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Abstract— As the number of mobile users increases, and
cell phones become more powerful, delivering multimedia
content to them using a centralized infrastructure becomes
both expensive and inadequate. Here we study an alternative
solution, which leverages local dedicated caches on these devices
to opportunistically fulfill other user requests, in a peer-to-peer
manner. The problem we study is that of choosing theallocation
of content items to these caches, to fulfill the demand of all users
in a timely manner. We show that the allocation’s efficiency itself
is determined by a previously overlooked factor - theimpatience
of content requesters - which leads to completely different
allocations being optimal as content requesters impatience
follows different delay-utility functions. Moreover, although no
global cache state can be maintained in such opportunistic
environment, we show for a homogeneous network that the
optimal cache allocation can be attained by simple reactive
replication algorithms that use only local knowledge.

I. I NTRODUCTION

Using smartphones to access the Internet is quickly be-
coming a commodity. Although users expect the same data
speed in a nomadic settings using a centralized infrastructure,
the recent growth of content access demand raises concern,
in particular to distribute rich multimedia content. An al-
ternative solution is to disseminate this content, especially
the popular one, reusing in a peer-to-peer (p2p) manner the
vast amount of untapped bandwidth, from ad-hoc 802.11 or
Bluetooth, that is available to exchange data locally between
the nodes.

We assume that some nodes dedicate a cache, where
content item can be stored to serve other users request as
they meet. The primary question that we address is how
to fill these caches with content so that user requesting
to access a given item are best satisfied. As opposed to
connected p2p, fulfillment of content request may incur non-
negligible delay, which lead this system to be sensitive to
user-impatience, or generally to how users behave as they
spend time waiting for a piece of content. This can be
described as adelay-utility function mapping delay to utility,
which is only assumed to satisfy a monotonic non-increasing
behavior. Minimizing the impact of delayed fulfillment on
user satisfaction leads to select the allocation of contentto
caches so as to maximize the aggregate expected utility, or
social welfare, in the network. This also depends on the
popularity of items and rates of meeting between the nodes.

By selectively replicating local content as node meetings
provide the opportunity, the global cache can be driven
towards a more efficient allocation. However, since no global

J. Reich is with Department of Computer Science, Columbia University,
NY, USA. reich@columbia.edu

A. Chaintreau is with Thomson, Paris Research Lab, France.
augustin.chaintreau@thomson.net

knowledge of the network’s state can be used, attaining
the optimal should be the result of a series of independent
decision made by the nodes based on local information only.

We have shown [1] that the following property holds:

• User impatience plays a critical role in determining
the optimal allocation for disseminating content. We
define the social welfare of a mobile p2p caching system
for any delay-utility and global cache allocation.The
optimal allocation can be computed efficiently in a cen-
tralized manner. These results indicate that, as the user
population becomes increasingly impatient, the optimal
allocation changes radically: it varies steadily between a
uniform allocation dividing the global cache between all
content items, and a highly-skewed allocation in which
popular items receive a disproportionate share of the
global cache.

• Inspired by these results, we develop a reactive dis-
tributed algorithm,Query Counting Replication (QCR)
that for any delay-utility function drives the global cache
towards the optimal allocation. Moreover QCR does so
without use of any explicit estimators or control channel
information.

This invited paper presents a short version of [1].

II. RELATED WORK

The performance of many P2P applications can benefit
greatly from opportunistic contacts between the nodes of
a mobile network: such solution was proposed for website
prefetching [2], or for disseminating podcasts [3]. The perfor-
mance of some of these systems have been analyzed from a
hit-rate or delay standpoint [4], [5] for the case of a persistent
demand.

A. The impact of delay on p2p mobile networks

Representing the effect of delay through a utility function
has been applied to different areas of networking, includ-
ing congestion control[6], and wireless scheduling[7]. In
the context of opportunistic networks, Utility functions are
primarily used as local states variables. The opportunistic
routing protocol PROPHET [8] uses past information to
predict delivery probability. The RAPID protocol generalizes
this principle into an inference algorithm which accounts
for several metrics related to delay [9], while CAR [10]
proposes to use Kalman filter to improve the prediction’s
accuracy. In the same context, the impact of using different
utility functions has been analyzed for single-copy routing
scheme [11], to optimize buffer management [12], or the
use of error-correcting code [13]. In the context of publish-
subscribe applications, the same use of utility function was



introduced to either predict user future demands [14], or
leverage uneven distribution of demands and proximity be-
tween users [15], [16]. Other advanced cache management
protocols includes using filters [17] and social relationships
between mobile users in community [18].

In general, such use of utility function helps the system
to distinguish on the fly which intermediate nodes is the
most likely to succeed (i.e., for the unicast case, progressing
towards the destination, or, for the pub-sub application, facil-
itating dissemination to subscribing nodes). The performance
of all these schemes are in general difficult to analyze
due to their complexity, and the interaction between local
decisions using estimated utility and the global effect on
network performance. Our work significantly departs from
this closely-related work in two ways. The first is that instead
of using (local) utility as anintermediate quantity used to
estimate one or several parameters informing protocols, we
take (global) utility as anend-measure for network efficiency
(i.e., the system’s performance as it is perceived by users in
aggregate). At no time during the course of the protocols is
the utility estimated, but we rather wish to follow the effect
of using different simple replication protocols on the global
utility of the network, that is the objective to maximize. The
second difference is that we account for a general behavior
of users with regard to delay, as the global utility (or social
welfare) is a function of any individually experienced delay-
utilities (previous work either ignores user impatience or
implicitly accounts for it using a fixed step function). This
approach permits us to precisely define the optimal cache
allocation as a function of user impatience, and show for the
first time that simple reactive protocols may approach this
optimal.

B. Replication protocols

Replication protocols were first introduced for unstruc-
tured peer-to-peer systems deployed on wired networks,
as a way to increase data availability and hence to limit
search traffic [19], [20]. Assuming that nodes search for
files in random peers, it was shown [19] that for each
fulfilled request, creating replicas in the set of nodes used
for the search (i.e., path-replication) achieves a square root
allocation: a filei requested with probabilitypi has a number
of replicas proportional to

√
pi at equilibrium. This allocation

was shown to lead to an optimal number of messages
overall exchanged in the system. Assuming that nodes use
an expanding ring search, an allocation where each file is
replicated in proportion of its probabilitypi was shown to
be optimal [20]. The meeting between unpredictable mobile
nodes can in some sense be compared to a random search,
however, we are not aware of any previous work analytically
studying the performance of replication algorithms in this
context.

Our results indicate that similar replication techniques
can be used for a peer-to-peer system deployed on top of
opportunistic contacts between mobile devices. Indeed we
even show that replication can be tuned to approach the
optimal utility. However, our results also indicate that this

should be done wisely. Firstly, because the impatience of
users (which arise because search delays are not negligible)
greatly impact which replication strategy is the best choice.
Secondly, if replication actions are unevenly delayed the
system may fail to converge to the correct allocation, if
at all. Consequently mechanisms are needed to ensure all
replication delays occur evenly.

We heard recently about a parallel on-going effort to
characterize a related channel selection problem [21]. The
algorithm proposed in this case uses an estimate of dis-
semination time and a Metropolis-Hasting adaptive scheme.
One difference between the two approaches is that we show,
because the optimal allocation satisfies a simple balance
condition, that even simple algorithms which do no maintain
any estimates of dissemination time or current cache alloca-
tion are optimal for a known delay-utility function. Another
difference is that we also prove that the submodularity prop-
erty for the cache allocation can be established even when
contacts and delay-utility functions are not homogeneous.

III. E FFICIENCY OFP2PCACHING

Each node in the P2P system may be aclient, a server, or
both. The set of client nodes is denoted byC, we generally
denote its size byN . Each client demands and consumes
content as described in Section III-B. The set of all server
nodes is denoted byS. Servers maintain a cache in order to
make it available to interested clients (when such clients are
met). This includes in particular the two following scenarios:

• Dedicated nodes: server and client populations are sep-
arate (i.e., C ∩ S = ∅).

• Pure P2P: all nodes are server and client (i.e., C = S).
The main variable of interest in the system is the content

of the cache in all server nodes. In this section we assume
it to be fixed; in practice this dynamically evolves through a
replication protocol, as will be seen later in section V.

For any itemi andm in S, we definexi,m to be one if
server nodem possesses a copy of itemi, and zero otherwise.
The matrix x = (xi,m)

i∈I,m∈S represents the state of the
global distributed cache. We denote the total number of
replicas of itemi present in the system byxi =

∑

m∈S xi,m.
In the rest of this paper, we assume that all servers have

the same cache size so that they can contain up toρ content
items.It follows that a content allocationx in server nodes is
feasible if and only if:

∀m ∈ S ,
∑

i∈I

xi,m ≤ ρ .

A. Representing Impatience as Delay-utility

The termimpatience refers to the phenomenon that users
become decreasingly satisfied (or increasingly dis-satisfied)
with the delays they experience. Adelay-utility function
can be used to characterize this phenomenon of user im-
patience in analytic terms, where the value of this function
is monotonically decreasing with time (as increasing delay
will not translate into increasing satisfaction). The value
hi(t) denotes the gain for the network resulting from delayed
fulfillment of a request for itemi when this occurst time



units after the request was created. This value can be neg-
ative, which denotes that this delayed fulfillment generates
a disutility, or a cost for the network. Note thatt is related
here to user’s waiting time, not to the time elapsed since the
creation of the item (which we do not account for).

We now present several examples of delay-utility functions
corresponding to different perceptions of the performanceof
a P2P caching system by the users.

Advertising RevenueAssuming content items are videos
starting with embedded advertisements, and that the network
provider receives a constant unit revenue each time a com-
mercial is watched by a user (a potential business plan for
the VideoForU startup scenario mentioned in introduction).
In this case, the delay-utility function simply denotes the
probability that a user watches a given video when she
receives the contentt time after it was requested. Two
possible function families modeling this situation are:

• Step function:h(s)
τ : t 7→ I{t≤τ}.

• Exponential function:h(e)
ν : t 7→ exp (−νt).

The former models a case where all users stop being inter-
ested in seeing the item after waiting for the same amount
of time. In the second case, the population of users is more
mixed: at any time, a given fraction of users is susceptible
to losing interest in the content.

Time-Critical Information Assuming the content ex-
changed by nodes deals with an emergency, or a classified
advertisement for a highly demanded and rare product (i.e., a
well located apartment). In such cases, as opposed to the
previous model the value of receiving this piece can start
from a high value but very quickly diminish. It is possible
to capture such a behavior by a delay-utility presenting a
large reward for a prompt demand fulfillment.

• Inverse power:h(p)
α : t 7→ t1−α

α− 1
. with α > 1

Note that the value of delivering an item immediately in
this case is arbitrarily large (h(0+) = ∞). Such immediate
delivery can occur when a node is both a server and a user,
as the local cache may already contain the item requested.
To exclude this case, we restrict the use of such delay-utility
functions to the Dedicated node case.

Waiting Cost In some situations, such as a patch needed
to use or update a particular application, users may request
for an item and insist on receiving it no matter how long it
takes, becoming with time increasing upset because of tardy
fulfillment. As an example, the time a user spent with an
outdated version of a software application may be related
with the risk of being infected by a new virus, and hence
incurring a high cost. One can consider to represent such
cases a delay-utility function that grows increasingly more
negative with time, corresponding to a cost for the user
and the network. The linear penalty delay-utility function
(i.e., waiting time) is the most intuitive of these. However,
this function is but one in a family of penalizing delay-utility
functions:

• Negative power:h(p)
α as above withα < 1

• Negative Logarithm:h(p)
1 : t 7→ − ln(t).

The negative logarithm corresponds to the limit asα ap-
proaches1. It features both a high value for fast fulfillment of
request and a negative cost becoming unbounded as waiting
time grows.

We plot on Figure 1 illustration of delay-utility functions
for the three cases presented above.

B. Client Demand

Clients register their demand for content in the form of
requests. As in previous work, we assume that the process of
demand for different items follows different rates, reflecting
differing content popularity. We denote bydi the total rate of
demand for itemi. The probabilityπi,n reflects the relative
likeliness of demand arising at noden, where

∑

n∈C πi,n =
1. In other words, noden creates a new request for item
i with a rate equal todiπi,n. One can generally assume
that different populations of nodes have different popularity
profile, generally captured in the values ofπi,n. Otherwise,
we can assume to simplify that items, especially the ones
with the highest demand, are popular equally among all
network nodes. This corresponds to the case whereπi,n =
1/|C|.

An examples of demand distributions is

• Pareto: with parameterω > 0: di ∝ i−ω for all i ∈ I.

In the rest of this paper, we will assume any arbitrary values
of di.

C. Node Mobility

As all nodes (whether client or server) move in a given
area, they occasionally meet other nodes - these meetings
provide the opportunity for replication of cache content
and fulfillment of outstanding requests. For simplicity and
as a way to compare different P2P caching schemes, we
focus on a case where contacts between clients and server
nodes follow independent and memory less processes. In
other words, we neglect the time dependence and correlation
between meeting times of different pairs which may arise due
to complex properties of mobility. In that case the process of
contacts between two nodesm andn is entirely characterized
by their contact intensity (the number of contacts between
them per unit of time), which we denote byµm,n.

Hence we will consider the following simple contact
model:

• Continuous time: The system evolves in an asyn-
chronous manner, so that events may occur in continu-
ous time. We assume that node contacts occur according
to a Poisson Process with rateµm,n (form ∈ S, n ∈ C).

The system is said to followhomogeneous contacts if
we haveµm,n = µ for all nodesm ∈ S and n ∈ C.
This case corresponds to a population of nodes with similar
characteristics where all meeting are equally likely, as for
instance it may be between the participants of a special event.

D. Content allocation objective

Demand arises in our P2P system according to content
popularity, and is served as a function of mobility and
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Fig. 1. Different delay-utility functions

content availability in caches, captured through variables
x = (xi,m)i∈I,m∈S .

We defineUi,n(x) to be the expected gain generated by a
request for itemi created by client noden. Following our
model of users’s impatience, this expected gain is equal to
E [hi(Y )] whereY denotes the time needed to fulfill this
request, which itself critically depends on the availability of
item i in servers’s caches.

The total utility perceived by all clients in the system, also
called social welfare, may then be written as:

U(x) =
∑

i∈I

di

∑

n∈C

πi,nUi,n(x) . (1)

A good allocation of content to cache a choice ofx that
results in a high social welfare. Note that this objective
combines the effect of delay on gain perceived by users,
the popularity of files, as well as the cache allocation.

In the remaining of this section, we derive expressions for
Ui,n(x) andU(x) using thedifferential delay-utility function.

Differential delay-utility function We denote this func-
tion by ci. It is defined as

ci(t) = −dhi

dt
(t) .

The values ofci(t) is always non-negative ashi is a non-
increasing function. It represents the additional loss of utility,
which is incurred per additional unit of time spend waiting
(resp. the loss of utility incurred for waiting another time
slot).

General expression forUi,n(x)
Following a slight abuse of notation, we set by convention

xi,n = 0 whenn is not a server node (i.e., n /∈ S). With this
notation, we find the following expressions forUi,n.

Lemma 1: Ui,n(x) may be expressed as

hi(0
+) − (1 − xi,n)

∫ ∞

0

exp

(

−t
∑

m∈S

xi,mµm,n

)

ci(t)dt .

The proof follows from the memory less property of contacts
and the expectation as obtained in integration by part. The
term (1 − xi,n) deals with possible immediate fulfillment
(i.e., request created by a node that already contains this
item in its local cache). For more details, see [1].

Homogeneous contact caseIf we assume homogeneous
node contacts (i.e., whenµm,n = µ), the general expressions

above lead to simpler closed form expressions. In particular,
the gain or utility depends on(xi,n)i∈I,n∈S only via the
number of copies present in the system for each item(xi)i∈I .

First, in the dedicated node case (i.e., S∩C = ∅), we have:

U(x) =
∑

i∈I

di

(

h(0+) −
∫ ∞

0

e−tµxici(t)dt

)

. (2)

Similarly, for the pure P2P case, if we further assume that
all N = |C| = |S| nodes follow the same item popularity
profile (i.e., πi,n = 1/N ), we have:

U(x) =
∑

i∈I

di

(

h(0+) −
(

1 − xi

N

)

∫ ∞

0

e−tµxici(t)dt

)

.

(3)
All these expressions follows from a simple application of
Lemma 1 (see [22] for complete details).

IV. OPTIMAL CACHE ALLOCATION

The social welfare defined in the previous section offers a
measure of the efficiency of cache allocation which captures
users’s requests and impatience behavior. In this section we
wish to solve the following social welfare optimization:

max

{

U(x)

∣

∣

∣

∣

∣

xi,n ∈ {0, 1} , ∀n ∈ S,
∑

i∈I

xi,n ≤ ρ

}

.

(4)

A. Submodularity, Centralized computation

A function f that maps subset ofS to a real number
is said sub-modular if it satisfies the following property:
∀A ⊆ B ⊆ S , ∀m ∈ S , f(A ∪ {m}) − f(A) ≥ f(B ∪
{m})−f(B) . This property generalizes to set functions the
concavity property defined for continuous variable. It may
be called “diminishing return” as, if the functionf is non-
decreasing, it states that in order to maximize the value of
f , the relative improvement obtained when including new
element diminishes as the set grows.

Theorem 1: For any itemi and noden, Ui,n is submod-
ular. As a consequenceU is submodular.
This result can be interpreted intuitively. On the one hand,
in order to increase the value ofUi,n, creating a new copy
of item i (i.e., including a new element in the set of servers
containing a copy ofi) always reduce delays and hence
increase utility. On the other hand therelative improvement
obtained when creating this copy depends on the number of



copies of i already present, and it diminishes as the item
is more frequently found. What is perhaps less obvious is
that this result holds to any mixed client/server population
of nodes, heterogeneous contact processes, and any arbitrary
popularity profile.

The proof of this result uses the general expression for
Ui,n found in Lemma 1 and a few observations: First, that
the expression inside the integral multiplying the differential
impatience function is a supermodular non-increasing and
non-negative function of the set of server containingi. Sec-
ond, that since the differential impatience function is positive,
all these properties apply to the integral itself. Finally,that
the product with(1 − xi,n) preserve the supermodular non-
increasing and non-negative properties. A complete formal
proof can be found in [22].

In the case of homogeneous contact rates, we can obtain
an even stronger results, as the social welfare only depends
on the amount of replicas for each item, and not on the actual
subset of nodes that possess it.

Theorem 2: In the homogeneous contact case,U(x) is a
concave function of{ xi | i ∈ I }.

The optimal values of{ xi ∈ {0, 1, · · · , |S|} | i ∈ I } are
found by a greedy algorithm that uses at mostO(|I| +
ρ|S| ln(|I|)) computation steps.

Moreover, the solution of therelaxed social welfare max-
imization (i.e., maximum value ofU(x) when (xi)i∈I are
allowed to take real value) can be found by gradient descent
algorithm.

The concavity property is here not surprising, as it cor-
responds to submodularity when the function is defined
using continuous variables rather than a set. Formally, the
arguments used to prove this result are quite similar to
the previous proof: one should take advantage of previous
expressions which feature the product with the differential
impatience function, and then use the fact that the family
of convex non-negative non-increasing functions is closed
under product.

The greedy algorithm follows a simple operation repeated
once for each copy that can be cached (ρ|S| steps in total):
at each time step from the current cache allocation, it adds
a copy for the item that brings the most significant relative
increase in utility (assuming there does not exist already|S|
copies of this item). By doing so, the algorithm is likely to
select first popular items. As the popular items fill the cache
with copies, the relative improvement obtained for each
additional copy diminishes, and the greedy rule will choose
to create copies for other less popular items. The diminishing
return property ensures that this greedy algorithm selectsthe
optimal cache allocation. A formal proof of these results can
be found in [22].

B. Characterizing the optimal allocation

We show in this section that the solution of the relaxed
optimization problem satisfies a simple equilibrium condi-
tion.

Property 1: We consider the continuous time contact and
dedicated node case. Letx̃ be the solution of the relaxed

social welfare maximization (as defined in Theorem 2). Then

∀i, j , x̃i = |S| or x̃j = |S| or di · ϕ(x̃i) = dj · ϕ(x̃j) .

whereϕ is defined asϕ : x 7→
∫ ∞

0

µte−µtxc(t)dt .

This property states that, at the optimal solution of the
relaxed cache allocation problem, the amount of copies
created for all items depends on their popularity exactly in
the same way: via a unique functionϕ definedindependently
of i. This equality holds only when the number of copies is
not limited by the number of servers, otherwise it becomes
an inequality.

V. D ISTRIBUTED OPTIMAL SCHEMES

In this section, we demonstrate that one does not need
to maintain global information, or know the demand of
itemsa priori, to approach an optimal cache allocation. We
show that a simple reactive protocol, generalizing replication
techniques introduced in the P2P literature, are able to
approach the optimal allocation using only local information.

A. Query Counting Replication

We propose a general class of distributed schemes, that
we call Query Counting Replication (QCR). QCR implicitly
adapts to the current allocation of data and collection of
requests, without storing or sharing explicit estimators.QCR
achieves this by keeping aquery count for each new request
made by the node. Whenever a request is fulfilled for a
particular item, the final value of the query counter is used to
regulate the number of new replicas made of that item. The
function ψ that maps the value of the query counter to the
amount of replicas produced is called thereaction function.

This principle generalizes path replication [19] whereψ(y)
was a linear function ofy.

B. Tuning replication for optimal allocation

We now describe how to choose the reaction functionψ
depending on users’s impatience. We first observe that the
expected value of the query counter for different itemi is
proportional to1/xi, since whenever a node is met there
is roughly a probabilityxi/|S| that it contains itemi in its
cache. Hence, we can assume as a first order approximation
that approximatelyψ(|S|/xi) replicas are made for each
request of that items. Inversely, as a consequence of random
replacement in cache, each new replicas being produced
for any items erases a replica for itemi with probability
xi/(ρ|S|). As a consequence, the number of copies for each
item follows the system of differential equations:

∀i ∈ I ,
dxi

dt
= di · ψ(

|S|
xi

) − xi

ρ|S| ·
∑

j∈I

djψ(
|S|
xj

) . (5)

Assuming the system converges to a stable steady state,
the creation of copies should compensate exactly for their
deletion by replacement. In other words a stable solution of
this equation satisfies

∀i ∈ I , di

1

xi

· ψ(
|S|
xi

) =
1

ρ|S| ·
∑

j∈I

djψ(
|S|
xj

) .



Note that the RHS is a constant that does not depend oni
anymore, so that this implies

∀i, j ∈ I , di

1

xi

· ψ(
|S|
xi

) = dj

1

xj

· ψ(
|S|
xj

) .

In other words, the steady state of this algorithm satisfies
the equilibrium condition of Property 1 if and only if we
have:∀x > 0 , 1

x
ψ( |S|

x
) = ϕ(x) whereϕ is defined as in

Property 1. Equivalently,

∀y > 0 , ψ(y) =
|S|
y
ϕ(

|S|
y

) .

Property 2: The steady state of QCR satisfies the equilib-
rium condition of Property 1 if and only if

ψ(y) ∝ |S|/y
∫ ∞

0

µte−µ
t|S|

y c(t)dt .

The upshot of this result is that as long as the delay-utility
function representing user impatience is known, we can
always determine the number of copies QCR must make to
drive the allocation towards its optimal.

VI. CONCLUSION

Our results focus on a specific feature which makes P2P
caching in opportunistic network unique: users’ impatience.
From a theoretical standpoint, we have shown that optimality
is affected by impatience but can be computed and moreover
satisfies an equilibrium condition. From a practical stand-
point, we have seen that it directly affects which replication
algorithm should be used by a P2P cache. Passive replication,
ending in proportional allocation, can sometimes perform
very badly, but one can tune an adaptive replication scheme
to approach the performance of the optimal, based only on
local information.

We believe these results may serve as a stepping stone to
address other unique specific characteristics of P2P caching
in opportunistic system, in particular they offer a reference
case from which one can study (1) the impact of hetero-
geneity and complex mobility property more systematically,
(2) clustered and evolving demands in peers, as distributed
mechanism like QCR naturally adapts to a dynamic demand.
Another important aspect that remains to be addressed is
how to estimate the impatience function implicitly from user
feedback, instead of assuming that it is known.
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