurs along the top portion of
the inverted-Y topology, or along the bottom portion of the Y topol-
ogy. We assume that in the Y (Inverted-Y) topology, after the flows’
paths are joined (deviate), they do not deviate (re-join). Otherwise,
the order of packet arrivals (departures) could differ substantially
from what is observed at a shared POC. Note that if a pair of flows
can be mapped onto either of these two topologies, then (barring re-
ordering) we can observe, from the point of co-location, the order in
which packets pass through the shared POC, if it exists. This allows
us to infer whether or not the flows share congestion using only
information that can easily be monitored at the three end-system
locations. Hence, the techniques do not require any information
pertaining to router processing rates, link speeds, or traffic patterns
of any background traffic.

Let us now formalize the notation that will be used throughout the
paper to refer to the packet flows. Let f1 and f» represent the two
flows that we are testing. Each of these flows is referred to as a
foreground flow, and we refer to the packets within the flows as
foreground transmissions. Any other traffic/packet in the network
that does not belong to either of these flows is referred to as back-
ground traffic. Let p1,; represent the sth packet transmitted by f1,
and p2,; represent the sth packet transmitted by fa2. We write the
jth foreground packet transmitted (counting packets in both flows)
as pj, i.e., for each p;, there is some ¢ where either p; = p1,4, or
Pj = P2,

Last, we define a function that allows us to identify the adjacency
of two packets in the foreground. For any two packets, p, and p,
from either flow, f1 or f2, we define the function adj(pq,ps) = 1

if b = a + 1, and 0 otherwise. adj(pa,ps) indicates whether or
not two foreground packets are adjacent with respect to the other
foreground packets. In other words, adj(p1,i,p2,;) = 1 implies
that there is some k for which p1,; = pr and p2,; = pr+1.

2.1 Comparison Tests

Input: Trace information from the two fows

Step1:  Compute the cross-measure, M, between pairs of
packets in both flows, spaced apart by time .

Step2:  Compute the auto-measure, M, from packets within
afbw, spaced apart by timeT' > t.

Step 3. If M, > M,, then the fows share a POC.
Else, the fows do not share a POC.

Figure2: A comparison test.

Our techniques for detecting whether or not a pair of flows share
congestion are based on two fundamental observations of Internet
congestion:

e Losses or delays experienced by two packets passing through the
same POC exhibit some degree of correlation (i.e., a loss or ex-
cessive delay observed by a packet increases the likelihood that a
later packet will be lost or experience a large delay). However, in
general, the degree of correlation decreases as the time between the
packets’ transmissions is increased [12; 13].

e The losses or delays experienced by two packets that do not share
the same POC will exhibit little or no correlation.

Our idea is to measure the correlation between pairs of packets both
within a flow, and between flows. We choose the pairs between
flows such that if the POC for the flows is shared, then on average,
the time between arrivals at the POC of packets in the between-flow
pair is less than the time between arrivals at the POC of packets of
a single flow. Hence, the between-flow pairs will experience higher
levels of correlation if the POC for the flows is shared. If it is not
shared, then the between-flow pairs will exhibit no correlation, and
the level of correlation will be higher for the single-flow pairs. We
refer to this simple method of making this determination as a com-
parison test. The basic steps are reiterated in Figure 2. We refer
to M, the measure of correlation between the flows, as the cross-
measure (as in cross-correlation), and M,, the measure of correla-
tion within a flow, as the auto-measure (as in auto-correlation).

The benefit of using a comparative test is that it gives a definitive
answer as to whether or not the flows share, regardless of what the
specific values of the cross- and auto-measures are. Alternatively,
one could construct measures that indicate congestion when taking
on certain values (e.g., a correlation coefficient that is larger than
some fixed value, o). Often, the value for a depends on several
factors, including the service rate of the queues in the network, and
the rate of the probe traffic, making a unique value for c unlikely.

2.2 Poisson Probes

We have noted that we need a method to generate packet samples
in such a way that the average time of arrival at a shared POC (if it
exists) between a sample pair from separate flows is less than that
between a sample pair of packets from the same flow. To sim-
plify presentation, we consider a single method for transmitting
probes that is robust over both the Inverted-Y and Y topologies.
The method we use, commonly referred to as a Poisson probe, is a
flow whose inter-packet departure times are described by a Poisson
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process. We represent the rate of f1’s process by A1, and the rate
of f2’s process by A2. We assume in our analysis that the trans-
mission and queueing delays between the source and the POC do
not significantly change the inter-packet spacing, and thus the ar-
rival process at the POC can be modeled as Poisson with respective
arrival rates of A; and A2. We note that the aggregate arrival pro-
cess formed by combining these two Poisson processes is itself a
Poisson process with rate A\; + A2. The length of time between
the arrival at the POC of two adjacent packets, p; and p;+1, from
this aggregate process of rate A1 + A2 is on average smaller than
the time interval between two successive packets from a single flow
(6.9, p2,; and pa, ;1) transmitted at rate Ao < A1 + X2t Fur-
thermore, because the aggregate process is Poisson, the distribution
of the time interval between the adjacent packets is independent of
the packets’ flow origins (i.e., whether they came from f1 or f2).
It follows that the average time interval between the arrival of two
adjacent packets from different flows is less than that between two
successive packets within a single flow.

In the remainder of this section, we describe how to compute mea-
sures of M, and M, using loss and delay measurements obtained
from using Poisson probes. We conjecture that these measures
work for other probe distributions, and thus in many cases, the mea-
sures can be applied in-band, i.e., the probes can be incorporated
into the underlying data stream. However, it is likely that the tech-
niques are not robust for all possible distributions of traffic. One
example is when each flow transmits packets in groups (i.e., bursty
traffic), that places packets within a single flow very close together.
In such cases, these techniques can still be applied by transmitting
a Poisson probe out-of-band, alongside each of the two data flows.
Results presented later in this paper demonstrate that the detection
of a shared POC can be done efficiently in practice using a total
probing bandwidth of a kilobyte per second.

2.3 The loss-corr technique

The loss-corr technique is based on the intuitive notion that if two
packets proceed through the same bottleneck, and the first packet
is dropped, then the likelihood of the second packet being dropped
becomes higher as the time between the packets’ arrivals to the
bottleneck is decreased. Define L; to be 0 if p; is dropped prior to
reaching the destination host to which it was sent, and 1 if it is re-
ceived at its destination. Define L; ; similarly, to indicate whether
or not packet p;,; reaches the receiving host of f;, where j =1, 2.

For the Inverted-Y topology, the loss-corr cross-measure and auto-
measure are the following conditional probabilities:

M,

Pr(Ls,; = 0| Ly,; = 0,adj(p1,j,p2,:) =1) (1)

M,

Pr(Ls,i =0| Lz,i—1 =0) @)

The cross-measure we use for the Inverted-Y topology is the con-
ditional probability that a packet from f5 is lost, given that the pre-
ceding foreground packet was from f; and was lost. The auto-
measure is the conditional probability that a packet from f» is lost
given that the previous packet from f- is lost.

In the Inverted-Y topology, we have utilized the fact that the rela-
tive order in which lost packets arrive at the POC can be identified
from the co-located sending end-systems: even when La; = 0

!Note that a pair of successive packets within a flow need not be
adjacent, e.g., packets from f1 may arrive between arrivals of suc-
cessive packets p2,; and p2,j41.

and L;,; = 0, it is always possible to determine whether or not
adj(p1,j,p2,:) = 1. In the Y-topology, this is not the case. For in-
stance, a received sequence Of p1,;, p2,i, P2,i+2, P1,5+2 implies that
packets p1,;+1 and p2 ;41 were lost. However, one cannot deter-
mine from these measurements whether p1,j+1 preceded p2, ;41 (or
whether p1,;+1 preceded pa ;, etc.)? It follows that co-located re-
ceiving hosts cannot determine whether or not adj(p1,;,p2,;) = 1
when both p; ; and p2; are lost. As a consequence, we cannot
compute the cross-measure defined by (1).

Instead, we define another cross-measure that can be computed by
end-hosts configured in a Y-topology, and another auto-measure
that, when compared to this cross-measure, meet the requirements
of the comparison test. ~We define adjr(pi,p;) such that
adjr(pi,p;) = lifandonly if ¢ < j5,L; = 1,L; = 1, and
L, =0foralli < k < 7, and let adjr(pi,p;) = 0 otherwise.
In other words, adjr(pi,p;) is 1 if and only if p; and p; are adja-
cently received packets (i.e., pg is lost forany i < k < j). The
cross-measure and auto-measure for the Y topology are the follow-
ing conditional probabilities:

M, = Pr(Lz’i,1 =0 |L1,j71 =0,
adjr (p1,j,p2,i) = 1) ©)]
M, = Pr(Ly;=0) 4

M, is the conditional probability that for any 4, a packet, ps,;—1,
from f» is lost, given that i) the subsequent packet from fa, p2,;,
is received, ii) the nearest foreground packet that is subsequently
received after ps; is from fi (p1,; for some j), and iii) that the
preceding packet from fi1, p1,;—1, is lost. The reader should note
that the sequence of events used in equation (3) can be identified at
the co-located receivers in the Y-topology: the sequence “pivots”
on a pair of received packets to detect a pair of lost packets that are
likely to be adjacent. M, is the loss rate experienced by fo. We
note that this version of M, is itself not a measure of correlation,
but we find that its value is smaller than that of (3) only when the
POCs are shared.

2.4 The delay-corr technique

The delay-corr technique applies the correlation coefficient to the
delays experienced by receivers. For a set of pairs of real valued
numbers, S = {(zs,v:)}, zi,yi € R, the correlation coefficient of
the set is defined as:

_ Elz;y;] — Elz;]E[y;]
G = JEET- P e - )

where E[f(z:)] = Y,,nesf@)/IS| and E[f(y)] =
> (ai,wiyes fWi)/|S|. Define D; to be the observed delay in-

curred by packet 3. D; = a; — d;, where d; is the departure time of
pi according to the sender’s clock, and a; is its arrival time accord-
ing to the receiver’s clock. Note that because of unsynchronized
clocks and/or clock drift, the observed delay we compute need not
equal the true time elapsed between the packet’s departure from
the sender and its arrival at the receiver. The lack of time synchro-
nization between clocks does not affect the value of the correlation

21t may be possible to predict the more likely case by looking at
inter-packet spacing within a flow. However, packets can experi-
ence unpredictable delays (jitter) that would make such estimation
less reliable.



Working draft of version to appear in ACM SIGMETRICS’00

coefficient: the correlation coefficient of two random variables, X
and Y, is the same as that between X + ¢ and Y when c is a con-
stant. A large skew in the clock rates can alter the effectiveness of
using the correlation coefficient of delay over long traces. How-
ever, efficient algorithms for removing clock skew from long traces
are known [14; 15]. Henceforth, we simply refer to the observed
delay as the delay.

We similarly define D;; to be the respective delays of p;,
j = 1,2. For both the inverted-Y and Y topologies, M, and M,
are computed as:

My C({(D1,i, D2,j) : adj(p1,i, p2,j) = 1}) (6)

M, C({(D2,i, D2,i41)}) ]

M, is the correlation coefficient computed from the delays of pairs
of packets that are adjacent with respect to the foreground flows.
The previously arriving (transmitted) packet must be from f;, and
the subsequent packet must be from f. M, is the correlation coef-
ficient computed from the delays between arrivals (transmissions)
within f> that are adjacent with respect to packets in fs.

3. QUEUING ANALYSIS

In this section, we demonstrate the correctness of the comparison
tests described in Section 2 in the context of various queueing mod-
els. We assume that the time between transmissions for each of the
foreground flows, f1 and f2, are described by Poisson processes
with rates of A; and A2, respectively.

Aoy Ao, A

I
SHSI
JN N

(@ (b) Separate

A1

Figure 3: Queuing modelsfor shared and separate POCs.

Figure 3 depicts our models of a shared POC for flows f1 and fa,
and separate POCs for the flows. A POC is represented by a queue.
A shared POC (Figure 3(a)) is represented by a single queue; pack-
ets from both of the foreground flows enter this queue at respective
rates, A1, and A2. Additionally, background traffic enters the queue
at a rate of \y. The queue services packets at a rate of u. Sep-
arate POCs (Figure 3(b)) are represented by two queues. Packets
from f; enter a queue whose background traffic arrival rate is As,
and whose service rate is u;,4 = 1,2. Each packet that proceeds
through the queueing system is serviced by only one of the two
queues (e.g., packets from f; do not previously or subsequently
proceed through the queue servicing packets from f»). There are

no restrictions on any of the rates (foreground rates can differ from
one another, in the two-queue case, background flow rates can dif-
fer in the two queues). Unless specifically stated otherwise, back-
ground traffic arrivals and queue service completions are described
by any general i.i.d. distribution.

In the next subsection, we prove that, given the queues are all
M/M/1/K queues (where the buffer size, K, can differ among the
various queues as well), the loss-corr technique correctly identifies
whether or not the foreground flows share a POC in the inverted-Y
topology. We do not have a proof that the loss-corr technique cor-
rectly identifies whether or not two flows share in the Y topology.
However, we have formulated a set of recursive equations that al-
low us to compute the steady-state values of Equations (3) and (4)
as functions of A1, A2, Ap, and K, when the POC is shared and be-
haves as an M/M/1/K queue. We then compared the values of these
equations for a variety of values of A1, A2, As, and K, and found
equation (3) to always be larger than (4) (the desired result). Due
to lack of space, we are unable to include the formulation of the
equations, or the results. This information is available in the tech-
nical report, [5], on this work. The fact that equation (3) produces
a value less than that of equation (4) when the POCs for the two
flows are modeled as separate M/M/1/K queues is demonstrated
in a similar manner, but also follows trivially from observations of
independence.

In the subsequent subsection, we demonstrate that, given all queues
are M+G/G/1/0o queues (foreground traffic remains Poisson, back-
ground traffic and service times are satisfy any i.i.d. general dis-
tribution), the delay-corr technique successfully distinguishes be-
tween shared and separate POCs for both the Y and Inverted-Y
topologies. Since the queue’s capacities are unbounded, the proof
requires the additional assumption that the aggregate rate of traffic
into any of the queues is less than the processing rate for that queue.

3.1 The loss-corr technique, Inverted-Y topol-

ogy

We write ¢;,7 = 1, 2 to represent two M/M/1/K queues. We define
w to be a sequence of insert and remove events, w = (e1,e2,-- -,
em), and let Q;(w, 5) be the number of packets in g; after the jth
event in w is applied to the queue. We write @;(w, 0) to be the num-
ber of packets in the queue prior to the application of w. We assume
that the system has been in operation for some time when w is ap-
plied to the queue so that it need not be the case that Q;(w, 0) = 0.
An insert event increases the queue length by one unless already
full, and a remove event decreases the queue length by one unless
it is already empty.

LEMMA 1. Consider two queues, g1 and g-, of identical buffer
capacities, K. If Q1 (w,0) < Q2(w,0), then Q1 (w, j) < Q2(w, 7)
forall j > 0 as well.

Lemma 1 can be proven trivially by induction over the length of the
sequence, w. The proof is omitted.

LEMMA 2. Consider a queue, ¢i of capacity K where
Q1(w,0) = K (the queue is full). Let w' be a suffix sequence
of w, i.e, w' = (f1, f2, -+, fmr) Where for some s > 1,m' =
m—i+1land f; = ejri—1 where1 < j <m'. Then Q1 (w',7) >
Ql(w7j + 7’)

PROOF. Consider the application of w to the queue. After ap-
plying the (possibly empty) prefix (e, - ,ei—1) to the queue, it
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must be the case that @1 (w,% — 1) < K. The result then follows
from Lemma 1, since the remaining sequence of w to be applied is
w', hence Q1 (w,i—1+47) < Q1(w',j) for0 < j <m—i+1. O

THEOREM 1. In an M/M/1/K in which both foreground flows
enter into the same queue, Pr(Ls; = 0 | (Li; = 0),
adj(p1,i,p2,5)) > Pr(Lzjy1 = 0] L2,; =0) (i.e, My > M,).

PROOF. Letw = (e1,--- ,em,, ) be afinite-length sequence of
events, each e; € {1,2,b,s}, where e; = 1 means that the sth
event is an arrival from fi1, e; = 2 means that the ith event is an
arrival from fa2, e; = b means that the ith event is a background
arrival, and e; = s means that the sth event is a service completion
(this event has no effect on the queue if the queue is already empty).

Let S = {w} be the set of all possible finite-length sequences. Let
gp Map any w to its longest prefix whose final eventisa 1. i.e.,
gp(w) = (e1,--- ,en)Wheree, =1lande; # 1forn < i < my.
If w contains no e; = 1, then gp(w) is the empty sequence. Let
gs(w) be the longest suffix of w that contains no e; = 1. i.e,
gs(w) = (ént1, " ,em,) Wheren = Qorelsee, = 1, e; #
1forn < i < m,. Note that each sequence w has a unique
decomposition as w = gp(w) - gs(w), Where - is the concatenation
operation.

Define P to be the probability measure over S.3  This is well
defined since all events are generated from a Poisson process, so
the measure of a sequence is independent of any previous history
(previous arrivals, state of the queue). Furthermore, it follows from
the Poisson assumption that the measures of prefixes and suffixes
are independent and satisfy P(w) = P(gp(w))P(gs(w)).

We now define several random variables that will allow us to for-
mally describe the conditional probabilities stated in the theorem
over the set of sequences in S. Define X to be a random vari-
able on S where X(w) = 1 if ey, , the last event in w, is the
first (and only) arrival from f2 in w and O otherwise. Define X,
to be a random variable on S where X, (w) = 1 if w contains
no event e; = 2, and 0 otherwise. Define X, to be a random
variable on S where X (w) = 1 if w contains no event e; = 1,
and only the last event, e,,,, is an arrival from f,. Note that
Yw € S, X(w) = Xp(gp(w))Xs(gs(w)). Also note that for any
w € S where X (w) = 1, there is a unique pair, w1, w2 € S, where
w = wi - wa and Xp(w1)Xs(wz2) = 1. Namely, w1 = gp(w) and
w2 = gs(w).

Define Lx to be random variable on S where for w € S, Lx (w) =
1 if the last event of w is a packet arrival, and applying w to a queue
of capacity K whose buffer is initially full causes this last arrival to
be dropped (i.e., the queue is full upon its arrival). It follows from
Lemma 2 that Lx(w) = 1 = Lk (gs(w)) = 1, in other words,
VYwp,ws € S We have Lk (wp - ws) < Lk (ws). Defining ; to be
the steady-state probability that the queue length is ¢, we have

3We emphasize that P is a probability measure [16] and not a prob-
ability distribution. Note also that S is a countable set, so that the
measure of a set §’ C S that contains a set of sequences, where
no sequence in S’ is a subsequence of another w € ', is simply

Ywest P(w)-

Pr(Lgjy1=0,Ly;=0) = Y mxP(w)X(w)lk(w)
weS
= 7k Y Pw)X(w)Lk(w) (8
w€EeS
Pr(Lz,; =0) = Z mr P(w)X (w)
wES

= 7k Y P(w)X(w) )

weS

We can rewrite the conditional probability, Pr(Lz,j4+1 = 0| La,; =
0), as

2wes PW)X(w) Lk (w)
Ywes Pw)X(w)
pres >wses Plwp)P(ws) Xp(wp) Xs(ws) L i (wp + ws)
pres Ywses Plwp) P(ws) Xp(wp) Xs(ws)
Ewpes Ywses Plwp)P(ws) Xp(wp) Xs(ws) Lx (ws)
Ewpes Ywses Plwp)Pws) Xp (wp) Xa(ws)
(S, es P@)Xp(@p)) (o, s Pws)Xo(ws) Lx (ws))
(S, es P@n) Xp(@p)) (S0, s Pws)Xo(ws))
Pw,es Lr (ws)Xs(ws) P(ws)
EwSGS P(Ws)Xs(ws)
Zwsesﬂ'KP(l cwe) L (we) X (ws)

Yw,es TEP(L-ws) X, (ws)
= Pr(L2; =0|Ly,; =0,adj(p1,i,p2,5) = 1) (1)

Pr(L2,j41=0]L2,; =0) =

IA

(10)

where we use Lx (wp - ws) < Lk (ws) to establish the inequality
in (10). This inequality is strict since there exists at least one w =
wp - ws Where Lx (w) < L (ws) and X, (wp) Xs(ws) 0. O

THEOREM 2. In two M/M/1/K queues in which the foreground
flows enter separate queues, it is the case that Pr(Lz; = 0 |
(L1,i = 0),adj(p1,i,p2,5)) < Pr(Lzjy1 = 0] Lz,; =0) (ie,
M, < M,).

PROOF. Arrivals (departures) to (from) the first queue have no
impact on the second queue, and can be ignored when considering
the status of the second queue. Because all arrivals and departures
from the queues are Poisson, by PASTA[17], Pr(Ls,; = 0| L1; =
0,adj(p1,i,p2,5)) = Pr(La,; = 0) for any packet in f2. Thus, we
need only prove that Pr(Ls,; = 0) < Pr(Ls,;41 = 0| La2,; = 0).

We prove this by a sample path argument. Similar to Theorem 1, we
define S = {w} to be the set of all possible finite-length sequences
through the queue. Since packets from f; pass through a separate
queue, each event, e; of w = (e1,e2, -+, em,) is chosen from
{2,b, s}. Define P to be the probability measure over S (again
this is well defined due to the memoryless nature of the Poisson
distribution).

Define X to be arandom variable on S asin Theorem 1: X (w) =1
when the first and only arrival from f5 is the last event, e, , in the
sequence, and 0 otherwise. Define Y; to be a random variable on S
where Y;(w) = 1 if applying the sequence, w = (e1, - ,ems ),
to the queue with initial length 7 < K causes the last event, e,,,, t0
result in a packet drop, and 0 otherwise.
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We can rewrite our probabilities for which we need to prove the
inequality as follows:

K
Pr(Lz; =0) = > > mPw)X(w)Yi(w) (12)
w€eS i=0
= Y PWXWYxw) (13
w€eS

The denominator drops out using the observation that
Y wes P(w)X(w) = 1 (i.e., the measure of all finite sequences
that end with an arrival from £ is 1). We note that for any w where
X(w) =1andanys,jsuchthat0 < j < 7 < K, it follows from
Lemma 1 that Yj(w) < Y;(w). In particular, there is some w for
which X (w) = 1 where for some ¢, Y;(w) = 0 while Yx (w) = 1.
Also since Y75 o mi = 1, we get:

K
ZZmeX

Z Zm (W)X (W)Y (w) < w)Yg (w)
wES =0 wES i=0
= Y Pw)X(w)Yk(w)
wES

which completes the proof. [

3.2 Thedelay-corr technique: Inverted-Y and
Y topologies

We now demonstrate that the delay-corr technique will correctly
infer whether or not the two flows share in a queuing system where
the background traffic arrives according to an arbitrary, ergodic and
stationary process, and the service times are characterized by an
arbitrary distribution. We do require that the random variables that
represent the background traffic and service times be i.i.d. The
analysis also assumes that the system has entered into the stationary
regime, i.e., the system is initially in the steady-state.

Our arguments rely on the following technical lemma that is estab-
lished in the appendix of [5]:

LEMMA 3. Let G be a non-decreasing function over [0, co),
where lim; 0o G(z) > G(0) > 0, and let f and g be
functions such that [* f(z) de = [Z g(z) dz,
2, G(x)f(z) dz < oo, [ 2 G(z)g(z) dz < oo, and there is
some + such that for z < «, f(z) > g( ) and forz >+, f(z) <
g(z). Then [ G(z)f(x) dzx < [ 2, )g(z) dz. Similarly,
if G is non- |ncrea5|ng with 0 < hmﬁ_,oo G(z) < G(0), then

~oG@)f(z)dz > [*° G(z)g(x)dx

The following Lemma implies that the delay correlation between
two adjacent foreground packets is higher than that between two
non-adjacent foreground packets. Its proof appears in the appendix
of [5].

LEMMA 4. Consider an M+G/G/1 server (infinite capacity
queue) where background traffic arrives with an aggregate arrival
rate of A, foreground traffic arrives according to a Poisson process
with rate Af, and packets are served at an average rate
Ofp, > Ay + Af. Then E[DiDHJ] > E[DiDH_n] forn > 1.

Armed with this Lemma, we can now prove the result that M, >
M, when the POC for both flows is the same M+G/G/1 queue.

THEOREM 3. Consider the same M+G/G/1 queue as in Lemma
4, where the foreground flow consists of packets from flows f, and
f2 whose arrivals to the queue are each described by Poisson pro-
cesses with rates A1 and A2 respectively, A1 + A2 = A¢. Then
My > M,.

PROOF. We start by noting that Vi, j,k,m = 1,2, E[D; ;] =
E[D;,;] = E[D2,x] = E[D2,m]. In other words, each packet has
the same expected delay.  Similarly, Vi,j,k,m = 1,2,
E[(D1,)*] = E[(D1,j)*] = E[(D2,x)°] = E[(D2,m)’]. Hence,
to prove the theorem, we need only show that E[D; ;D3 ;|
(adj(p1,i; p2,5) = 1)] > E[Dz2,iD2iy1].

A Poisson process of rate A; has the same distribution as a Poisson
process with rate A1 + A2 that has been thinned with probability
A2/(A1 + A2). As defined in (6), M, computes the correlation
coefficient between adjacent packets in the aggregate foreground
flow. Hence, E[D1’iD2,j|(adj(p1,i,p2’j) = 1)] = E[DiDH_1].
Alternatively, as defined in (7), M, is the correlation coefficient
between packets from f» that are adjacent with respect to f1 (i.e.,
packets p2, ; and p2 j+1). Let A1(4,7+n) be a random variable that
equals 1 if p; is from f1 for all j where s < 5 < i+ n and 0 other-
wise. Let A2(3,% + n) be a random variable that equals 1 if p; and
pi+n are from fo, and 0 otherwise. Using the fact that packet de-
lays are independent of their marking (E[D; Dy |A1(4,1 +n) =
1, A, (i,i + n) = 1] = E[DiDH_n]), then

E[D2,;D3,j+1]
o o]
= > E[DiDiyn | A1(i,i+n)=1,As(i,i+n)=1]-
n=1
Pr(Ay(iyi +n) = 1| Ag(iyi +n) = 1)

(o]
< Z [DiD;i+1]Pr(A1(3,i +n) = 1| A2(i, i +n) =1)

= E[D;iDj.]
where Lemma 4 yields the above inequality. [

Thus far, we have shown that M, > M, when the flows share
POCs. We now prove that M, < M, when the flows do not share
POCs.

LEMMA 5. E[Ds,;41|D2,; = z]isan increasing function of z.

This Lemma is also intuitive. It says that the expected delay of
pa,i+1 1S an increasing function of the delay of ps,;. A detailed
proof is given in the appendix of [5].

THEOREM 4. Let f; and f, have separate queues as bottle-
necks, and let f2’s queue be an M+G/G/1 queue as in Theorem 3
(except that f1 does not pass through the queue). Then M, < M,.

PROOF. First, note that M, = 0, since the delays experienced
by two packets drawn from separate foreground flows are indepen-
dent. The denominator of a correlation coefficient is always larger
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than 0. Hence, we need only show that the numerator in the corre-
lation coefficient of M, is larger than 0:

E[D2,;4+1D2,] — E[D2,i+1]E[D3,;]

(o )
= / zPr(D2,; = )E[D3,it1|D2,i = z] de —
z=0

[
/ T PI‘(D2,’: = «T)E[Dz,i-}-l] dz (14)
=0

By Lemma 5, E[Ds,i41|D2,; = z] is an increasing function of
x. Noting that f;io Pr(DQ,i = .’L‘)E[Dz,i+1|D2,,’ = :U] de =1=
[0, Pr(D2,; = z)E[D2,i11] dz, it follows that there must exist
some « for which z < v < E[Da,i+1|D2,i = ] < E[D2,i+1],
so that we can apply Lemma 3 with G(z) = z, f(z) = Pr(Da2,; =
x)E[D2,i+1], and g(:r) = PI‘(D2,Z' = .’L‘)E[Dz,i+1|D2’i = .’B], we
get that the right hand side of (14) is larger than 0, which completes
the proof. [

4. PERFORMANCE IN SIMULATION

Figure 4: Topology used in simulation experiments.

In this section, we use simulation to examine four scenarios. In
the first two scenarios, we simulate a flows that are configured in
an Inverted-Y topology. In the second two scenarios, the flows are
configured in a Y topology. In the first and third scenarios, the
flows” POCs are independent, and in the second and fourth, the
flows’ POCs are shared. Figure 4 demonstrates the topology on
which we run our simulations using the ns- 2 simulator [18]. For
the Y topology, probe receivers are connected to the left-most node,
the sender for fi is connected to the bottom-right node, the sender
for f» to the top-right. For the Inverted-Y topology, we simply
swap the locations of each flow’s sender with its receiver. We con-
struct POCs by assigning links that we want congested to process
at a rate of 1.5 Mbs, and links that we do not want congested pro-
cess at a rate of 1000 Mbs. The links that are assigned the 1.5 Mbs
capacity are either the set of links numbered 1 through 3 (shared
POC) or else are the set of links numbered 4 through 8 (separate
POCs). All background data traffic flows in the same direction as
that of the foreground flows, and traverses a subset of links that are
assigned the 1.5 Mbs capacity (i.e., there is no background traf-
fic on the high bandwidth links). 10 through 20 background flows
are placed on the path of each probe, each background flow uses
the TCP protocol with probability of .75. Otherwise, it is a CBR
flow with on-off service times. The CBR rate is uniformly cho-
sen between 10 and 20 Kbs, and the average on time and off time is
chosen independently between 0.2 and 3.0 seconds. For each of the
four scenarios, we run 1000 experiments, starting the background
traffic at time ¢ = —10, and then starting the probes at time ¢ = 0,
and ending the experiment at time ¢ = 120.

Figure 5 plots the percentage of experiments run over the Inverted-
Y topology that, using the loss-corr and delay-corr techniques, cor-
rectly infer whether or not the flows share as a function of time. As
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Figure5: Inverted-Y topology

clock time progresses and additional packets arrive at the receivers,
the estimates of M,, and M, are computed over an increasing sam-
ple set size. The hope is that over time, as the estimates of M, and
M, increase in accuracy, more tests will correctly infer whether or
not the flows’ POCs are shared.

Figure 5(a) plots the results of 1000 experiments in which the flows’
POCs are separate. Figure 5(b) plots the results of 1000 other ex-
periments in which the flows’ POCs are shared. In each experi-
ment, both foreground flows send 20 byte packets at an average rate
of 25 per second. The clock time varies exponentially on the z-axis,
where a time of zero indicates the time that the first probe packet
arrived at either receiver. The y-axis indicates the percentage of the
experiments that satisfy the property being plotted. Curves labeled
“no response” plot the percentage of tests that cannot form a hy-
pothesis by the time indicated on the z-axis (the test must have at
least one sample that can be used to compute an estimate for both
M, and M, before it forms a hypothesis). Curves labeled “correct”
plot the percentage of tests returning a hypothesis whose hypoth-
esis is correct at the time indicated on the z-axis (i.e., tests that
have not yet returned a hypothesis are omitted when computing the
values of the “correct” curves). 95% level confidence intervals are
generated by averaging over twenty samples at a time, such that the
distribution of the average of the samples is approximately normal.
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Points are omitted when confidence intervals are too wide.

We can make several observations from these graphs. First, the
rate at which the delay-corr technique correctly assesses whether
or not a POC is shared is an order of magnitude faster than that of
the loss-corr technique. For instance, for 90% of the experiments
to draw a correct conclusion, the delay-corr technique obtains a
sufficient number of samples within a second, whereas the loss-corr
technique must proceed for between 10 and 50 seconds over the
various experiments. This is not surprising, given the fact that the
delay-corr technique is able to use almost every packet to compute
its measures, whereas the loss-corr technique only uses samples
that contain certain sequences of packet losses. We also note a
trend that for the loss-corr technique when POCs are shared, the
percentage of hypotheses that are correct initially decreases with
time. This is likely a result of a bias caused by the fact that the
samples used to compute M, arrive at a slower rate than those used
to compute M,.
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Figure6: Y topology

Figure 6 plots similar results for a Y-topology as those in Figure 5.
There is little difference in the results of the delay-corr technique
between the two topologies. This is not surprising, since the differ-
ence in topology does not affect the way the delay-corr experiment
is executed. On the other hand, the loss-corr technique for the Y-
topology converges at a slower rate than the loss-corr technique for

the Inverted-Y topology. This is because in most cases, the value
of M, computed using (3) is not significantly different from the
value of M, computed using (4) so more samples are necessary
to correctly assess with a given level of confidence which one is
larger. Furthermore, the conditioning within (3) is stricter than that
for (1), such that on average it takes longer to get the same number
of samples.

We also examined the applicability of the comparison tests when
the routers initiated Random Early Detection, and found no signif-
icant impact on our reported results for the delay-corr technique.
However, we observed that the loss-corr technique failed to iden-
tify shared POCs in more than half the cases. This is not surpris-
ing: first, RED will randomly drop probes as the queue fills: this
by itself introduces noise into the test statistic. Second, RED is
designed to encourage TCP sessions to “back off” prior to over-
flowing its bottleneck queue. This reduces the likelihood that the
queue will be full and reduces the rate of packet loss.

5. ACTUAL TRACES

We have demonstrated the robustness of our comparison tests
through queueing analysis and simulation. Now, we give evidence
that these tests work in practice. We apply the tests to flows that tra-
verse the Internet, choosing end-system locations such that we can
be reasonably sure as to whether or not the flows share congestion.
We then examine the results of our comparison tests. The set of
end-systems used in the experiments consists of machines located
at ACIRI (California), UCL (London, UK), Columbia (New York
City), AT&T-San Jose (California), and three of our own machines,
labeled “UMass-1” through “UMass-3”. Table 1 presents a short-
hand notation for these sites that is used in the subsequent figures
and tables.

M: M:
M, M,

O U U
C

(a) Shared (b) Independent

Figure7: Experimental topologies

Figure 7 pictorially demonstrates an example of a set of end-system
sites for experiments such that we can be reasonably sure (without
using the comparison tests) whether or not the flows share a POC.
The example in Figure 7 involves four sites; UMass-1, UMass-2,
Columbia, and UCL, three of which are located in the U.S., and
one in Europe. UMass-1 and UMass-2 are in fact located on the
same LAN, such that the paths from (to) UMass-1 and UMass-2 to
(from) UCL shared all links in common except for the initial (fi-
nal) hop (this was verified using t r acer out e). We expect that
in this configuration (Figure 7(a)), the two flows will share conges-
tion. We believe that at the time of our experiments, the path from
(to) UMass-1 to (from) UCL and the path from (to) Columbia to
(from) UCL were traversed separate trans-Atlantic links, and that
the paths were disjoint along all links in the U.S. (Figure 7(b)).
We came to this conclusion via an examination of t r acer out e
statistics (a more detailed discussion of our use of t r acer out e
is presented later in the paper). We expect that in this configuration,
the flows will not share congestion. In either case, we can then ap-
ply the comparison tests and see whether or not the results of the
test correctly identify whether or not the POCs are shared.
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c

Columbia (New York)

M,

UMass-1

Mo

UMass-2

U UCL (London)

S AT&T-San Jose (California)

M3

UMass-3

A ACIRI (California)

Table 1: Sitename abbreviations

Date | Topology Hosts shared / non-shared loss rates loss-corr  stablesince | delay-corr  stable since
hop ratio (msec) (%) result (sec) result (sec)
11/3 Y (M1,M2 — U) (1,1 — 440) 142,1.29:1.36 Shared 154 Shared 05
11/3 Y (My,Ms — A) (1,1 — 91) 0.07,0.01: 0.04 | Not shared 184 Shared 2
113 Inv-Y (A — M1, M») (98— ~0,~0) 0.04, 0.07 : 0.06 INSUF Not shared 552
111 Inv-Y (A— M2, M3) | (91— ~0,~0) 0.03,0.03: 0.03 INSUF Shared 562
W1 | Inv-Y | (U— M, M) | (150 +~0,~0) | 5336.10:5.72 Shared 23 Shared 0.8
11/3 Inv-Y (M1 —- U, A) (6 — 82,322 0.75,0.17: 0.46 INSUF Not shared 23
W1 | Inv-Y (M3 — U, A) (0— 102, 447) 2.08,0.24:1.25 | Not shared 337 Not shared 4
111 Inv-Y U — My, A) (3— 313, 141) 6.08,0.26 : 3.05 | Not shared 411 Not shared 8.2
111 Inv-Y U — M1,0C) (47 — 110, 75) 12.12,0.07: 6.12 | Not shared 6 Not shared 6.2
111 Inv-Y U — M1,9) (75 — 233, 75) 8.55,0.01: 4.26 | Not shared 249 Not shared 4
111 Inv-Y U — M3, A) (30 — 264, 193) 1.95,0.10: 1.03 | Not shared 109 Not shared 48
113 Y (U.A— My) (32391 — ~ 0) 7.73,0.09: 3.90 Shared 543 Not shared 7
11/3 Inv-Y (A—C, M) (4 — 65,87) 0.05, 0.06 : 0.06 INSUF Not shared 328
W1 | Inv-Y (A— U, M) (4 — 189, 91) 0.15,351:1.82 | Not shared 560 Not shared 3
11/3 Y (C,M1 — A) (64,87 — 4) 0.00, 0.03: 0.02 INSUF Shared 30
113 Y (C. My = U) (88,340 — 130) 151,2.32: 1.92 Shared 61 Shared 05

Table 2: Traceresults

Table 2 summarizes the results of experiments performed during
the middle of the day on November 1 and November 3, 1999 using
the hosts listed in Table 1. Each experiment ran for 600 seconds,
with each foreground source sending 20 byte UDP Poisson probes
(not counting bytes in the IP header) at a rate of 25 per second.
Each packet contained a sequence number and a timestamp whose
time was computed at the source immediately prior to the socket
call that transmitted the packet. Packet arrival times at the receiver
were recorded at the receiver immediately after the socket call was
performed to retrieve the packet data. All time-stamping was per-
formed at the user level.

The first column in Table 2 indicates the date on which the ex-
periment was performed. The second column indicates whether
the topology was a Y or Inverted-Y topology. The third column
indicates the hosts that participated in the experiment, using the
abbreviations for the host names supplied in Table 1. For the Y
topology, the labeling, (A,B — C), indicates that senders at host A
and host B transmitted probes to receivers co-located at host C. For
the Inverted-Y topology, the labeling is of the form (A — B, C),
indicating that the co-located senders at host A transmitted probes
to receivers at hosts B and C.

The fourth column provides a rough approximation of the average
delay experienced over the shared path of the two flows, as well as
the average delay over the respective independent portions of the
paths. These values were obtained through two callsto t r acer -
out e that were executed during the experiment from the locations
of the probe sender(s)), one for each source-destination pair. The
shared links are the longest sequence of links, starting from the
point of the co-located hosts, that contain the same sequence of
IP addresses. The remaining links are unshared. The delay for
a sequence of links is the average of the delays as reported by
t r acer out e at one endpoint of the sequence minus the average
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of the delays as reported by t r acer out e at the other end.*  If
a sequence of links is assigned a delay that is less than zero, we
assume that the delay on this sequence of links is negligible, and
write the delay as ~ 0.

For the Y topology, the entry, (z,y — 2), z,y,2z € R that is as-
sociated with the labeling, (A,B — C), indicates that the unshared
portion of the path from host A to host C has an average delay of =
ms, the unshared portion of the path from host B to host C has an
average delay of y ms, and the shared portion of these paths has an
average delay of z ms. For the inverted-Y topology, the entry (z —
y, z) that is associated with the labeling, (A — B, C), indicates that
it takes on average = ms to traverse the shared portion of the paths,
and on average, y and z ms to traverse the unshared portions of the
paths to B and C, respectively.

We use the relative values of these path delays to estimate whether
or not the POCs are shared. If the delay over the shared portion is
small with respect to the non-shared portions, we assume that the
POC is not shared. Otherwise, we assume it is. A line is drawn in
the middle of the table separating the experiments whose flows we
assume traverse a shared POC (above the line) from those whose
flows we assume traverse separate POCs (below the line). We wish
to point out that these assumptions are only a “best guess” that we
are able to make given our limited access to routing information.

The fifth column presents the loss rates. An entry, a, b : ¢, asso-
ciated with the labeling, (A,B — C), or the labeling, (C — A, B),
indicates that the loss rate of the flow involving host A is a, the loss
rate of the flow involving host B is b, and the average loss rate over
both of the flows is c. We emphasize that the loss rates are given as
percents, so values less than one indicate that fewer than one out of

“No more than three are reported per hop, but in all our calls, at
least one was reported where necessary, allowing us to compute an
average.
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every one hundred packets were lost.

The last four columns present the results of the experiments. The
column labeled “loss-corr result” presents the hypothesis returned
by the loss-corr technique after 600 seconds; to its right is the time
of the experiment when the comparison test last changed its hypoth-
esis, i.e., the time at which it “stabilized” on its final hypothesis. A
hypothesis of “INSUF” indicates that the technique was unable to
form a hypothesis due to a lack of samples. The last two columns
present similar results for the delay-corr technique.

We find that five of the sixteen experiments that applied the loss-
corr technique were unable to construct a hypothesis. We note that
in all but one of these tests in which no hypothesis was constructed,
the host at ACIRI was the point of co-location. The loss rates in
these traces were so low, that no samples were produced that could
be used to estimate the the cross-measure, M,. Of the remaining
eleven experiments, only three of eleven fail to match the assumed
correct hypothesis. Except for the last experiment listed, all exper-
iments that returned the wrong hypothesis were conducted using
flows with very low loss rates, which suggests that these flows did
not experience significant levels of congestion.

In more than 80% of our experiments, the delay-corr test returned
the hypothesis that matched our assumption about whether or not
the POCs were shared. Two of the three tests that failed consisted
of sessions with very low loss rates. We hypothesize that the low
loss rates are an indication that the links were in use far below their
capacity, such that the level of delay congestion was insignificant.

6. OPEN ISSUES

There are several issues that remain open with regard to detecting
shared congestion that we have not considered. We touch briefly
on those that we feel are the most critical to solve. First, in the
Inverted-Y topology, the information necessary to compute the
cross-measures is distributed at the receiving hosts. In this paper,
our processing of the information is done off-line, at a centralized
point to which we transmit all data. One direction for future work is
to design protocols that, accounting for the fact that the information
may be distributed, can efficiently construct a hypothesis. A second
direction is to scale the tests such that they can detect POCs effi-
ciently among several flows. Katabi’s technique [9] is one possibil-
ity, but this technique is currently limited to the Y-topology, where
the ratio of bandwidth utilized at the POC by the background traffic
in relation to the foreground traffic is small. In practice, we expect
POCs exist at points where many flows are being aggregated, and
expect that this ratio can be quite large. A solution that scales easily
to many flows over a variety of traffic conditions remains an open
problem.

7. CONCLUSION

We have demonstrated two techniques that, via end-to-end mea-
surement, are able to accurately detect whether or not two flows
share the same points of congestion within the network. One of our
key insights is the construction of a comparison test: rather than try-
ing to figure out the level of correlation that indicates that two flows
share a common point of congestion, we compare the correlation
across flows to the correlation within a single flow to make the de-
termination. Another insight is that the detection can be performed
by transmitting probes, each of which have intra-transmission times
that are described by Poisson processes. These techniques can be
applied to flow topologies where the senders are co-located but the
receivers are not, as well as the case where the receivers are co-
located but the senders are not. We demonstrated the performance
of these techniques through a mix of proofs using traditional queue-
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ing models, simulation over a wide range of controlled scenarios,
and results using actual Internet traces.
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