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Abstract

Previous studies of peer-to-peer (P2P) video-on-demand (VoD) are performed separately from studies utilizing adaptive
bit rate video since the techniques seemingly tackle orthogonal goals. Additionally, previous policies used by P2P VoD
do not account for viewer abandonment of video during download and playback. Through analysis, we show that the
popularity of a P2P swarm and seed staying time significantly affects the achievable per-receiver download rate. Specif-
ically, we identify conditions under which popularity affects swarm efficiency, contradicting a typical misconception in
previous work, and we show that abandonment under these previous policies significantly increases playback interrup-
tions. In light of these observations, we propose Joint-Family, a protocol that supports HTTP-based adaptive bitrate
streaming for on-demand videos using P2P techniques. Joint-Family accounts for user video viewing behavior, such as
abandonment, to improve the quality of experience for the viewer. Peers in Joint-Family simultaneously participate in
multiple swarms to exchange chunks of different bitrates. Joint-Family takes advantage of abandonment by converting
peers to “partial seeds”; this increases system capacity. Joint-Family adopts chunk, bitrate, and peer selection policies
that minimize occurrence of interruptions in the presence of abandonment while delivering high quality video and im-
proving the efficiency of the system. Using traces from a large-scale commercial VoD service, we compare Joint-Family
with existing approaches for P2P VoD and show that viewers in Joint-Family enjoy higher playback rates with minimal
interruption, irrespective of video popularity.

Keywords: Peer-to-peer video-on-demand, HTTP adaptive streaming, viewer engagement, abandonment

1. Introduction

The ever-increasing demand placed by streaming video
traffic across both wired and wireless networks has been
managed by two seemingly complementary approaches:
HTTP-based adaptive bitrate (ABR) [1, 2], and peer-to-
peer (P2P) delivery [3–5]. ABR encodes a video at mul-
tiple bitrates, and maximizes the video bitrate within the
available bandwidth, delivering a higher fidelity video over
HTTP when possible, and dropping to lower quality rather
than causing an interruption of playback of the excessively
high bitrate video. MPEG-DASH [6] is an ISO/IEC stan-
dard for ABR. While layered coding such as scalable video
coding (SVC) [7] is another approach for adaptive stream-
ing, SVC has had difficulty in being implemented in the
real world due to coding complexity and bitrate overhead

Email addresses: kwhwang@research.att.com (Kyung-Wook
Hwang), gvijay@research.att.com (Vijay Gopalakrishnan),
rjana@research.att.com (Rittwik Jana),
Seungjoon.Lee@twosigma.com (Seungjoon Lee),
misra@cs.columbia.edu (Vishal Misra), kk@cs.ucr.edu (K. K.
Ramakrishnan), danr@cs.columbia.edu (Dan Rubenstein)

(discussed more in Section 5). We focus on ABR in this
work.

P2P-based systems are a popular alternative to de-
liver on-demand video, improving the viewing experience
by utilizing the uplink capacity of the downloading peer
nodes, thereby increasing overall system upload capac-
ity. Even traditional Content Distribution Network (CDN)
providers such as Akamai are experimenting with and de-
ploying P2P-based delivery of video content [8].

Intuitively, P2P and ABR seem poorly suited to work
together, because peer viewers watching the video at dif-
fering rates are presumably unable to exchange video seg-
ments (chunks) with one another. Thus, intuition suggests
that enabling ABR reduces the peers’ ability to share video
chunks with one another. We show in this paper that, con-
trary to current intuition, ABR and P2P effectively com-
bine to leverage both of their strengths: P2P techniques
improve upload capacity, and ABR enables the highest
quality viewing at that capacity while minimizing inter-
ruptions.

In addition to the ABR and P2P combination, we focus
on a user viewing pattern called viewer abandonment

Preprint submitted to Journal of Computer Networks March 29, 2016

*Article
Click here to view linked References



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

since it substantially impacts the performance of video
streaming, especially on P2P-based systems. This view-
ing pattern indicates that viewers abandon a video part
way through the viewing of the video. Such abandonment
may be attributed to user behavior (e.g., surfing for inter-
esting content) or due to loss of interest in the currently
viewed content.
While mostly overlooked so far, we show that abandon-

ment (also called viewer engagement in other work [9, 10])
is a critical factor to consider since it directly affects the
impact of various policies used for P2P Video-on-Demand
(VoD). P2P file sharing systems have traditionally used a
combination of Tit-for-Tat (TFT) for peer selection and
Rarest-first (RF) for chunk selection. Unfortunately, this
combination does not work as well with streaming video,
since a video is generally consumed sequentially. Instead,
an Earliest-First (EF) policy is a more natural chunk se-
lection policy for video streaming. EF, however, is not
ideally compatible with TFT as peers at different points
in the playback have very little content to exchange with
each other. As a result, prior work to identify hybrid of
EF and RF (EF+RF) [11–15] explore the compromise be-
tween the need of streaming to get sequential data and
TFT’s need for diversity.
However, we show that, due to abandonment, peers us-

ing EF+RF will download rare chunks that they do not
actually watch later. In this case, it would be more benefi-
cial to use that upload capacity to deliver chunks that have
to be played soon, to improve video playback experience
and reduce unnecessary bandwidth consumption.
Here, we present a novel system called Joint-Family

that combines P2P and ABR to provide high-quality
streaming1 VoD in the presence of viewer abandonment.
Joint-Family’s design is based on our analysis that uses
a Markov model, where we identify the relationship be-
tween video popularity, seed staying time and download
rate. We show that when seeds stay “sufficiently long”,
content popularity affects swarm efficiency (Section 2.2).
This implies that swarms of popular videos can have higher
download rates than less popular ones if seeds stay long
enough. This is in contrast to existing fluid modeling re-
sults [16] which claim independence between popularity
and download capacity. Hence, we identify the conditions
under which prior results are contradicted. We then ana-
lyze the effectiveness of caching previously viewed videos
and sharing them, as a mechanism to extend seed stay-
ing time (Section 2.3). Caching also enables transfer of
underutilized capacity from one swarm to another, im-
proving global performance. Finally we show how ABR,
when combined with P2P, enables a swarm to efficiently
adapt to the best video rate without a priori knowledge of
the video’s popularity (Section 2.4). Our Markov model
shows that ABR allows P2P swarms to migrate to the
highest sustainable rate for that swarm: highly popular

1As opposed to download-and-play

content will enable large swarms and have a high, sus-
tained download capacity, whereas less popular content
will have smaller swarms and a lower sustainable capacity.

Based on our analytical observations, we design Joint-
Family to deliver high-quality videos with minimal play-
back interruptions in a P2P system, using multi-swarm
participation and ABR (in Section 3). A peer in Joint-
Family caches and shares multiple ABR videos using stor-
age space at the end system, and increases capacity of
swarms (especially for unpopular videos) by supplement-
ing it with (unused) peer capacity. Hence, the peer partici-
pates in multiple swarms concurrently, and shares different
parts of the ABR video at multiple bitrates.

To support this, we identify the combination of chunk
selection, peer selection, and bitrate adaptation policies
that minimize interruptions with viewer abandonment.
We show that EF is a more appropriate chunk selection
strategy than hybrid of EF and RF when abandonment ex-
ists. Instead of using TFT, we introduce Earliest-Deadline
(ED) as the peer selection strategy. In ED, a node picks
peers with the earliest deadline among chunks they request
when deciding which request to serve. Choosing ED not
only substantially improves performance (as seen in our
experiment results), but also breaks the inter-dependence
between chunk- and peer selection that TFT introduces.
Because in practice, abandonment of a video does not im-
ply departure from the P2P system, peers can be classified
as partial seeds, who do not have the entire video, and
are not actively watching (and downloading) the video, yet
are still connected. Our system permits partial seeds to
continue to serve requests for the chunks they have down-
loaded already, and thus contribute to increasing the over-
all system capacity.

Our design makes Joint-Family immediately suitable for
existing VoD infrastructures in which the provider owns
the distribution infrastructure (e.g., CDNs [8], IPTV [17]).
We also describe how the protocol can be applied in a de-
centralized setting by utilizing mechanisms that encourage
sharing of content [18]. We conduct extensive performance
evaluations of Joint-Family using traces from a nationally
deployed VoD service (in Section 4), and show that ABR
with P2P is indeed feasible, even when abandonment oc-
curs. Compared to a generalized implementation of the
state-of-the-art in P2P VoD, our instantiation of Joint-
Family delivers high quality VoD streaming, even for un-
popular videos, with minimal interruptions.

2. Analysis of P2P Systems for VoD

We analytically show how video popularity, the stay-
ing time of a peer in a swarm, and caching help increase
system capacity. Further, we show how adaptive bitrate
(ABR) techniques can significantly improve the playback
experience even for unpopular content.

2
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Parameter Definition
B Bit size of streaming video
u Upload capacity of each peer (leech or seed)
λ Leech arrival rate (Poisson arrival)

1/γ Average seed staying time of exponential
distribution

x Number of leeches
y Number of seeds
r Playback rate of video
c Number of videos each peer can locally cache

Table 1: Parameters and Definition

2.1. Assumptions

The notations used in our model are summarized in Ta-
ble 1. We use the leech (i.e., downloader) arrival rate λ
for a video as its popularity (i.e., if arrival rate of video i
is larger than that of video j, then i is more popular than
j). A leech’s download (streaming) rate can be faster than
the video playback rate for potentially fewer playback in-
terruptions. We assume that each leech watches a video
till the end, and thus seeds have the entire video. However,
all our experiments in Section 4 also account for viewers’
premature abandonment based on real traces. Similar to
other P2P studies [13, 19] and based on the wireline sub-
scriber statistics [20], we assume that upload capacity u
is the limiting factor (the download capacity per peer is
much larger). u is identical for every peer. We investigate
the impact of heterogeneous peers in Section 4.9.

2.2. Popularity, Download Rate, and Seed Staying Time

The fluid model based analysis by Qui and Srikant [16]
suggests that the download performance of files is rela-
tively independent of their popularity. They explain that
the supply and the demand placed by leeches are always
offset regardless of video popularity. There has been sub-
sequent work [19, 21] based on their model to explain per-
formance on live or on-demand streaming. In contrast to
these models, we first show that more popular a video, the
higher the download rate as long as the following condi-
tions hold:

• request arrivals are stochastic, and

• after completing the download, each peer stays on to
serve the video (as a seed) sufficiently long compared
to the average download time.

Fluid models assume deterministic arrivals of requests,
which likely holds when a video is highly popular (i.e., the
request arrival rate going to infinity). However, when the
request arrivals are stochastic — as seen in practice —
a version of Feller’s paradox takes place, and Palm cal-
culus [22] can explain what the fluid model misses. Intu-
itively, if we plot the intervals between request arrivals and
observe the download rate at any random instant, our ob-
servation is likely to fall into a “larger” interval. In these
large intervals, the download rates of leeches monotoni-
cally increases, since we assume the seeds stay for a suf-
ficiently long time and many active leeches transition to
being seeds. This simultaneously increases the supply as
well as reduces the demand for download capacity. Feller’s

paradox explains why these longer intervals have a greater
effect on the time averaged download times, and in our
case the effect is beneficial.

Our analysis uses a continuous time Markov chain,
where we define x, y ≥ 0 to be the respective numbers of
leeches and seeds in a swarm. Our model is motivated by
a two-dimensional (2D) model by Veciana and Yang [23]
(which only presents recursive relationship but no explicit
formula). In our analysis, we first fix y and derive a condi-
tional expectation using a variant of M/M/∞ queue. We
then derive simple formulas for the expected number of
leeches and download time.

Given y seeds, consider a Markov chain, where each state
corresponds to the number of leeches (x). The transi-
tion rate from state i to i + 1 is: qi,i+1 = λ for i ≥ 0,
where λ is the request arrival rate. For the transition
down from i to i − 1, we assume a “perfect cascade” as
used in Fan et al. [13], where all leeches except the lat-
est arrival can always upload to other leeches. Then,
qi,i−1 = (η(i−1)+y)u/B for i ≥ 1, where η corresponds to
the efficiency parameter for data transfer from leeches [23].
This parameter is experimentally shown to be close to 1
for most practical cases [16, 19], and we use η = 1 in the
rest of the paper. Then we obtain the following recursive
equation for the steady-state probability of state i ≥ 1:

πi =
ρi

∏i
k=1 (k + y − 1)

π0 (1)

where ρ = λB/u. From
∑

∞

i=0 πi = 1, we have:

π0 =
1

(y−1)!
ρ(y−1) (eρ −

∑y−2
i=0

ρi

i! )
(2)

Recall that the steady state probability is under the con-
dition for a particular y. Using Equations (1) and (2) we
can obtain the conditional expectation as follows:

E[X |Y = y] = ρ− y + 1 +
e−ρρ(y−1)

Γ(y − 1)− Γ(y − 1, ρ)
(3)

where Γ(y) is the gamma function (Γ(y) = (y− 1)!) and
Γ(y, ρ) is the upper incomplete gamma function (Γ(y, ρ) =

(y − 1)!e−ρ
∑y−1

i=0
ρi

i! ). See Appendix Appendix A for the
detailed derivation.

Now, let us consider the distribution for the number of
seeds (y). A seed arrival is equivalent to a leech complet-
ing download of the video. As a result, at steady-state,
the leech arrival rate λ is the same as the seed arrival rate.
On the other hand, a seed leaves the swarm at the rate
of γ (i.e., determined by the staying time). This forms
the standard M/M/∞ queueing system, where the up-
transition rate is λ and the down-transition rate is γy.
Thus, P [Y = y] = e−σ σy

y! , where σ = λ/γ. By combining

3



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

10−3 10−2 10−1 1000

0.5

1

1.5

2 x 104

λ

do
w

nl
oa

d 
ra

te
 (K

bp
s)

 

 

MOD
2D−MC
SIM−Stochastic
SIM−Periodic

Figure 1: Download rate as a function of λ
with 1/γ = 3600 secs. (X axis in log scale)
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Figure 2: Download rate as a function of
seed staying time 1/γ. (Y axis in log scale)
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Figure 3: Caching multiple videos: each
download rate is divided by the download
rate when c = 1. (1/γ = 3600)

this with (3), we get:

E[X ] =
∞
∑

y=0

(

ρ− y + 1 +
e−ρρ(y−1)

Γ(y − 1)− Γ(y − 1, ρ)

)

e−σσy

y!

(4)
From Little’s Law, the average download time is E[T ] =
E[X]
λ .

Evaluation: We numerically evaluate (4) and demon-
strate the relationship between video popularity and down-
load performance. We also validate our model with ex-
periments using a discrete event-driven P2P VoD simula-
tor (see Section 4.2 for detail). In our experiments, we
consider an 1800-second video of r=625Kbps, resulting in
B=1125Mbits. We use u=312.5Kbps. We also simulate
state transitions using the 2D Markov model [23] for com-
paring results with our analysis. Specifically, we start at
state (x = 0, y = 0) and simulate transitions according to
the transition rates until we reach a steady state (where
the change on both x and y becomes very small). After
reaching a steady state, we record the time between arrival
and conversion to a seed for each of next 3000 leeches and
compute the downloading rate. We use a similar warm-up
strategy for our event-driven experiments.

Fig. 1 shows the average download rate of leeches for
different λ with 1

γ =1 hour. We compare four cases: sim-

ulated transition on the 2D Markov model [23] (2D-MC),
numerical results from our analysis model (MOD), and two
simulation results with one using stochastic arrivals (SIM-
Stochastic) and the other using periodic arrivals (SIM-
Periodic). Note that SIM-Periodic is to understand the
impact of the assumption used in previous fluid models
[16, 19]. First, the figure shows that our model closely
matches 2D-MC and SIM-Stochastic. We observe a clear
trend in which the average download rate increases as λ
(i.e., popularity) increases. In contrast, the trend with
SIM-Periodic is distinct from the other cases, where the
increase in download rate seems slowing down with in-
creasing λ. This result indicates that the leech arrival
pattern also plays a critical role in the download perfor-
mance, and the assumption of periodic arrivals in the fluid
models [16, 19] can lead to incorrect conclusions in prac-
tical scenarios.

We next investigate the effect of seed staying time on
download performance. In Fig. 2, we plot the average
download rate from our analytical model when we vary
the seed staying time (X axis) and arrival rate (differ-
ent lines). When the seed staying time is smaller than
2000 seconds, the download rate changes little with differ-
ent popularity (λ), just like in [16, 19]. However, as the
seed staying time is sufficiently large, the download rate
varies significantly as λ varies, showing video popularity
affects download performance only under a long seed stay-
ing. When the video size is larger and the corresponding
download time increases, the seed staying time is also re-
quired to be longer accordingly for the same observation
(figures not shown here).

2.3. Caching to Increase Staying Time and Download Rate

As seen in Section 2.2, a necessary condition where pop-
ularity and download rate are correlated is for peers to stay
as seeds for a sufficiently long period, compared to their
download time. One way to increase seed staying time of a
video is for a peer to cache the video and act as a seed serv-
ing other viewers of the same video even after the peer has
moved on to viewing another video. However, with multi-
ple videos in cache, a peer would need to split its upload
capacity between those multiple videos, and thus it is not
immediately clear whether caching multiple videos would
improve performance.
To analyze the benefit of caching, we assume that each

video is the same size of B bytes, and a peer can store a
maximum of c videos. Note that our analysis in Section 2.2
corresponds to c = 1. One can envisage a variety of poli-
cies on how to split the upload capacity between multiple
videos, depending on whether a peer is actively watching
a video or not. To make the analysis tractable, we use a
simple policy where a leech watching a video serves only
the video that it is watching. When not actively watching,
a peer equally splits its upload capacity between c videos
in its cache. We remove this assumption in our protocol
design and experiments.
Using our Markov chain based analysis, but also consid-

ering a cache of size c, the down-transition rate from state
i to i− 1 would be:

qci,i−1 = (i + y/c− 1)u/B (5)

4
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for i ≥ 1. Note that the benefit of caching from this analy-
sis actually serves as a lower bound, as the transition rate
qci,i−1 assumes that all c videos are always requested. In
particular, if a cached video is not requested, in practice a
peer would allocate its upload capacity to the other videos
being requested, resulting in a higher transition (service)
rate than modeled here.
While a peer’s upload capacity is split into c videos,

a video stays longer in its cache for larger c. The cache
replacement policy plays a role in determining how long a
video would stay in the cache. In our analysis, we make
a simplifying assumption that a peer uses FIFO (First-In
First-Out) replacement. However, in our experiments, we
also compare FIFO with LFU (Least Frequently Used).
With FIFO, the time a peer stays as a seed, S, for each
video is hypoexponentially distributed with the average
E[S] = c/γ. The distribution for the number of seeds in
the system still holds for c > 1 as:

P [Y = y] = e−σc
σy
c

y!
(6)

where σc = cλ/γ. From (5) and (6), we can obtain the
average download time T by following the similar deriva-
tion as in Section 2.2. In our numerical evaluation of E[X ]
with c > 1, we substitute y in Equation (3) with an in-
teger value ⌊y/c⌋ instead of y/c for simplicity. Note that
this simplification underestimates the download rate in the
presence of caching and thus provides a lower bound of the
benefit from caching.
Evaluation: We validate our caching analysis using the
simulator as in Section 2.2 with a synthetic trace. Fig. 3
plots the normalized average download rate from our anal-
ysis and from the simulation for different cache size c. In
SIM1, we simulate exactly the policy described in deriv-
ing Equation (5) for precise validation.In SIM2, we show
the results without our assumption so that a leech ac-
tively watching a video also uploads all other videos in
its cache. We first observe that the analysis (MOD) and
simulation results (SIM1, SIM2) match well. Also, caching
is more beneficial with small λ (i.e., less popular videos).
We then see the diminishing returns as c grows since our
small u which is the bottleneck quickly becomes more uti-
lized (thus, we omit the results for c > 5). Finally, we
show that the download rate in SIM2 only improves as we
remove our assumption. In Section 4.8 we explore different
cache replacement schemes such as LFU using real-world
traces.

2.4. Adaptive Bitrate Analysis

We showed in Section 2.2 that more popular videos re-
sult in higher download rates only with seeds staying long
enough. When the download rate is (unnecessarily) much
higher than the video playback rate, we now leverage the
abundant capacity to improve the video quality through
ABR. Using the example of a single video at different bi-
trates via our model, we show in Fig. 4 that as the video
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Figure 4: Download/playback rate vs. arrival rate with different
chunk bitrates

popularity varies, the achievable average download rate
varies quite significantly. We choose 3 different bitrates
(312.5 – 937.5 Kbps) with the corresponding horizontal
lines. When the video is unpopular, the peer download
rate can be smaller than the playback rate, especially for
the higher bitrates, likely resulting in playback interrup-
tions. When the video is more popular (λ = 0.01 or
higher), the download rate is higher than the playback
rate, especially for the lower bitrates (e.g., 312.5Kbps).

We make the following observations: First, using a single
bitrate for all videos is suboptimal. If the bitrate is set too
high, streaming an unpopular video would result in signifi-
cant amount of playback interruption. If the bitrate is too
low (with the goal of minimizing interruptions), viewers of
popular videos would be unnecessarily restricted to low bi-
trates – i.e., poor streaming quality. To overcome this, one
might consider predicting the video popularity and using
the highest bitrate sustainable for that popularity. But
that is challenging, since we have to deal with prediction
error and popularity changes. With ABR, the system can
potentially adapt to the currently available bandwidth of a
video, which does not require the popularity information,
and thus the bitrate adaptively becomes large for popular
videos and small for unpopular videos.

We now show that by using ABR with P2P VoD, we can
deliver higher video quality to a viewer of more popular
videos which can sustain higher bitrate. Suppose we have
m playback bitrates: R = {r1, r2, . . . , rm}, where ri <
ri+1. In our analysis, we assume an idealized rate adapting
scheme, where a leech only increases the video bitrate to
reach the highest bitrate it can sustain. Specifically, each
leech starts with r1 and increases the bitrate from ri to
ri+1 if it has at least su seconds of video chunks at rate
ri buffered ahead of its playback point (also explained in
Section 3.3). If a leech is not able to go to a higher bitrate,
then it stays at the current bitrate until the streaming
finishes. Also, we assume that all leeches for a given video
go through the same set of “transition points” in a steady
state. In other words, all leeches download B1 bytes at r1
before switching up to r2 and receive B2 bytes at r2 before
transitioning to r3, and so on.

Our goal is to find an equilibrium point
(B1, B2, . . . , Bm), and then calculate the correspond-
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Figure 5: Validation of ABR analysis using simulation

ing download rate:
∑m

i=1 Bi∑
m
i=1 Bi/ri

. To determine an

equilibrium point, we use the following steps. Suppose we
have an estimate of B̃ = (B̃1, B̃2, . . . , B̃m). We consider
m independent Markov chains, one for each bitrate as
described in Section 2.2. Each state is the number of
leeches downloading at the corresponding bitrate. We
assume that a seed for a video splits its capacity across
multiple bitrates, such that it serves chunks of rk in
proportion to B̃k. That is, the down-transition rate for
the Markov chain corresponding to chunks of rk is:

qki,i−1 = (i+ fky − 1)u/B̃k, (7)

where fk = B̃k∑
j B̃j

. Then, following the analysis for

each Markov chain in Section 2.2 (Equation (4)), we can
derive the average download time (T̃k) and the corre-
sponding download rate (d̃k). However, since the bi-
trate switch happens only after su seconds of chunks at
rk are buffered, we can calculate the corresponding time
as T ′

k = surk/(d̃k − rk), which we expect to match T̃k

in an equilibrium point. In our evaluation, we calculate
B′

k = T ′

kd̃k and numerically find an estimate B̃ that mini-
mizes the Euclidean distance from B′ = (B′

1, . . . , B
′

m).

Evaluation: We can employ a variety of methods to find
the equilibrium point minimizing the Euclidean distance
(e.g., gradient descent) between B̃ and B′. However, to
minimize the error arising from the particular method we
use, we evaluate an entire space (using small fixed incre-
ment on B̃ values) and report the point with the minimum
distance. We use an 1800 second video with 4 bitrates
{250, 500, 750, 1000} Kbps, and set su = 50. In the sim-
ulation, peers have to switch down to lower bitrates if the
size of buffered chunks becomes smaller than sd, and we
use sd = 10 (see Section 3.3 for detail). Fig. 5 shows the
average playback rates obtained from both our model and
simulator as video popularity varies. Considering that, un-
like the model, peers in simulation may go down to lower
bitrates and peers transfer data chunk-by-chunk (each 10
second chunk) instead of bit-by-bit, the two results match
reasonably (especially in the variation with popularity),
and demonstrate that with ABR in a P2P system, we can
achieve a higher playback rate for a more popular video.
In Section 4.6 and 4.7 we confirm this by the experiments
with larger trace with multiple videos of different popular-
ity.

Node A
Video 3

Bitrate r1

Bitrate r2

Bitrate r3

Swarm(V3,r1)

Swarm(V3,r3)

Swarm(V3,r2)

Peer Nodes
Node A

Data Transfer
Peer Conn.

Video 4
Swarms

Video 1
Swarms

Video1 Video2 Video3 Video4

Figure 6: A peer in Joint-Family participates in multiple swarms.

3. JOINT-FAMILY Design

Recent studies [10, 24, 25] have shown that users aban-
don videos before viewing them in their entirety. Our re-
sults show that abandonment has a significant effect on
the performance of P2P VoD streaming systems. In this
section, we re-evaluate some of the key policies and de-
sign decisions for P2P VoD by taking abandonment into
account. We take the learnings from our analysis in Sec-
tion 2 to design a P2P protocol that supports the delivery
of high quality video using HTTP adaptive bitrate (ABR)
schemes. To the best of our knowledge, Joint-Family is the
first practical P2P VoD system that incorporates ABR.

3.1. Overview

Most P2P systems maintain a notion of a “swarm” per
video. Peers watching this video participate in the swarm
and exchange chunks with other peers. With ABR, this
delineation of a swarm per video becomes unclear since
the same video has different set of files, one at each rate.
A natural extension, and one that we use, is to assign a
different swarm for each rate of the video. This change
alone, however, is not sufficient. Peers today participate
in one swarm only. Each time they attempt to change rates
due to the ABR rate adaption, they would have to leave
one swarm and join the swarm of the next rate. Leaving
one swarm and joining another is inefficient as it is heavy-
weight process and also introduces a lot of churn in the
system. Instead, a peer in Joint-Family joins the different
swarms of each video concurrently and maintains active
connections. The peer then sends out requests to the ap-
propriate swarm as it downloads and uploads chunks of
different bitrates as a result of bitrate adjustment.
Once we have the support for multiple swarms of a given

video, the same primitive can be extended to support par-
ticipation in multiple swarms of different videos. This al-
lows a peer to serve cached chunks of videos it has already
viewed, which as shown in Section 2.3 and 2.4 has a benefi-
cial effect on the overall download performance and play-
back rate for ABR videos. Fig. 6 illustrates the typical
multi-swarm participation of peer A. A has 4 videos in its
cache. The figure focuses on Video3 and shows that, as
a result of rate adaptation, A has chunks in each of the
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3 rates of Video3. A simultaneously participates in the
swarms associated with each of these rates (solid dot in
each swarm). The figure also shows A concurrently up-
loading chunks at different rates to peers (unfilled dots) in
the corresponding swarms. These peers will also be par-
ticipating in multiple swarms, but may not necessarily be
connected to A in all of these other swarms. The same
process is repeated for the other videos in A’s cache.

3.2. Protocol Mechanisms for Multi-Swarm P2P

While multi-swarm participation is conceptually
straightforward, realizing it in P2P systems requires a
detailed understanding of inter-dependencies between
protocol components and careful protocol re-design.
Connection management: We term all connections
that node A has to peers in swarms of the video it is
currently watching as selfish. Connections to swarms of
cached videos are termed altruistic. The peer on the other
end of a selfish connection, B, can be either a leech or a
seed. In the latter case, the connection is altruistic for
B. However, a connection cannot be altruistic for both
endpoints. In typical P2P systems, a node can have con-
nections to a maximum of n peers to avoid depleting local
resources (e.g., by having too many TCP connections).
When a peer participates in multiple swarms for multiple
videos, there is an inherent tension between the number of
selfish connections and altruistic ones.2 Specifically, if the
peer uses its entire quota for selfish connections, caching
is rendered useless. Conversely, even with sufficient con-
nections, a leeching peer can suffer from starvation if the
majority of its connections are altruistic.
Our solution with multiple swarms is to partition the

number of connections for different swarms. We define
a parameter αl, such that the number of altruistic con-
nections for a leech is at most nαl. In Joint-Family, a
leech needs to re-classify the connections regularly and en-
sure that the number of altruistic connections is below the
threshold. In the experiments, we use αl=0.5. However,
by definition, a peer who does not actively watch any video
cannot have a selfish connection. For those peers, αl=1 is
used.
Another aspect in a multi-swarm P2P system is to

choose which peers to serve. In BitTorrent-like P2P VoD
systems, the peer selection behavior changes depending on
whether a peer is leeching or not. Specifically, a leech un-
chokes those peers that sent the leech the most chunks,
while a seed unchokes those peers that can download the
fastest. In Joint-Family, a peer can simultaneously be a
leech (for the video it is currently watching) and a seed (for
other videos in its cache). As a result, if the BitTorrent
policy is strictly followed, a leech has no incentive to use
upload capacity for altruistic connections. This is because
the leech is more likely to be unchoked when it uses all its

2We do not differentiate swarms for a single video since a peer
can always switch between different bitrates.

upload bandwidth for bilaterally selfish connections. We
present more detailed protocol mechanisms related to peer
selection in Section 3.4.
Caching and sharing multiple videos: As shown in
Section 2.2, increasing seed staying time in a swarm in-
creases the capacity of the swarm. Our approach to
increase staying time is, as modeled in Section 2.3, to
cache videos previously watched and share them with other
peers. Sharing multiple videos simultaneously is currently
not possible in VoD systems as peers move from one swarm
to another as they change videos. However, our primi-
tive of participating in multiple swarms allows a peer in
Joint-Family to cache and share multiple videos in paral-
lel. We assume that each peer can store at most c different
videos in its local cache regardless of the length of the video
(we recognize videos can be of different lengths, and ABR
or premature abandonment can also cause a difference in
size). When the cache is full, a peer can choose the video
to be deleted based on well-known cache replacement poli-
cies. In Section 4.8, experimental results on the benefits
of caching are presented.

3.3. Chunk Selection and Rate Adaptation

Chunk selection: The chunk selection policy determines
the order in which a peer viewing a video downloads
chunks of that video. While Rarest-First (RF) has been
the de-facto standard chunk selection policy for file sharing
systems, RF is inherently unsuitable for streaming systems
which desire chunks to arrive in order [13]. ABR further
complicates this, as the rarest chunk at the time of down-
load may not match the right bitrate at the time of play-
back. Instead, Earliest-First (EF) that attempts to get
chunks close to playback is a more natural fit for stream-
ing. In fact, a significant amount of previous work [11–15]
has shown that the combination of EF and RF (EF+RF)
incorporates the strengths of each policy and results in the
best playback continuity with P2P VoD.
However, none of these consider the effect of abandon-

ment by users. We observe that propagating rare chunks
by EF+RF schemes, usually from the latter half of a video,
is counter-productive and wasteful when abandonment is
taken into consideration. Instead, we could use that band-
width to transfer chunks that are needed immediately. In
Joint-Family, we use EF chunk selection, and we show in
Section 4.3 that EF outperforms EF+RF when abandon-
ment exists. Also, with buffer-based rate adaption schemes
for ABR, having more sequential chunks in the playback
buffer is more likely to help the peer move up to a higher
playback rate quickly. While we do not address it in this
paper, EF is also amenable to DVD-like operations. Note
that we use EF despite previous work reports that the
use of EF can lead to “throughput collapse” when peers
possess a similar collection of chunks [13]. We argue that
this throughput collapse is a side-effect of using EF with
Tit-for-Tat peer selection policy. Further, the performance
degradation highly depends on the number of seeds in the
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swarm, and our caching mechanism helps avoid the “miss-
ing piece syndrome” [26].
Rate selection: Having identified the chunk to down-
load, the peer needs to decide which of the video rates to
download. As is frequently adopted in practice [27, 28], we
have designed Joint-Family to use hysteresis when making
a change in the bitrate, so that the quality does not change
too frequently, thereby providing the user a better quality-
of-experience (QoE). A leech uses a simple rate adaptation
scheme based on its buffer status. Once the peer’s buffer
goes above (below) a certain threshold, it triggers the peer
to adopt a bitrate increase (decrease). We supplement this
with hold-down timers to avoid rapid bitrate fluctuations.
Specifically, a peer increases the bitrate if its buffer has
more than su seconds of chunks to play back (i.e., sequen-
tial chunks), and the last bitrate change was more than
hu secs ago. Contrarily, a peer decreases the bitrate if
(1) its buffer has less than sd secs of chunks, and (2) the
last downward rate change was more than hd secs ago. In
Section 2.4 we validated that the simulation result using
this scheme closely follows the ABR model’s result (see
Figure 5).
A possible improvement in rate selection could be to also

consider chunk availability at a rate. For example, for a
particular portion of a video, if more peers have the chunk
at bitrate ri than at rj , a leech might prefer the chunk
at ri. We briefly explored this direction, but found that
without careful design, peers can end up being stuck at
lower bitrates even when there is capacity. This is because
other peers may have downloaded lower bitrate chunks at a
time when the swarm could only support that low rate. A
sophisticated rate selection scheme that takes both chunk
availability and video playback quality into account is still
an open area of research.

3.4. Earliest-deadline (ED) Peer Selection

The peer selection policy determines the subset of re-
quests that a peer serves upon receiving requests. While
most P2P systems use tit-for-tat (TFT) as the peer selec-
tion policy, TFT requires that peers have content to ex-
change with each other and works best when peers have a
diverse set of chunks. This aspect creates an implicit inter-
dependency between the chunk selection and peer selection
policies. Specifically, TFT works well with RF, as RF is
designed to create such chunk diversity. However, there
is growing realization that there are inefficiencies due to
TFT [18, 29] in streaming systems, particularly with re-
gard to interruptions.
With EF, however, peers at different points of their play-

back will not have content of mutual interest to exchange
with each other. For this reason, we complement EF by
choosing the peer with the “Earliest-deadline”. To satisfy
a viewer’s uninterrupted playback experience, each chunk
must be delivered to the viewer prior to its deadline. In
our Earliest-Deadline (ED) peer selection scheme, a re-
questing peer specifies a chunk and its deadline with each

request. Then, a potential provider (seed or leech) receiv-
ing requests frommultiple connected peers during a certain
interval chooses to serve the peer with the earliest deadline
(with ties broken at random). By serving peers with the
most urgent need, ED focuses on ‘fairness’ of each peer’s
streaming performance. While this notion of fairness is
certainly a ‘qualitative’ one, we show in Section 4.3 that
ED performs substantially better than TFT with respect
to quantitative metric such as interruption time.
Switching to ED, we also consider the following aspects.

Choking peers: Unlike TFT, a peer does not choke an-
other in ED. This brings up new protocol aspects to be
addressed. First, as a provider, a peer may receive upload
requests from all of its connected peers. To ensure that the
per-chunk upload rate does not become too small, we limit
the number of concurrent uploads from a peer. Second,
when it is not choked, a downloading peer can have a large
number of parallel downloads, and the per-chunk down-
load rate can greatly decrease, resulting in longer start-up
delays and frequent interruptions. In many cases, all the
downloads may share a single downstream bottleneck link
to that peer. To address this, each peer adjusts the maxi-
mum number of parallel downloads dynamically, based on
the availability of its download bandwidth. Peers can in-
crease the number of parallel downloads until they use up
their download capacity. They stop adding streams when
an additional download has the potential to decrease the
speed of the ongoing downloads.
Handling free riding: Free riders in P2P systems can
significantly impact the overall system performance and
introduces unfairness. TFT was designed specifically to
prevent such free riding. However, as stated earlier, TFT
introduces dependency on chunk selection that is incom-
patible with P2P streaming. While using ED instead
of TFT does not protect against free riders, ED offers
better performance in terms of streaming and QoE com-
pared to TFT. The decoupling of peer selection from
chunk selection allows us to overcome inefficiencies due
to TFT [18, 29] in deployments that do not worry about
free riding (e.g., managed content delivery [8]). In sce-
narios where eliminating free-riding is of concern, we can
use the mechanisms proposed in Contracts [18], modified
appropriately for P2P VoD, to incentivize peers to share
content.
Contracts was designed for live streaming and hence re-

lies on promoting users close to the source as the main
incentive. While this incentive is not very useful for P2P
VoD, we can leverage the other aspects of Contracts, i.e.,
exchanging receipts, using the tracker for verification and
preventing collusion. Peers in Joint-Family can exchange
similar receipts for contributing upload capacity. When
requesting content, peers have to show proof that they
have shared data with other peers in the form of receipts.
Note that using receipts not only allows us to move from
pair-wise exchange mechanisms towards one that allows a
peer to carry credit for work done in sharing one video to
fetching a different video.
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Figure 7: Cumulative distribution of normal-
ized length viewed of all requests in trace data
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Figure 8: Cumulative distribution of viewed
length for 8 videos used in Sec. 4.3 and
Sec. 4.4
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Figure 9: Number of concurrent sessions for
a random video in the real trace.

3.5. Using “Partial” Seeds

Using ED as the peer selection policy allows us to elim-
inate the artificial bottlenecks that arise from using TFT.
It also allows peers to make progress by favoring chunks
with the smallest deadline. However, it does not eliminate
the fact that seeds can still be overloaded, and thus be-
come the bottleneck for some peers. We overcome this by
taking advantage of the content that peers have already
downloaded. We take advantage of the fact that with
abandonment, there is a period between consecutive videos
(or when the user is performing other activities) that the
node remains connected to the system even though it is
not actively viewing a video. This time period measured
in our real trace will be presented in Figure 17.
Consequently, we assume that the abandoning peer be-

comes a partial seed and continues to stay in the system
and shares the portion it has already downloaded. This
is akin to a seed with the entire video, except that this
node only has the partial video. Partial seeds can offload
serving the initial parts of the video (that are presumably
requested more frequently), allowing the seed to serve the
later but rare portions to the few users that remain to
watch the video fully. Our experiments in Section 4.4
shows that by having partial seeds stay longer in the sys-
tem, the performance can be improved significantly.

4. Performance Evaluation

We evaluate the performance of Joint-Family and com-
pare it to a generalized version of state-of-the-art P2P ap-
proaches, using trace-driven simulations. We first show
that the changes proposed in Joint-Family result in sig-
nificant improvements in terms of the video playback rate
and the interruption time. We then show how each of
the design policies contributes to improving system per-
formance.

4.1. Data Set with User Abandonment

To reflect realistic viewing patterns of a large popula-
tion of users, trace from a nationally deployed VoD ser-
vice is used. The trace covers a two week period with
millions of requests. The data contains information in-
cluding the anonymized user ID, request time, video ID,
video length, and the duration viewed for each session.

Parameter Default value
Number of initial seeds (servers) 5
Upload bandwidth of each server 25 Mbps
Peer upload/download bandwidth 625 Kbps / 2 Mbps
Non-ABR video bitrate 625 Kbps
ABR video bitrates 250,500,750,1000 Kbps
Max. concurrent uploads per server 30
Max. concurrent uploads per peer 5
Chunk size 10 seconds
Startup buffer size per peer 10 seconds

Table 2: Simulation parameters

We use the duration viewed in the trace as session du-
ration (time elapsed since the user request time) in the
simulation, at which point the peer abandons the video.
Note that the final playback point of the video in the sim-
ulation may be shorter than the session duration (due to
startup delay, interruptions, etc.). We view this difference
as an indicator of the performance of the system (smaller
the better). In Fig. 7, we show the extent of user aban-
donment by plotting the cumulative distribution (CDF) of
normalized length viewed. To compare abandonment for
movies of different lengths we divide each viewed length
by the original duration of the video. The figure indicates
that only 26% of the sessions consumed the corresponding
videos fully.

To first understand the impacts of abandonment (Sec.
4.3 and Sec. 4.4), we repeat the experiment independently
with 8 different popular videos that have different lengths
across a wide range, from 30 to 150 minutes. They show
different abandonment patterns as in Fig. 8. They also
show a clear daily pattern in their request volume. For
example, Fig. 9 shows the number of concurrent sessions
(i.e., swarm size) of one of the 8 videos. Note that to
protect proprietary information, the Y-axis is normalized
by the peak value. Although the absolute request volume
varies, the other 7 videos also follow very similar daily
patterns. We report the average results obtained from the
8 videos.

Then, with abandonment existing, we evaluate our sys-
tem with ABR video delivery. For the experiments (Sec.
4.5 ∼ 4.9), we include playback results from all requested
videos in the entire trace as well as the 8 videos. Our 14-
day trace is split into seven 2-day trace segments. We use
these trace segments to get 7 different simulation runs and
report the average results and 95% confidence intervals.
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Figure 10: Comparing NITs of different com-
bination of chunk- and peer- selection poli-
cies on Joint-Family when user abandonment
exists and when it does not (with 95% confi-
dence interval).
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Figure 11: Average NITs of each peer group
divided based on viewed length. The server
(initial seed) capacity is 3Mbps.
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Figure 12: Cumulative distribution of NITs
on Joint-Family when user abandonment ex-
ists and when it does not, respectively.
(3Mbps initial seed capacity)

4.2. Experiment Setup

To evaluate Joint-Family, the BitTorrent simulator [30]
is used with the following major modifications: (1) video
streaming support (e.g., playback buffer), (2) bitrate adap-
tion (Section 3.3), (3) multi-swarm participation (Sec.
3.2), (4) different chunk (Sec. 3.3) and peer selection poli-
cies (Sec. 3.4), and (5) partial seeds (Sec. 3.5). Note that
for the hybrid chunk selection (EF+RF), a peer initially
uses EF, but switches to EF+RF once enough chunks are
in its playback buffer. This helps achieve lower startup de-
lay and playback continuity by providing the slack needed
to deal with possible future reductions in the download
rate. In our experiments, a peer uses EF with probability
0.7 and RF with 0.3, once there are 5 or more chunks in
its buffer.
We summarize the different parameters used in the sim-

ulations in Table 2. We use 5 servers, each with 25Mbps
uplink capacity to host all the videos. We assume contin-
uous network connectivity of each joining peer until the
end of an experiment so that the peer helps other peers as
a seed for previously viewed videos. Peers that download
the entire video convert to normal seeds while those that
abandon the video part-way become partial seeds. For the
trace driven simulation, peers make requests for a video at
the time instants specified in the trace.
While the playback rate for non-ABR videos is set to

625Kbps, we use 4 quality levels for ABR videos: 250, 500,
750 and 1000Kbps (the average being 625Kbps). Like most
P2P systems, each video is broken into chunks of 10 sec-
onds of playback, and a peer can play back a chunk while
it is being downloaded (subject to the startup delay and
the appropriate portion being available). For ABR, hold-
down time for bitrate switch-up (hu) and switch-down (hd)
are set to 30 and 10 seconds, respectively. Also, for the
buffer size parameters of switch-up and switch-down, we
use su = 50 and sd = 20 secs. We chose these bitrate
switch parameters based on our experiments (not shown
here) where the parameters achieved the largest average
playback rate with fairly small playback interruptions. We
use playback rate and interruption time as the met-
rics for performance evaluation.While the former gives in-

formation about the quality of video viewed by the user,
the latter captures the aggregate disruptions experienced
by the user.

4.3. Impact of Abandonment

We first investigate how user abandonment affects the
performance of different combinations of chunk selection
and peer selection policies with Joint-Family. We use play-
back interruption time as our main metric. However, since
the viewed length by a user varies widely, instead of just
measuring total interruption time of each view, we normal-
ize it by the viewed length, which we call the normalized
interruption time (NIT). In this sub-section, we test each
single video per experiment and make the following adjust-
ment on the simulation parameters of Joint-Family: we use
(1) only one initial seed (server), (2) 1Mbps non-ABR bi-
trate, and (3) 5Mbps/1Mbps peer download/upload band-
width. We vary the server capacity in Fig. 10 and ac-
cordingly adjust the maximum number of its concurrent
uploads allowed (e.g., 10 concurrent uploads with 2Mbps
upload capacity, 20 with 4Mbps, etc.).
Fig. 10 shows that all three schemes (TFT+EF,

TFT+[EF+RF], ED+EF, using the terminology of peer
selection + chunk selection policies) have larger NITs
with abandonment existing than without abandonment.
This indicates that while the absolute time of interruption
might be smaller with abandonment, the proportional im-
pact of interruption is larger with abandonment. Propor-
tion is more important because if a viewer is interrupted
for longer, there is the further likelihood that he/she may
abandon the video earlier [9, 24]. Clearly, a higher server
capacity benefits all the schemes. Also importantly, many
existing works have suggested the desirability of using a
EF+RF hybrid scheme for P2P VoD. However, we observe
that with TFT, EF+RF actually causes larger NITs com-
pared to EF when abandonment exists, because with aban-
donment, chunks closer to the end of a video are viewed
rarely. Exchanging rare chunks (typically later parts of the
video) which are not watched results in inefficient use of
resources. We observe that our proposed ED+EF combi-
nation of Joint-Family has the smallest NITs. This shows
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Figure 13: The fraction of demand (in terms
of bytes) satisfied by Joint-Family server (ini-
tial seed) over time.
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Figure 14: Number of concurrent downloads
of a peer in Joint-Family over time. The solid
curve ends at 1610 seconds.
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Figure 15: Average NITs of each peer group
divided based on viewed length. The syn-
thetic trace used.

the importance of accounting for abandonment; something
that earlier works have overlooked. This also shows that
serving peers with most urgent chunks helps improve over-
all user experience. We also measure the startup delay of
Joint-Family, but there is no significant difference between
different approaches whether there is abandonment or not;
this is not surprising as they all use EF at startup.

In Fig. 11, we use one of the longer videos (105 min-
utes), group peers based on how much they watched, and
plot the average NIT for each group. Specifically, we di-
vide the video into 100 second bins, and group the viewers
into these bins based on how much they watch (i.e., the
first group includes peers who watched 0–100 seconds of
the video, the next group watched 101–200 seconds of the
video, etc.). The server (initial seed) upload capacity in
Joint-Family is 3Mbps. We observe that peers who watch
for a long period have larger NITs than peers who watch
for a shorter interval. We also note that TFT+[EF+RF]
reduces NITs compared to TFT+EF for peers who watch
the video longer than 4800 seconds. However, for most of
peers who watch less than 4800 seconds, TFT+[EF+RF]
causes more interruption. As a result, TFT+[EF+RF] re-
sults in larger overall NITs than TFT+EF in the presence
of abandonment, just as we saw in Fig. 10. As before,
the use of ED+EF on Joint-Family results in consistently
lower interruption than the other two policies.

To understand the cause for these results and their re-
lationship to abandonment, we first compare NITs of each
view as CDFs in Fig. 12 between the case when abandon-
ment exists and when abandonment does not exist. The
server capacity in Joint-Family is 3Mbps, and all peers use
ED+EF. We observe that with abandonment some views
have very long NITs, such as NIT ≥ 1. Therefore, we now
focus on the peers who have NITs larger than 1 to un-
derstand how abandonment makes their playback perfor-
mance worse. Specifically, we conduct an in-depth study
step by step using a simple synthetic trace for a better un-
derstanding. While in the real trace peer arrival patterns
are fixed, with the synthetic trace we have full control over
peer arrivals. By adjusting arrival rates and patterns, we
are able to more clearly explain the impact of abandon-
ment by presenting distinct trends on the results with less
variance. Based on the findings from the synthetic trace,

we will also compare and validate our observations with
the real trace results.

For the synthetic trace experiments, we model the peer
arrival and abandonment patterns as random processes.
We assume that peer arrival follows a Poisson process with
rate λ = 0.05. We use a 30 minute video, and each arriving
peer watches uniformly between 3 and 30 minutes and then
abandons. We measure NITs of 2000 consecutive peers
who arrive in Joint-Family after Joint-Family reached a
steady state (where the swarm size becomes stable). Also,
to compare NITs more precisely, we remove startup buffer
at each peer so that startup delay is also considered as
an interruption and all contributions of delay are now in-
cluded in the NIT. Unless otherwise stated, the synthetic
trace experiments use the same experiment parameters as
the real trace experiments in Table 2.

First from the synthetic trace results, we compare the
load on the Joint-Family server between with and without
abandonment in Fig. 13. With abandonment, the load as
a byte fraction of requests served by the server is larger
than without abandonment. This is because peers leave
early with abandonment causing loss of upload capacity
available. This result indicates that abandonment imposes
more critical role on the server. Note that the initial large
drops till the first 104 seconds for the both curves indicate
that the swarm size is initially not yet stable but is growing
till it becomes stable.

Then, we monitor the number of concurrent chunk
downloads at each peer over time who has NIT ≥ 1 and
observe that those peers have a similar trend to that pre-
sented in Fig. 14. When the peer joins the swarm in
Joint-Family, it initially has many providers, 22–23 at
max. However, with abandonment the number of concur-
rent downloads goes down, and after about 1100 seconds,
the number becomes only 1 which is the server and never
increases until the peer abandons the video. On the other
hand, without abandonment, although the peer loses lots
of download connections in a similar manner, it manages
to maintain 4–6 parallel downloads. Also, the downloads
end at 1610 second without abandonment, which means
that the download finishes earlier than the actual play-
back. This trend indicates that with abandonment older
peers (i.e., those who arrived earlier than this peer) have
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(a) NITs of ED+EF with no abandonment
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(b) NITs of ED+EF with abandonment

Figure 16: NITs of 1000 peers in Joint-Family sorted in their arriving order
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Figure 17: Cumulative distribution of
seed staying time from real trace
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Figure 18: NITs of three different schemes
in presence of abandonment as a function of
partial seed staying time.
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Figure 19: Average NITs of each peer group
divided based on viewed length. ED+EF
used. Real trace used.
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Figure 20: Average NITs of each peer group
divided based on viewed length. ED+EF
used. Synthetic trace used.

all left at about the 1100 second mark, and thus this peer
loses all its possible uploaders other than the server. We
note that this trend is strongly related to Joint-Family’s
EF chunk selection policy since younger peers cannot help
older peers with EF. However, we will show that although
using EF+RF may alleviate this issue, EF+RF results in
more peers having interruptions than EF only, with aban-
donment.

More importantly, losing older peers seen in Fig. 14
occurs more severely with abandonment because viewers
watch different length of the video. If a peer watches for a
longer period than its older peers, that peer would be more
likely to lose its potential uploaders early. In Fig. 16(a)
and 16(b) we show NITs of each peer in an arriving or-
der, with and without abandonment, respectively. While
a similar set of peers experience larger NITs in both cases,
the magnitude is much larger in the case of abandonment.

In Fig. 15, we divide peers in Joint-Family into different
groups based on their viewed length, and plot the average
NITs of each group for the synthetic trace, similarly to
Fig. 11 with the real trace. Each group has a 40 second
range of viewed length. We now clearly observe that NITs
grow superlinearly as a peer watches the video for a longer
time. We also note that TFT+[EF+RF] reduces NITs
compared to TFT+EF for peers who watch for a very long
time (more than 1640 seconds). This is because, by using
RF, older peers have a chance to download from younger
peers as well. However, for most of peers who watch for
short periods, RF causes more interruption by exchanging
chunks closer to the end of the video; but those chunks

are rarely viewed. Peers who watch for a very short time,
even smaller than 500 seconds, have slightly larger NITs
than peers who watch around 500–1200 seconds. This is
because, as stated earlier in this section, we do not consider
startup delay for synthetic trace experiments. To confirm
this, we also plot the results when peers have a startup
buffer of 10 seconds of video just like the experiment with
the real trace, and we see that NITs for peers who watched
less than about 1300 seconds of the video with ED+EF is
almost 0. Comparing Fig. 15 and Fig. 11, although NITs
in the real world do not consistently and smoothly grow
with viewed length, but rather fluctuate, peers with longer
views generally suffer more interruptions than peers with
shorter views. Furthermore, we observe exactly the same
performance relationship among the three different policy
combinations.

4.4. Utilizing Partial Seeds

We investigate the effect of utilizing partial seeds in
Joint-Family. To understand the potential of seeds staying
on in practice, we present our real traces for all videos col-
lected at the set-top boxes of viewers. Specifically, for each
user, we calculate the distribution of the time between the
completion of one video and the start of the next video
request. Based on this, we determine how long each video
would be available in a viewer’s set-top box. Fig. 17 shows
that in over 45% of the occurrences, there is at least 1000
seconds of time the seed (whether it is a partial or normal
seed) can continue to stay and serve an existing swarm
before the user starts viewing another video.
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(b) Interruption time
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(c) Download rate

Figure 21: Comparison between Joint-Family and the state-of-the-art P2P system in presence of abandonment (group 1: the set of most
popular videos).

Server bandwidth 125 Mbps 500 Mbps 1 Gbps 2 Gbps
Server-based 261 Kbps 334 Kbps 501 Kbps 723 Kbps
ABR 195 secs 67 secs 16 secs 2 secs
Joint-Family 748 Kbps 881 Kbps 940 Kbps 975 Kbps
(c=5) 4 secs 0 sec 0 sec 0 sec

Table 3: Playback rates and interruption time with server-based
ABR scheme and Joint-Family in presence of abandonment.

Fig. 18 plots NITs of different chunk- and peer- se-
lection strategies as a function of the average staying
time of partial seeds when the server capacity in Joint-
Family is 3Mbps with a maximum of 15 concurrent up-
loads. With abandonment, having partial seeds benefits
all of the strategies. Here, partial seeds include normal
seeds who have downloaded the entire video. Note that
the staying time of partial seeds is an exponential distri-
bution, and after this time, partial seeds permanently leave
the system. Not surprisingly, the benefit increases as the
staying time of partial seeds increases as shown in Fig. 19.
NIT decreases significantly, especially for the viewers with
larger viewed lengths. For verification, we also repeat the
partial seed experiments with the synthetic trace used in
Section 4.3, and NITs of peers with long views in Fig. 20
gradually decrease as the partial seeds stay longer.

4.5. Comparison against Server-based ABR

Now we focus on understanding the benefit of using P2P
for ABR video delivery when abandonment exists. Start-
ing from this subsection we experiment Joint-Family’s
ABR videos with allowing each peer in Joint-Family to join
multiple swarms. The same trace with viewer abandon-
ment shown in Fig. 7 is also used. We first compare Joint-
Family with the traditional server-based ABR scheme.
Viewers in the server-based ABR do not share their down-
loaded content. Joint-Family uses a cache size of c = 5
(i.e., each peer can store maximum 5 different videos in its
local cache regardless of the length of the video). The same
buffer-based rate adaptation is applied in both schemes.
We look at the average viewers’ playback bitrate and in-
terruption time in Table 3 as the server bandwidth in-
creases. We assume a single server, with the maximum
number of concurrent uploads allowed for each 25 Mbps
of server upload bandwidth being 30, as in Table 2 (e.g.,
125Mbps server bandwidth allows 30 ∗ 5 = 150 concur-

rent uploads). Joint-Family requires only 125Mbps server
bandwidth to achieve about the same performance as a
server-based ABR with 2Gbps server bandwidth. Note
that the improvement in the playback rate of Joint-Family
with larger server bandwidths reaches a point of dimin-
ishing returns because the highest ABR video bitrate is
limited to 1000Kbps.

4.6. Comparison against State-of-the-art P2P VoD

For the performance comparison of Joint-Family, in-
stead of comparing with specific existing implementations,
we use a generalized implementation that incorporates the
state-of-the-art in P2P VoD. The generalized implementa-
tion (henceforth BT VoD) uses the hybrid policy (EF+RF)
for chunk selection and TFT for peer selection. Since exist-
ing P2P systems only support a single rate, we experiment
with two fixed rates: 1000Kbps and 250Kbps to represent
the two extremes (high quality and no interruption). Note
that 250Kbps was the maximum bitrate for BT VoD that
achieved no interruption for all viewers. Further, these
systems only allow participation in one swarm (equivalent
to c = 1 in Joint-Family). We use two scenarios for Joint-
Family: c = 1 and c = 5. Joint-Family uses ABR and
all the improvements suggested in this paper. The goal
here is to show the total benefits from using Joint-Family.
To understand the dependency between popularity and
playback performance, results are presented for 5 different
groups, where each group has 100 videos for correspond-
ing popularity. For example, Group 1 consists of the 100
most popular videos, while Group 5 has the 100 least pop-
ular videos. To obtain realistic performance results, every
experiment is run in presence of viewer abandonment.
First, Fig. 21(a) shows the average playback rate ex-

perienced by peers. With BT VoD, the playback rate is
constant across all videos, since just a single rate is used.
Joint-Family, on the other hand, has the ability to adapt
the playback rate to the available capacity for that video.
Consequently, popular videos experience a high playback
rate (as shown in Section 2.4). Interestingly, the aver-
age playback rate of the least popular videos is also much
higher with Joint-Family (by ∼100Kbps) than the lowest
possible rate. Similar to our analysis in Section 2.3, we
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Figure 22: Effect of seed staying time 1/γ
with abandonment (c=5)
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Figure 23: Rate adaptation with ABR in
presence of abandonment (c=5)
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Figure 24: Impact of available bandwidth on
ABR

also consistently see the benefit of caching and participat-
ing in multiple video swarms (e.g., c = 5 vs. c = 1). To
understand whether the playback rate is sustained with
minimal interruptions, we plot the average interruption
time in Fig. 21(b). Although the playback rate of BT
VoD with 1000Kbps is always higher than Joint-Family, it
causes significant interruption times. It is particularly bad
for less popular videos where the interruption can range
from 100 to almost 400 seconds. In contrast, BT VoD with
250Kbps and Joint-Family result in comparably negligible
interruptions; Joint-Family with c = 5 essentially performs
as well as BT VoD at 250Kbps while still achieving sig-
nificantly higher playback rates. To understand the rea-
son for Joint-Family’s improvement, we plot the average
download rate achieved by each alternative in Fig. 21(c).
The different approaches achieve mostly similar download
rate (although Joint-Family with c = 5 achieves higher
throughput for unpopular videos) that decreases with de-
creasing popularity.

The combination of these results illustrates why it is
important to adapt: If we pick too high a quality (e.g.,
1000Kbps bitrate), users of less popular videos experience
frequent interruption since the achievable download rate
may be lower than the playback rate. Contrarily, if we pick
a very low playback rate (250Kbps), interruptions may be
minimized, but quality of popular videos is unnecessarily
sacrificed. By dynamically adapting to the available ca-
pacity (as seen by the achieved playback rate for the dif-
ferent popularity groups), Joint-Family is able to achieve a
nice balance between quality and interruptions. Moreover,
we see that by caching more videos (c = 5), Joint-Family
exploits the increased capacity and is hence able to deliver
higher quality video at almost no interruptions across all
types of videos.

We now study the effect of seed staying time in Joint-
Family with c = 5 when abandonment exists. For users
not currently viewing videos, we vary their average stay-
ing time 1/γ. In Fig. 22, the ‘leave promptly’ curve in-
dicates that all viewers leave the VoD network right af-
ter they finish watching, while the ‘stay connected’ curve
(identical to ‘JF, c=5’ in Fig. 21(a)) indicates that they
stay connected till the end of each simulation. We first see
that the playback results have a similar trend in that more
popular swarms still achieve higher bitrates. Secondly, the

improvement in playback rates with longer staying times
reduces (e.g., ‘1/γ = 5 hours’ and ‘stay connected’ are al-
most identical). This is because, unlike our analysis, peer
arrivals do not strictly follow a Poisson process but in-
stead show significant diurnal patterns with peak hours
(e.g., 8∼12PM in Fig. 25) and off-peak hours. Further,
even after viewers leave, they can still come back to the
network (e.g., to watch other videos) and have their previ-
ously viewed videos available for sharing. The interruption
time (not shown here) is negligibly small for all cases.

4.7. Performance Improvement with ABR

We take a closer look at how a peer’s playback expe-
rience evolves over a video streaming session. As Joint-
Family adapts using ABR according to the available ca-
pacity for that video based on its popularity, we select a
sample user from each popularity group and plot the play-
back rate over time as well as its overall average when
c = 5. For the realistic experiments we keep taking aban-
donment into account. For the clarity of presentation, in
Fig. 23, we only show 3 groups. For the popular videos
(Group 1), the video quickly ramps up to 1000Kbps and
stays at the rate to achieve an average playback rate of
923Kbps, which is similar to the total average for Group 1
(as seen in Fig. 21(a)). The Group 3 user also briefly goes
up to 1000Kbps before settling back down to 750Kbps for
the most part. In the both cases, the average playback
is higher than the bitrate of non-ABR case (625Kbps).
Finally, since there is no sufficient capacity for the un-
popular videos to support a high rate, the Group 5 user
oscillates between 500 and 250 Kbps to achieve an average
of 414Kbps (while the group average is 410Kbps). While
this average is lower than 625Kbps, the total interruption
time for Group 5 with ABR was only 4.7 secs compared to
20.6 secs for the group without ABR. Fig. 24 plots play-
back rate transition when a peer’s available link bandwidth
changes over time. We select a sample user from Group
1 and vary its downlink bandwidth. For most of the time
the playback rate tracks the available bandwidth changes.
Thus Joint-Family works harmoniously with ABR, en-

abling peers to dynamically adapt to the available sys-
tem capacity among the servers and peers for a particular
quality/rate for the video. As seen in our ABR model in
Section 2.4, by allowing peers to participate in multiple
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Figure 25: Aggregate upload bandwidth for
Joint-Family and BT VoD in presence of
abandonment
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Figure 26: Video popularity and the effect of
cache size (c)
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Figure 27: Playback rate of Joint-Family for
heterogeneous peers with abandonment

swarms, peers viewing a popular video are naturally able
to take advantage of the higher bitrate chunks that be-
come available because of the increased system capacity
for such popular content.

4.8. Effect of Multiple Swarms

To understand the underlying reason for the improved
performance of Joint-Family, we examine the overall sys-
tem utilization. We periodically sample the upload band-
width aggregated across all peers (excluding servers) when
abandonment exists, and report the time series for Joint-
Family (with c = 5) and BT VoD. In this experiment we
do not use ABR to remove the performance impact by rate
adaption. Fig. 25 shows Joint-Family effectively increases
the system utilization compared to BT VoD. Specifically,
at the peak viewing period, the aggregate upload band-
width by BT VoD is 1.8Gbps while 2.3Gbps with Joint-
Family (an increase of 27%). By being in multiple swarms,
peers in Joint-Family can still upload as long as they re-
ceive a chunk request from any of the swarms, thus im-
proving overall upload capacity and playback experience.
Caching and video popularity: We turn our atten-
tion to increasing system capacity so that we can increase
the video download rate through caching. We run Joint-
Family with a constant bitrate of 625Kbps and experiment
with both LFU cache replacement (popular in the litera-
ture for video caches) and FIFO (used in our analysis).
Fig. 26 shows the variation of the download rate as the
cache size increases from 1 to 5 videos. We again pick
3 groups of videos with different popularity: Group 1, 3,
and 5. The Y-axis shows the average download rate of each
group normalized by the rate achieved when c = 1. Similar
to our analysis in Section 2.3, we observe that: (a) caching
consistently improves the download rate across videos of
all popularity levels, (b) the benefit from caching reduces
as we increase the amount of caching, (c) unpopular videos
see more benefit with caching than popular videos (26%
improvement vs. 8%), and (d) the specific cache replace-
ment mechanism does not play a significant role (in this
limited size of the number of cache entries). Note that
while the normalized download rates for popular videos
improve less than unpopular videos, the absolute value for
the download rate is much higher (1049 vs. 597 Kbps).

4.9. Effect of Heterogeneous Peers

In practice, the upload and download bandwidth of
peers can vary, depending on network technology and pric-
ing plans chosen by users. We examine the impact of vary-
ing the uplink/downlink bandwidth of peers. We choose
4 bandwidth combinations: 312.5K/2Mbps, 625K/2Mbps,
312.5K/4Mbps, and 625K/4Mbps, and each arriving peer
has one of those bandwidth chosen uniformly at random.
Fig. 27 shows the playback rate for the corresponding
peers when abandonment exists. The benefit is predomi-
nantly seen for popular videos. Peers with higher down-
link bandwidth see a greater improvement in the playback
rate for their popular videos than when their uplink band-
width changes. The higher downlink bandwidth allows
the system (initially by the servers) to populate the en-
vironment (peers) with higher quality chunks (even if the
uplink bandwidth is halved from 625 to 312.5 Kbps) which
is then effectively shared among the peers viewing the pop-
ular video over time due to the increased system capacity
for the popular video.

5. Related Work

We broadly classify related work into the following sub-
sections namely, abandonment, adaptive streaming, mul-
tiple swarms, and chunk and peer selection.
Abandonment: Hwang et al.[25], Li et al.[24], and Shafiq
et al. [10] present measurement studies on viewer’s be-
havior with abandonment in large scale landline-based or
mobile-based IPTV services providers. They demonstrate
that users often watch only a small portion of a video.
We take into account this effect of abandonment and show
that existing schemes for P2P VoD should be reconsid-
ered to cope with more realistic demands. Aalto et al. [31]
analyze abandonment in P2P VoD with limited simula-
tion scenarios for model verification. Our work analyzes
the contribution of “partial seeds” and performs practical
evaluation with real traces to measure impact of abandon-
ment in the real world.
Adaptive Streaming: HTTP adaptive bitrate stream-
ing (ABR) has been gaining popularity as a way to enable
users to experience the highest quality of videos. ABR dy-
namically adapts to the user’s network and playback con-
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dition. There are several flavors of ABR implementations
(e.g., MPEG-DASH [32], YouTube [1], Microsoft Smooth
Streaming, Netflix, Adobe Dynamic Streaming [28], Ap-
ple Live Streaming). For analysis Yin et al. [33] present a
control-theoretic model of ABR with different QoE objec-
tives. While ABR has been used for HTTP server based
streaming, the use of P2P systems for ABR is not yet
common. Roverso et al. [34, 35] implement ABR in P2P
systems for live media only. Lin and Shen [36] study ABR
in a P2P-assisted cloud VoD system, while their work is
limited to a single swarm and peers in the swarm have to
rely on cloud resources.
Scalable video coding (SVC) [7] is yet another approach

that enables end-systems to adapt network conditions.
[37–39] take a multiple description or layered coding ap-
proach which causes interdependency of layers per chunk
distribution in P2P and which is not directly applicable to
ABR or our P2P work. Also, SVC has not been widely
implemented due to the computational complexity of de-
coding on end-systems, and the additional bandwidth re-
quirements and overhead compared to ABR. ABR can also
easily work with existing network infrastructure such as
firewalls and CDNs, and ABR deployment has far out-
paced SVC and other alternatives.
Multiple Swarms: While most of the work has improved
the performance in a single swarm, little effort has been
put on multiple swarms to utilize idle upload/download
bandwidth of peers by means of added capacity obtained
between swarms. Wu et al. [40] and Wang et al. [41] inves-
tigate the peer’s bandwidth allocation to contribute across
multiple swarms in live streaming but not in VoD. Zhou et
al. [26] model inter-swarm data exchange in VoD, however,
their implementation requires centralized schemes for es-
timating the demand and supply for each content piece.
Wang et al. [42] focus on adjusting the peer’s inter-swarm
contribution based on the demand, which corresponds to
one of the many aspects considered in our work.
Chunk and Peer Selection: To adapt BitTorrent for
streaming systems (either live or VoD), a combination
of rarest first (RF) chunk selection and sequential chunk
download (EF) has been exploited [11–15]. Existing
schemes vary from a simple probabilistic hybrid model to
using sophisticated network coding techniques. Previous
work claims that achieving balance between system utiliza-
tion (by RF) and on-line playback (by EF) can substan-
tially improve playback quality. However, we show that
it is a side-effect of using BitTorrent’s Tit-for-Tat (TFT)
together as peer selection policy and further show that
using EF only achieves better playback performance with
our Earliest-Deadline (ED) peer selection.
A number of prior works [15, 18, 29, 43–46] show that

TFT is not suitable for streaming applications. This is
primarily because RF chunk selection is not suitable for
streaming, and TFT without RF makes it difficult for new
peers to contribute to older peers. Various peer selection
approaches have been proposed for streaming. Shah et
al. [15] modify TFT’s optimistic unchoke policy, D’Acunto

et al. [44] make peers act more altruistically, and Wen et
al. [43] group peers with similar playback points to help
each other. To satisfy a viewer’s uninterrupted playback,
we replace TFT with ED policy, which ensures that each
chunk is delivered to the viewer prior to its deadline.

6. Conclusion

We have presented a holistic redesign of P2P VoD, Joint-
Family, which for the first time supports the delivery of
adaptive bitrate video in the presence of user abandonment
of videos. We show through analysis that, unlike previ-
ously known results, it is only with sufficiently long staying
times that the available download capacity in P2P VoD
depends on the popularity of the content. Our analysis
also shows that adaptive bitrate in P2P VoD systems can
achieve a higher playback rate for a more popular video.
We have demonstrated that user abandonment can impact
P2P VoD streaming performance significantly. Abandon-
ment causes larger interruptions (NITs), particularly for
peers that watch a video longer, as they are isolated, with
no other peers to upload from. We use this analysis and
the trace-driven simulation results to guide our design of
the Joint-Family protocol.
Joint-Family built upon achieves much better perfor-

mance than existing strategies as demonstrated by our
simulations using traces from a commercial VoD ser-
vice. By choosing Earliest-Deadline as the peer selec-
tion policy and Earliest-First as the chunk selection pol-
icy, Joint-Family dramatically improves the viewer’s QoE
by minimizing interruptions. Joint-Family allows peers to
smoothly adapt their quality and achieve a much high
playback rate for popular content. Not just that, even
for unpopular content, Joint-Family achieves almost 40%
higher playback rate than the state-of-the-art P2P VoD
approaches which in fact use a fixed bitrate for the video,
while reducing the total interruption time by a factor of
4. Joint-Family leverages resources across swarms that are
potentially wasted by other schemes and increases system
utilization by 30% at peak viewing periods.

Appendix A. Derivation for Equations (2) and (3)

By the balance equations of our 1D M/M/∞ queueing
model, we obtain πi as Equation (1). Using constraint
∑

∞

i=0 πi = 1, we derive π0 as follows,

π0 =
1

1 +
∑

∞

i=1
ρi

∏
i
k=1 (k+θ)

(A.1)

=
1

1 +
∑

∞

i=1
ρiθ!

(k+θ)!

(A.2)

=
1

1 + θ!
ρθ (eρ −

∑θ
i=0

ρi

i! )
(A.3)

=
1

θ!
ρθ (eρ −

∑θ−1
i=0

ρi

i! )
(A.4)
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where θ = y− 1. Note that we assume that θ is integer for
Equation (A.2).
Using πi and π0, we derive

E[X |Y = y] =
∞
∑

i=1

iπi (A.5)

= π0

∞
∑

i=1

iρiθ!

(i + θ)!
(A.6)

= π0θ!(
∞
∑

i=1

ρi+θ−1ρ1−θ

(i+ θ − 1)!
− θ

∞
∑

i=1

ρi+θρ−θ

(i+ θ)!
)

= π0θ!(
1

ρθ−1
(eρ −

θ−1
∑

i=0

ρi

i!
)−

θ

ρθ
(eρ −

θ
∑

i=0

ρi

i!
))

where θ = y − 1. By substituting π0 (Eq. (A.4)),

E[X |Y = y]

= ρ− θ
eρ −

∑θ
i=0

ρi

i!

eρ −
∑θ−1

i=0
ρi

i!

(A.7)

= ρ− θ −

ρθ

(θ−1)!
∑

∞

i=θ
ρi

i!

(A.8)

= ρ− θ +
ρθ

eρ(Γ(θ) − Γ(θ, ρ))
(A.9)

where Γ(y) is the gamma function (Γ(y) = (y − 1)!) and
Γ(y, ρ) is the upper incomplete gamma function (Γ(y, ρ) =

(y − 1)!e−ρ
∑y−1

i=0
ρi

i! ).
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