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ABSTRACT
Data center networks, and especially drop-free RoCEv2 net-
works require efficient congestion control protocols. DCQCN
(ECN-based) and TIMELY (delay-based) are two recent pro-
posals for this purpose. In this paper, we analyze DCQCN
and TIMELY using fluid models and simulations, for sta-
bility, convergence, fairness and flow completion time. We
uncover several surprising behaviors of these protocols. For
example, we show that DCQCN exhibits non-monotonic sta-
bility behavior, and that TIMELY can converge to stable
regime with arbitrary unfairness. We propose simple fixes
and tuning for ensuring that both protocols converge to and
are stable at the fair share point. Finally, using lessons learnt
from the analysis, we address the broader question: are there
fundamental reasons to prefer either ECN or delay for end-
to-end congestion control in data center networks? We argue
that ECN is a better congestion signal, due to the way mod-
ern switches mark packets, and due to a fundamental limita-
tion of end-to-end delay-based protocols, that we derive.

Keywords
Data center transport; RDMA; ECN; delay-based; conges-
tion control

1. INTRODUCTION
Large cloud service providers are turning to Remote DMA

(RDMA) technology to support their most demanding appli-
cations [21, 28, 31]. RDMA offers significantly higher band-
width and lower latency than the traditional TCP/IP stack,
while minimizing CPU overhead [7, 21, 31].

Today, RDMA is deployed using the RoCEv2 standard [18].
To ensure efficient operation, RoCEv2 uses Priority Flow
Control (PFC) [17] to prevent packet drops due to buffer
overflow. Since there are no packet drops, any end-to-end
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congestion control protocol for RoCEv2 networks must use
either ECN markings, or delay as the congestion signal.

Last year, two protocols were proposed for this purpose,
namely DCQCN [31] and TIMELY [21]. Though they are
designed for enabling RoCEv2 in large data centers, their
key assumptions are not RDMA-specific: data centers based
on commodity Ethernet hardware, and no packet drops due
to congestion. The difference is that DCQCN uses ECN
marking as a congestion signal, while TIMELY measures
changes to end-to-end delay.

In this paper, we analyze DCQCN and TIMELY for sta-
bility, convergence, fairness and flow completion time.

We have two motivations for this work. First, we want
to understand the performance of DCQCN and TIMELY in
detail. Given their potential for widespread deployment, we
want to understand the tradeoffs made by the two protocols
in detail, as well as offer guidance for parameter tuning. Sec-
ond, using insights drawn from the analysis, we want to an-
swer a broader question: are there fundamental reasons to
prefer either ECN or delay as the congestion signal in data
center networks?

To this end, we analyze DCQCN and TIMELY using fluid
models and NS3 [32] simulations. Fluid models are use-
ful for analyzing properties such as stability, and for rapid
exploration of parameter space. However, fluid models can-
not tractably model all features of complex protocols like
DCQCN and TIMELY. Nor can fluid models compute mea-
sures like flow completion times. Thus, we also study the
protocols using detailed, packet-level simulations using NS3.
Our simulations in NS3 implement all known features of the
protocols. We have released our NS3 source code at [1].

Before we proceed, we want to stress two things. First, we
limit our discussion to ECN and delay as congestion signals
and end-host rate-based control, since they are supported by
commodity Ethernet switch and NIC hardware [21, 31]. Pro-
tocols that require hardware to do more [5, 8, 19] or use a
central controller [24, 30] are outside the scope of this pa-
per. We also do not consider designing a new protocol that
would use both ECN and delay as congestion signals.

Second, it is not our goal to do a direct comparison of per-
formance of DCQCN and TIMELY. Such comparison makes
little sense, since both protocols offer several tuning knobs,
and given a specific scenario, either protocol can be made to
perform as well as the other. Instead, we focus on the core



behavior the two protocols to obtain broader insights. Our
key contributions, and findings are summarized as follows.

DCQCN: (i) We extend the fluid model proposed in [31],
to show that DCQCN has a unique fixed point, where flows
converge to their fair share. Using a discrete model, we also
derive that the convergence speed is exponential. (ii) We
show that DCQCN is stable around this fixed point, as long
as the feedback latency is low. The relationship between
stability and the number of competing flows is, strangely,
non-monotonic, which is very different from TCP’s behav-
ior [15]. DCQCN is stable for both very small, and very
large number of flows, and tends to be unstable in between;
especially if the feedback latency is high.

TIMELY: (i) We develop a fluid model for TIMELY, and
validate it using simulations. The model reveals that TIMELY
can have infinite fixed points, resulting in arbitrary unfair-
ness. (ii) We propose a simple remedy, called Patched TIMELY,
and show that the modified version is stable and exponen-
tially converges to a unique fixed point.

ECN or Delay: (i) We compare the flow completion time
of TIMELY and DCQCN running the same traffic traces.
DCQCN outperforms TIMELY due to better fairness, stabil-
ity and fundamentally it is able to control the queue length
better than TIMELY. Patched TIMELY closes the gap, but
still cannot match DCQCN performance. We sweep the val-
ues of all DCQCN and TIMELY parameters and present the
best combinations. Therefore, the performance difference is
less about parameter tuning, but more likely due to the fun-
damental signal they use.

(ii) Based on lessons learnt from analysis of DCQCN and
TIMELY, we explain why ECN is a better signal for convey-
ing congestion information. One reason for this is that mod-
ern shared buffer switches mark packets with ECN at egress,
effectively decoupling the queuing delay from feedback de-
lay. This improves system stability. Second, we present a
fundamental result: for a distributed protocol that uses only
delay as the feedback signal, you can achieve either fairness
or a guaranteed steady-state delay, but not both simultane-
ously. For an ECN-based protocol you can achieve both by
using a PI [14]-like marking scheme. This is not possible
with delay-based congestion control. Finally, ECN signal is
more resilient to jitter on the backward path as it only intro-
duces delay in the feedback, whereas for delay based proto-
cols jitter introduces delay and noise in the feedback signal.

2. BACKGROUND
The Remote Direct Memory Access (RDMA) technology

offers high throughput (40Gbps or more), low latency (few
µs), and low CPU overhead (1-2%), by bypassing the end-
host kernels during data transfer. Instead, network interface
cards (NICs) transfer data in and out of pre-registered mem-
ory buffers at the two end hosts.

Modern data center networks deploy RDMA using the
RDMA over Converged Ethernet V2 (RoCEv2) [18] stan-
dard. RoCEv2 requires a lossless (or, more accurately, drop-
free) L2 layer. Ethernet can be made drop-free using Priority

Flow Control (PFC) [17]. PFC prevents buffer overflow on
Ethernet switches and NICs. The switches and NICs track
ingress queues. When the queue exceeds a certain threshold,
a PAUSE message is sent to the upstream entity. The uplink
entity then stops sending on that link till it gets an RESUME
message. PFC is a blunt mechanism, since it does not op-
erate on a per-flow basis. This leads to several well-known
problems such as head-of-the-line blocking [31, 28].

PFC’s problems can be mitigated using per-flow conges-
tion control. Since PFC eliminates packet drops due to buffer
overflow, either ECN or increase in RTT are the only two
available “end-to-end” congestion signals. DCQCN relies
on ECN, while TIMELY relies on RTT changes.

DCQCN and TIMELY are not RDMA-specific, so our
analysis makes no reference to RoCEv2 or RDMA. DCQCN
and TIMELY are not designed for wide area traffic, so our
analysis focuses on intra-DC networks.

3. DCQCN
DCQCN is an end-to-end, rate-based congestion control

protocol that relies on ECN [25]. It combines elements of
DCTCP [2] and QCN [16]. DCQCN algorithm specifies be-
havior of three entities: the sender (called the reaction point
(RP)), the switch, (called the congestion point (CP)), and the
receiver (called the notification point (NP)). We now briefly
describe the protocol; see [31] for more details.

CP behavior: At every egress queue, the arriving packet is
ECN-marked [25] if the queue exceeds a threshold, using a
RED [10]-like algorithm.

NP behavior: The NP receives ECN-marked packets and
notifies the RP about it using Congestion Notification Pack-
ets (CNP) [18] Specifically, if a marked packet arrives for a
flow, and no CNP has been sent for this flow in last τ mi-
croseconds, a CNP is generated immediately.

RP behavior: The RP adjusts its sending rate based on
whether it receives a CNP within a period of time.

Upon getting a CNP, the RP reduces its current rate (RC)
and updates the value of the rate reduction factor, α, like
DCTCP, and remembers current rate as target rate (RT ) for
later recovery, as follows:

RT = RC ,

RC = RC(1− α/2),

α = (1− g)α+ g,

(1)

If RP gets no feedback for τ ′, α is updated as:

α = (1− g)α, (2)

Note that τ ′ must be larger than the CNP generation timer.
RP increases its sending rate using a timer and a byte

counter, in a manner identical to QCN [16]. The rate in-
creases has two phases, five stages of so-called “fast recov-
ery”, where Rc rapidly approaches Rt, and then a gradual
additive increase. DCQCN does not have slow start. Senders
start at line rate, in order to optimize the common case of no
congestion. DCQCN relies on hardware rate limiters for per-
packet rate limiting.
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Figure 1: DCQCN fluid model

3.1 Model
A fluid model of DCQCN was described in [31]. The orig-

inal model considers N flows with exactly same rates and
states, traversing a single bottleneck link. In this paper, we
extend it slightly to account for flows with different rates
and states. Instead of having variables that are shared by all
flows, we model each flow individually. The model is shown
in Figure 1 and Table 1.

We assume that ECN marking is triggered before PFC [31]
and does not delay due to PFC at current congestion point
(see Section 5, ECN is marked on egress). Hence, we ignore
the impact of PFC. Equation 3 calculates the probability of
a packet getting marked. Equation 4 describes the queue
behavior. Equation 5 captures the evolution of alpha. Equa-
tions 6 and 7 describe the calculation of target and sending
rate, respectively.

Model Validation: In [31] it was shown that the fluid
model matches actual hardware implementation. Here we
only show that our NS3 packet-level simulations are in agree-
ment with the model. To do so, we simulate and model a
simple topology, in which N senders, connected to a switch,
send to a single receiver, also connected to that switch. DCQCN
parameters are set to the values proposed in [31]. Note that
as per DCQCN specification, all flows start at line rate. Fig-
ure 2 shows that the fluid model and the simulator are in
good agreement.

Variables
Rc Current Rate
Rt Target Rate
α See Equation (1)
q Queue Size
t Time

Parameters
Kmin,Kmax, Pmax RED marking parameters.

g See Equation (1)
N Number of flows at bottleneck
C Bandwidth of bottleneck link
F Fast recovery steps (fixed at 5)
B Byte counter for rate increase
T Timer for rate increase
RAI Rate increase step (fixed at 40Mbps)
τ CNP generation timer
τ∗ Control loop delay
τ ′ Interval of Equation (2)

Table 1: DCQCN Fluid model variables and parameters

3.2 Stability
We first obtain the fixed point of the system, and linearize

the model around the fixed point. We analyze the linearized
model for stability using standard frequency domain tech-
niques [13].

THEOREM 1 (DCQCN’S UNIQUE FIXED POINT). DCQCN
has a unique fixed point of queue length and flow rates.

PROOF. By setting the left-hand side of Equation 4 to 0,
we see that any fixed points of the DCQCN (if they exist)
must satisfy:

N∑
i=1

R
(i)
C (t) = C (8)

At any of the fixed points, we assume the value of p is p∗,
which is shared by all flows. The queue length and per-flow
α(i) at the fixed points are determined by Equation 3 and 5:

q∗ =
p∗

pmax
(Kmax −Kmin) +Kmin (9)

α(i)∗ = 1− (1− p∗)τ
′R(i)∗

C (10)

Next, we show that p∗ exists and is uniquely determined by
R

(i)∗
C in the DCQCN model. Combining Equation 6 and 7,

we eliminate the variable R(i)∗
T . After simplification, we see

that the value of p∗ is determined by:

a2α(i)∗

(b+ d)(c+ e)
= τ2RAIR

(i)∗
C (11)

Where we denote a, b, c, d, e as follows:

a = 1− (1− p∗)τR
(i)∗
C , b = p∗

(1−p∗)−B−1
, c = (1−p∗)FBp∗

(1−p∗)−B−1
,

d = p∗

(1−p∗)−TR
(i)∗
C −1

, e = (1−p∗)FTR
(i)∗
C p∗

(1−p∗)−TR
(i)∗
C −1

(12)
The LHS of Equation (11) is a monotonic function of pwhen
p ∈ [0, 1]. Furthermore, when p = 0, the LHS is smaller
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Figure 2: Comparison of DCQCN fluid model and NS3 simulations
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(c) RAI = 10Mbps, Kmax =
1000KB.Figure 3: DCQCN stability

than RHS, and vice versa when p = 1. Thus DCQCN has
a unique fixed point of marking probability p∗, leading to a
unique fixed point of queue length q∗.

In § 3.3, we prove that flow rates do not reach a steady
state until they converge to the same rate, i.e.,

R
(1)∗
C = R

(2)∗
C = ... = R

(N)∗
C (13)

The fixed point, where by definition the flow rates are
steady, must satisfy this equation. Therefore, at the fixed
point, R(i)∗

C = C
N , i = 1, 2, ..., N .

Next we approximate the value of p∗. Numerical anal-
ysis shows that p∗ is typically very close to 0. Therefore,
we approximate the LHS of Equation 11 using Taylor series
around p = 0. After omitting the O(p4) term, we have:

p∗ ≈ 3

√
RAIN2

τ ′C2

(
1

B
+

N

TC

)2

(14)

Therefore, the queue length q∗ is determined by p∗ (Equa-
tion 9), which depends on the number of flows N . A poten-
tial improvement is to make q∗ independent ofN . With ECN
as the signal, we may achieve this by using a PI-like control
mechanism. See more discussion in Section 5.

Stability analysis. We test the system against Bode Stabil-
ity Criteria [13]. The degree of stability is shown as Phase
Margin. A stable system must have negative Gain (in dB)
when there is a small oscillation aruond the fixed point, so
that it converges back to the fixed point. Phase Margin is de-
fined as how far the system is from the 0dB Gain state. The
system is stable when its Phase Margin is larger than 0, and
the larger Phase Margin means the system is more stable.
Phase Margin is computed from the characteristic equation
of a system. See Appendix A for details of the derivation of
the characteristic equation forRC . The numerical results are
shown in Figure 3.

We analyze DCQCN stability in different conditions, par-
ticularly with different control signal delays τ∗, and differ-
ent number of flows. An ideal protocol should be tolerant
with control signal delays and scalable to any number of
flows. In practice, τ∗ is dominated by propagation delay
since ECN marking is not affected by the queuing delay at
the congestion point (see Section 5). In data center environ-
ment, propagation delay is usually well below 100µs. There
could be tens of flows competing for a single bottleneck. As
Figure 3 shows, DCQCN, with default parameters, is mostly
stable in such environment.

However, unlike TCP [20], the relationship between num-
ber of flows and the phase margin is non-monotonic. When
the delay is large, e.g., 100µs, the phase margin dips below
zero for certain number of flows, before rising again. For the
set of parameters we have chosen, the system can be unsta-
ble with 10 flows at high feedback delays. DCQCN is in-
creasingly stable with larger number of flows, which means
good scalability. This point is further illustrated in the fluid
model results shown Figure 4. When the feedback delay is
small (4 µs), DCQCN is stable - flow rates, and queue length
quickly1 stabilizes regardless of the number of flows. How-
ever, when the delay is large (85µs), the protocol is unstable
for 10 flows. It is, however, stable for 2 and 64 flows. Fig-
ure 5 shows the instability with packet-level simulations.

While this problem may not be particularly serious in prac-
tice, it can be easily fixed by tuning the values of RAI and
Kmax. Smaller RAI means flows increase their rate more
gently, and stabilizes the system. Similarly, larger Kmax −
Kmin makes rate decreasing more fine grained, because the
perturbation of queue length leads to smaller perturbation in
marking probability. We show these trends in Figures 3(b)
and 3(c). With small RAI and large Kmax, DCQCN can
be always stable even when the control signal delay reaches
100µs, which equals to the propagation delay of a 30KM

1Remember that DCQCN flows always start at line rate.
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cable, or 500KB queuing delay. Such large delays are rare
in modern data center networks.

Note that tuning RAI and Kmax is a trade-off between
stability and latency. Smaller RAI leads to slower ramp-up,
while larger Kmax leads to larger queue length. In most
cases, the default parameters strike a good enough balance
between stability and latency.

3.3 Convergence
In Section 3.2, we showed that for reasonable parameter

settings, DCQCN is stable after flows converge to the unique
fixed point. We also showed that at the fixed point, the flows
share the bandwidth equally. However, two questions remain
unanswered: (i) do flows the always converge to this fixed
point, and (ii) how fast do flows converge?

We cannot answer these questions using the fluid model,
so like [3], we construct and analyze a discrete model of
the rate adjustment at the RP. The default parameter settings
given in [31] set both the Timer T and α update interval τ ′

equal to 55µs. Thus, we use τ ′ as the unit of time. The
process of DCQCN rate update is similar to TCP AIMD,
as shown in Figure 62. The flows get the peak rates at Tk.
For simplicity, we assume all flows are synchronized, and
peak at the same time. This is a common assumption, for
data center environments [3], especially for workloads like
distributed storage system and MapReduce-like frameworks.

THEOREM 2 (DCQCN CONVERGENCE). Under the con-
trol of DCQCN, the rate difference of any two flows decrease
exponentially over time.

PROOF. Here we provide a brief proof whereas more de-
tails can be found in Appendix B. Whenever a flow gets
ECN marks at Tk, it reduces its rate in one unit of time, then

2Fast recovery does not change the nature of AIMD, since
it can be combined with corresponding rate decrease as a
multiplicative decrease event. As a common practice, like
[4] does, we omit it in the following analysis.

starts ∆Tk − 1 consecutive additive rate increases on R(i)
T .3

Here ∆Tk
∆
= Tk+1−Tk. According to DCQCN’s definition:

R
(i)
T (Tk+1) =

(
1− α(i)(Tk)

2

)
R

(i)
C (Tk) + (∆Tk − 1)RAI

(15)
α(i)(Tk+1) = (1− g)∆Tk−1

(
(1− g)α(i)(Tk) + g

)
(16)

For another flow, e.g., the jth flow, we can simply rewrite
Equation 16 by replacing (i) with (j). We subtract the equa-
tion of jth flow from the equation of ith flow:

α(i)(Tk+1)− α(j)(Tk+1) = (1− g)∆Tk

(
α(i)(Tk)− α(j)(Tk)

)
= ... = (1− g)

∑k
l=0 ∆Tl

(
α(i)(T0)− α(j)(T0)

)
(17)

This tells us the difference of α(i) of any two flows will de-
crease exponentially. So α(i) of different flows will converge
to the same value. Once the α converged at some Tk′ , we can
show the rates RC converge afterwards. We rewrite the jth
flow’s Equation 15, and subtract it from Equation 15. Com-
bining the analysis of RT in Appendix B, we get:

R
(i)
C (Tk+1)−R(j)

C (Tk+1) =
(

1− α(Tk)
2

)(
R

(i)
C (Tk)−R(j)

C (Tk)
)

= ... =
k∏

l=k′

(
1− α(Tl)

2

)(
R

(i)
C (Tk′)−R(j)

C (Tk′)
)

(18)
As long as α(Tk) has a lower bound that is greater than 0,
the rates RC of different flows converge exponentially. In
Appendix B, we prove that:

α(T0) > ... > α(Tk) > α(Tk+1) > ... > α∗ > 0 (19)

where α∗ is the fixed point of the Equation 16. Equation 19
concludes our proof.

From Equation 18, we see that RC converges at the rate of
at least (1− α∗

2 )k, where k is the number of AIMD cycles.
3For simplicity, we omit hyper-increase and set RT = RC
upon rate decrease. This is a slightly simplified version of
DCQCN.



Algorithm 1 TIMELY rate calculation
1: newRTTDiff ← newRTT − prevRTT
2: prevRTT ← newRTT
3: rttDiff ← (1− α) · rttDiff + α · newRTTDiff
4: rttGradient = rttDiff/DminRTT
5: if newRTT < Tlow then
6: rate← rate+ δ
7: else if newRTT > Thigh then
8: rate← rate · (1− β · (1− Thigh/newRTT ))
9: else if rttGradiant ≤ 0 then

10: rate← rate+ δ
11: else
12: rate← rate · (1− β · rttGradient)

3.4 Summary
We have shown that DCQCN has a unique fixed point,

where all flows get a fair share of the bottleneck bandwidth.
For typical parameter values flows converge to this fixed
point exponentially. DCQCN is generally stable around this
fixed point, and RAI and Kmax can be tuned if needed.
However, a PI-controller based approach may be the more
principled way to ensure stability and fixed queue length.

4. TIMELY
TIMELY [21] is an end-to-end, rate-based congestion con-

trol algorithm that uses changes in RTT as a congestion sig-
nal. It relies on NIC hardware to obtain fine-grained RTT
measurements. RTT is estimated once per completion event [18],
which signals the successful transmission of a chunk (16-
64KB) of packets. Upon receiving a new RTT sample, TIMELY
computes new rate for the flow, as shown in Algorithm 1. If
the new RTT sample is less than (Tlow), TIMELY increases
sending rate additively by δ. If the new sample is more than
(Thigh), rate is decreased multiplicatively by β. If the new
sample is between Tlow and Thigh, the rate change depends
on the RTT gradient. The gradient is defined as the normal-
ized change between two successive RTT samples. If the
gradient is positive (i.e. RTT is increasing), sending rate is
reduced multiplicatively, in proportion to the RTT gradient.
Otherwise, it is increased additively by δ.

TIMELY flows do not start at line rate. If there are N
active flows at a sender, a new flow starts at rate C/(N+1),
where C is the interface link bandwidth [21].
4.1 Model

Our fluid model of TIMELY is shown in Table 2 and Fig-
ure 7. As before, (i) we model N flows, traversing a single
bottleneck link, and (ii) and ignore the impact of PFC.

Equation 20 describes the queue behavior. Equation 21
describes rate computation. For simplicity, we ignore the
hyperactive increase phase. When RTT is betweenTlow and
Thigh, the rate computation depends on RTT gradient, which
evolves according to Equation 22. The equation captures the
EWMA filter, as well as normalization. Since the gradient
is the difference between the current and the previous RTT
sample, it depends on two queue lengths in past: one at time
t − τ ′, and one at time t − τ ′ − τ . The value of τ ′ and τ∗
depend on past transmission rates, but to simplify the model,

Variables
R Rate
g RTT gradient
q Queue Size
t Time
τ∗ Rate update interval
τ ′ Feedback delay

Parameters
N Number of flows at bottleneck
C Bandwidth of bottleneck link
α EWMA smoothing factor
δ Additive increase step
β Multiplicative decrease factor
Tlow Low threshold
Thigh High threshold

DminRTT Minimum RTT for normalization
Dprop Propagation delay
Seg Burst size

Table 2: TIMELY fluid model variables and parameters

we approximate their calculation as shown in Equations 23
and 24. Equation 23 captures the fact that the TIMELY im-
plementation gets RTT feedback once per burst, and rate up-
dates are scaled by DminRTT to ensure that rate update fre-
quency is limited (See Section 5 of [21]).

The fluid model (by its very nature) essentially assumes
smooth and continuous transmission of data. The TIMELY
implementation is more bursty, since rate is adjusted by mod-
ulating gaps between transmission of 16 or 64KB chunks;
while the chunks themselves are sent at near-line rate [21].
TIMELY designers made this decision for engineering rea-
sons - they wanted to avoid taking dependence on hardware
rate limiters. We will return to this point later.

dq

dt
=
∑
i

Ri(t)− C (20)

dRi
dt

=



δ
τ∗i
, q(t− τ ′) < C ∗ Tlow

δ
τ∗i
, gi ≤ 0

− giβ
τ∗i
Ri(t), gi > 0

− β
τ∗i

(1− C∗Thigh

q(t−τ ′) )Ri(t), q(t− τ ′) > C ∗ Thigh
(21)

dgi
dt

=
α

τ∗i
(−gi(t) +

q(t− τ ′)− q(t− τ ′ − τ∗i )

C ∗DminRTT
) (22)

τ∗i = max{Seg
Ri

, DminRTT } (23)

τ ′ =
q

C
+
MTU

C
+Dprop (24)

Figure 7: TIMELY fluid model

Model Validation: Since we do not have access to TIMELY
implementation, Figure 8 compares the TIMELY fluid model
with the NS3 packet-level simulations, using parameter val-
ues recommended4 in [21]. The simulator can model both
per-packet pacing, as well as the bursty behavior of TIMELY
4C = 10Gbps, β = 0.8, α = 0.875, Tlow = 50µs, Thigh =
500µs, DminRTT = 20µs.



implementation; here we use per-packet pacing. As before,
we model N senders connected to a switch, sending to a sin-
gle receiver connected to the same switch. The starting rate
for each flow is set to be 1/N of the link bandwidth. We see
the fluid model and the simulator are in good agreement.

4.2 Analysis
We now show that TIMELY, as described in Algorithm 1

has no fixed point. The implication is that the queue length
never converges, nor do the sending rates of the flows. The
system operates in limit cycles, always oscillating. More-
over, while the system is oscillating, there are infinite solu-
tions for the sending rates of the flows that satisfy the fluid
equations at any point. So, even if we can limit the magni-
tude of the limit cycles by choosing parameters carefully, we
can make no claims on the fairness of the protocol since the
system could be operating at any of those infinite solutions.

THEOREM 3 (NO FIXED POINT FOR TIMELY). The sys-
tem described in Figure (7), has no fixed points.

PROOF. We prove the result by contradiction. At the fixed
point, all differential equations converge to 0. Thus:

dq/dt = 0 and
∑
i

Ri(t) = C (25)

Now, either gi > 0 or gi ≤ 0. If gi 6= 0, then:

dgi
dt

=
α

τ∗i
(−gi(t)+

q(t− τ ′)− q(t− τ ′ − τ∗i )

C ∗DminRTT
) = − α

τ∗i
gi(t) 6= 0

(26)
Thus, gi is zero for dgi/dt to be zero. But then:

dRi/dt = δ/τ∗i 6= 0 (27)

Thus, all derivatives cannot be simultaneously 0 and thus the
system has no fixed point.

If we modify the fluid model very slightly, by moving the
equality condition to the term involving gi, we get:

dRi
dt

=



δ
τ∗i
, q(t− τ ′) < C ∗ Tlow

δ
τ∗i
, gi < 0

− giβ
τ∗i
R(t), gi ≥ 0

− β
τ∗i

(1− C∗Thigh

q(t−τ ′) )R(t), q(t− τ ′) > C ∗ Thigh
(28)

This is equivalent to changing the ≤ sign on line 9 of
Algorithm 1 to <. This makes little difference in practice,
since floating point computations for gi rarely yield an exact
zero value – we have verified this via simulations. With this
modification, we can obtain the condition that with gi = 0,
dq
dt = 0, dgidt = 0 and C ∗ Tlow < q < C ∗ Thigh. However,
now we run into the issue that TIMELY moves from zero
fixed points to infinite fixed points!

THEOREM 4 (INFINITE FIXED POINTS). The system de-
scribed by Figure (7), with modification introduced in Equa-
tion 28 has infinite fixed points

PROOF. To obtain dgi/dt = 0, we need gi = 0 and
dq/dt = 0. Note that q cannot converge to a value outside
of the thresholds C ∗Tlow and C ∗Thigh as that would imply
dRi/dt 6= 0.

Any value of q such that C ∗Tlow < q < C ∗Thigh makes
dRi/dt = 0 for any value of Ri as long as

∑
iRi(t) = C

and hence q and Ri have infinitely many fixed points.

There is no requirement that at the fixed pointRi = C/N .
In fact, Ri/Rj , i 6= j is not even bounded, so we cannot
make any claims on the fairness of TIMELY. Thus the fixed
point of TIMELY is entirely unpredictable. This is borne out
by the simulation results shown in Figure 9, where we only
change the start time and initial rates of two flows, keeping
everything else constant, and we end up in completely dif-
ferent operating regimes.

Impact of per-burst pacing: This analysis begs the ques-
tion – why does TIMELY work well in practice, as reported
in [21]? The answer appears to lie in the fact that the TIMELY
implementation does not use hardware rate limiters. Instead,
the TIMELY implementation controls rate by adjusting de-
lay between successive transmissions of chunks that can be
as large as 64KB. Each chunk is sent out at or near line rate.

The results shown in Figure 9 were obtained with per-
packet pacing. If, instead we user per-burst pacing, TIMELY
appears to converge, as shown in Figure 10(a). The bursts
introduce enough “noise” to de-correlate the flows, and this
appears to lead the system to a relatively stable fixed point.
We attempted to mathematically prove that per-burst pacing
would lead to a unique fixed point, but were unable to do so.

In any case, per-burst pacing is not ideal, since it can lead
to large oscillations in queue length, leading to poor utiliza-
tion. This is apparent in Figure 10(b), where we use 64KB
chunks. The initial chunks sent by the two senders arrive
at the switch near-simultaneously (i.e. “incast”), and both
flows receive a very large RTT sample. This causes TIMELY
to reduce its rate drastically (line 8 in the TIMELY algo-
rithm). Since the subsequent rate increase occurs in small
steps (δ = 10Mbps, see line 6.)5, it takes a long time for the
flow rates to climb back to their fair share.

These problems can be mitigated to some extent by send-
ing bursts at less than line rate6, by adjusting the burst size,
or by adjusting the Tmin threshold. However, such tuning is
fragile, since the right values of these parameters depend not
just on the link speed, but also on the number of competing
flows, which is unknown at the time of configuration.

In summary, while burst pacing can lead to a fixed point
by introducing noise, it can lead to other problems. The fact
that TIMELY cannot maintain a stable queue length has a
detrimental impact on the flow level performance (e.g., flow
completion times), especially at higher percentiles. We il-
lustrate this in Section 5.1.

Rather than rely on “noise” to ensure convergence and sta-
bility, we propose a simple fix to the TIMELY algorithm.

5HAI kicks in only after RTT > Tlow. See Algorithm 1 in
[21]
6Indeed, the TIMELY does this, see § 5 in [21].
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Figure 8: Comparison of TIMELY fluid model and simulations
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Figure 9: Performance of two TIMELY flows under different starting conditions

Algorithm 2 Patched TIMELY rate calculation
1: newRTTDiff ← newRTT − prevRTT
2: prevRTT ← newRTT
3: rttDiff ← (1− α) · rttDiff + α · newRTTDiff
4: rttGradient = rttDiff/DminRTT
5: if newRTT < Tlow then
6: rate← rate+ δ
7: else if newRTT > Thigh then
8: rate← rate · (1− β · (1− Thigh/newRTT ))
9: else

10: weight← w(rttGradient)

11: error ← newRTT−RTTref

RTTref

12: rate← δ(1−weight)+rate·(1−β·weight·error)

4.3 Patched TIMELY
In order to ensure there is a unique fixed point, and all

flows get fair share and are stable at the fixed point, we make
two minor modifications over TIMELY, as shown in Algo-
rithm 2. We only modify the last four lines of Algorithm 1.

First, we make the step of rate decrease rely on absolute
RTT, instead of the gradient of RTT. In effect, this means that
all flows have the knowledge of the bottleneck queue length.
This ensures two things. First, the system can have a unique
fixed point, determined by the RTT7. Second, all flow can
converge to the same rate, since they share the knowledge of
the bottleneck RTT. The side effect, of course, is that, with
different number of flows, the fixed point of queue can be
different. We will address this in §5.

Second, we use a continuous weighting function w(g) to
make the transition between rate increase and rate decrease
smooth. This avoids the on-off behavior that causes oscilla-
tion. This is similar to the fact that probabilistic ECN mark-

7Recall that the issue with original TIMELY was that RTT
gradient could be the same, but absolute RTTs could be dif-
ferent.

ing stabilizes TCP [20], DCTCP [3], QCN [4] and DCQCN.
With w(g), we combine the two conditions of g ≤ 0 and
g > 0 in the dR(t)/dt equation:

dRi
dt

=


δ
τ∗ , q(t− τ ′) < C ∗ Tlow
(1−wi)δ
τ∗ − wiβRi(t)

τ∗
q(t−τ ′)−q′

q′ , Otherwise

− β
τ∗ (1−

C∗Thigh

q(t−τ ′) )Ri(t), q(t− τ ′) > C ∗ Thigh
(29)

where wi, the weight of rate decreasing, is a function of gi,
and must satisfy 0 ≤ wi(gi) ≤ 1 for any gi. Intuitively,
wi(gi) is monotonically increasing with gi, because larger
RTT gradient should lead to larger rate decrease. In original
TIMELY protocol, wi(gi) is an indicator function of gi, i.e.,
wi(gi) = 1 when gi ≥ 0, and wi(gi) = 0 when gi < 0.
Here we simply use a linear function of gi for wi:

wi =

 0, gi ≤ − 1
4

2gi + 1
2
, − 1

4
< gi <

1
4

1, gi ≥ 1
4

(30)

In Equation 29, q′ is a reference queue length. We simply set
it as C ∗Tlow, so that we decrease the rate faster if the queue
length exceeds C ∗ Tlow. All other TIMELY parameters re-
main the same except we set β = 0.008 and Seg = 16KB.
We prove that this patched TIMELY protocol has desirable
stability and convergence properties that original TIMELY
does not guarantee:

THEOREM 5 (PATCHED TIMELY’S FIXED POINT.). The
system described in Equation 29 has a unique fixed point. All
flows have the same rate at this fixed point, and the queue
length is:

q∗ =
Nδq′

βC
+ q′ (31)

The system described in Equation 29 always exponentially
converges to the unique fixed point.

The detailed proof is similar to the proof of Theorem 2
and omitted due to the lack of space.
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We further verify patched TIMELY convergence and sta-
bility using simulations. Figure 12(a) and 12(b), shows that
flows with different initial rates converge to the fixed point
and are stable without oscillation, opposed to Figure 9(c).
Results for the case depicted in Figure 9(b) are similar.

Stability. We proceed as we did for DCQCN – linearize the
equations, Laplace transform and compute the phase margin
of its characteristic equation. The phase margin result shows
this system is stable until the number of flows is greater than
40 (Figure 11). This is again confirmed by NS-3 simulation
(Figure 12(b) and 12(c)). After 40 flows, the phase margin
falls below 0 rapidly because more flows lead to larger queue
size (see Equation 31), thus leading to larger feedback delay
(see Equation 24). This leads to system instability. In gen-
eral, with some minor tuning, TIMELY can be stable within
a range of number of flows.

4.4 Summary
We showed that the TIMELY protocol, as proposed in [21]

can have infinite fixed points. We proposed a small fix to ad-
dress the problem, and showed that the resulting protocol
converges to a fixed point, where all flows share the bottle-
neck bandwidth equally. The protocol is stable around this
fixed point, as long as the number of flows is not too high.

5. ECN VERSUS DELAY
We have now seen that both DCQCN and TIMELY (with

a small modification) can achieve desirable properties like
fairness, stability and exponential convergence, if properly
tuned for a given scenario. Can we thus conclude that ECN
and delay are both "equivalent" signals, when it comes to
congestion control?

We believe that the answer is no. As an example, we com-
pare the performance of DCQCN (ECN-based) and TIMELY
(delay-based), and find that DCQCN outperforms TIMELY.

We then discuss the fundamental reasons why ECN-based
protocols are better than delay-based protocols.

5.1 Case study: DCQCN versus TIMELY
on flow completion time

While we show that both ECN-based DCQCN and delay-
based TIMELY can be stable and fair if properly tuned (see
Section 3 and Section 4), they may differ on other important
performance metrics. For example, the end users often care
about flow completion times, especially for short flows [8].
We compare the flow completion times of DCQCN and TIMELY
with a simple simulation, using the classic dumbbell topol-
ogy shown in Figure 13. The topology consists of 20 nodes
– 10 senders and 10 receivers. All traffic flows across the
bottleneck link between the two switches, SW1 and SW2.
All links are 10Gbps with 1µs latency.

The traffic consists of long and short-lived flows, between
pairs of randomly selected sender and receiver nodes. The
flow size distribution is derived from the traffic distribution
reported in [2]. The interarrival time of flows is picked from
am exponential distribution. The load on the bottleneck link
is varied by changing the mean of the distribution. This traf-
fic generation model was also used in several recent studies,
including pFabric [5] and ProjecToR [12].

Both DCQCN and TIMELY used the default parameter
settings recommended in [31] and [21], respectively. The
metric of interest is the flow completion time of small flows.
Following pFabric [5], we define small flows as flows that
send fewer than 100KB. We also tune and test different pro-
tocol parameter and small flow threshold settings. The re-
sults are similar.

Figure 14 shows the median and 90th percentile of FCT
and DCQCN, TIMELY original and patched TIMELY as
the load is varied. Patched TIMELY is our modification to
TIMELY’s protocol to ensure a unique fixed point (§4.3).



The X axis shows relative load: load factor of 1 corresponds
to an average of 8Gbps of traffic on the bottleneck link. The
scaling is linear. We see that at higher loads, FCT for both
TIMELY and patched TIMELY is high, and highly variable.
This illustrated in detail in Figure 15, which shows the CDF
of the flow completion time for load factor of 0.8.

The reason for TIMELY’s poor performance is evident
from Figure 16, which shows the queue length at the link
between SW1 and SW2 for a load factor of 0.8. As shown,
the queue length under TIMELY can grow to a very high
value, and is highly variable. In contrast the DCQCN queue
has a fixed point between the RED thresholds and even in
the transient state the queue stays within the bounds. Note
that patched TIMELY is operating in between the original
TIMELY protocol and DCQCN. This is because our fix is
ensuring a unique fixed point (and thus fairness), without
changing the dynamics of TIMELY’s queue build up.

We note that in all cases, the link utilization is roughly
the same for DCQCN and TIMELY, indicating that the long
flows performed similarly with both schemes.

5.2 ECN advantages
As shown above, despite that both protocols are fair and

stable, TIMELY has larger queue dynamics than DCQCN,
which leads to worse short flow completion time. We believe
this is due to the following reasons.

ECN marking is done on packet egress, thus has faster
response: Modern shared-buffer switches, especially those
that use Broadcom’s merchant silicon, do ECN marking on
packet egress. When a packet is ready to depart, the con-
troller checks the egress queue for that port at that instant,
and marks the packet according to the specified algorithm
(e.g. Equation 3). Thus, the mark always conveys infor-
mation about the state of the queue at the time of packet
departure, even if the egress queue is long.

RTT measurements are different: If the egress queue dis-
cipline is FIFO within a priority class (which it typically is),
the delay experienced by a packet reflects the state of the
queue at the time the packet arrives at the queue. This means
that the control signal carried by the ECN mark is delayed
only by the propagation delay, but the control signal carried
by the RTT signal is delayed both by the queuing delay as
well as the propagation delay.

This is a subtle difference: the claim is not that ECN car-
ries more information; it that the delay of the control loop is
decoupled from the queuing delay.

This is why the DCQCN fluid model (Figure 1) assumes
that the control loop delay is constant. DCTCP fluid model
makes the same assumption [3]. We cannot make the same
assumption for TIMELY, and thus we incorporate τ ′ and
Equation 24 in the TIMELY fluid model (Figure 7).

This means that as the queue length increases (e.g. when
there are more flows), congestion control algorithms that
rely on RTT suffer from increasing lag in their control loop,
making them more difficult to control. We see this happen-
ing for TIMELY (Figure 11). DCQCN is affected less by
this effect (Figure 3(a)). To further confirm that ECN mark-
ing on egress is important for stability, we run DCQCN with

ECN marking on ingress for comparison. Figure 17 shows
that marking on ingress leads to queue length fluctuation.

Researchers have observed similar “bufferbloat” [11] prob-
lems in the wide area networks solutions such as LEDBAT [26]
have been proposed. Similarly, in modern data center net-
works, queuing delays can easily dominate switching and
propagation delays. For example, an Arista 7050QX32 has
40Gbps ports, and a total shared buffer of switch has 12MB.
Even if just 1MB worth of queue builds up at an egress port,8

it takes 200 µs to drain it. In contrast, the one-hop propaga-
tion delay, with cut-through forwarding, is around 1-2 µs.
Typical DC network diameter is 6 hops, so overall propaga-
tion delay is under 25µs.

The reader may argue that it is easy to fix this issue – all
we have to do is to build a delay-based protocol that strives
to keep the bottleneck queue (more-or-less) constant. Then,
the control signal delay experienced by the RTT feedback
signal is also fixed, albeit a little higher (propagation delay,
plus fixed queuing delay).

However, a delay based congestion control protocol that
maintains a fixed queue, cannot ensure fairness.

For delay-based control, fixed queue comes at the cost of
fairness: One way to build protocols that guarantee delay
to a fixed quantity is to use a controller with integral con-
trol [14, 6]. The idea behind integral control is to look at
an error signal, e.g., the difference between the actual queue
length and a desired or reference queue length, and adjust
the feedback until the error signal goes to 0. A stable PI
controller is guaranteed to achieve this. In a continuous sys-
tem, the feedback signal p(t) evolves in the following way
with a PI controller:

dp

dt
= K1

de

dt
+K2e(t) (32)

When the feedback signal converges, both the error signal
e(t) as well as the derivative of the error signal, de/dt must
converge to 0. The derivative of the error signal, (the deriva-
tive of the queue length), goes to 0 when the sum of the
rates Ri match the link capacity C. The error signal it-
self goes to 0 when the queue length matches the reference
value. Thus the integral controller implements the “match
rate, clear buffer” scheme presented in [6].

For DCQCN we can implement the PI controller to mark
the packets at the switch instead of RED (which is a propor-
tional controller without the integral action) and use that p
in the usual way to perform the multiplicative decrease.

For (patched) TIMELY, we can measure the delay at the
end hosts and implement a PI controller by generating an
internal variable “p”, using the error signal “e(t)” as the dif-
ference between the measured delay and some desired delay.
This internal variable p can then replace the q(t−τ ′)−q′

q′ term
in Equation (29) as the feedback to control the rates.

We implemented the PI controller for both the DCQCN
and patched TIMELY fluid models and performed simula-
tions. As we see in Figure 18 for DCQCN, all the flows
8This requires enabling dynamic thresholding, but it is al-
most always enabled in real deployments.
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converge to the same (fair) rate and the queue length is sta-
bilized to a preconfigured value, regardless of the number
of flows (as well as regardless of propagation delay). This
is important not only for stability, but also for performance
reasons in a data center networks, where is important to en-
sure that completion times for short flows do not suffer from
excessive queuing delays [2].

In contrast, when we use a PI controller at the end hosts
with patched TIMELY, we see that although we can control
the queue to a specified value (300 KB), we cannot achieve
fairness (Figure 19). Thus, while patched TIMELY was able
to achieve fairness without guaranteeing delay, with PI it is
able to guarantee delay without achieving fairness.

We next prove a result that formalizes this fundamental
tradeoff between fairness and guaranteed steady-state delay
for protocols that rely on delay measurements at the end
points to implement congestion control. We first assume that
the steady state throughput achieved by a congestion con-
trol transport protocol is a function of the observed delay d
and some feedback value p. The value of p can be the loss
probability or the ECN marking probability or some internal
variable p computed by the patched TIMELY+PI mechanism
we described above. Thus, R = f(d, p) for steady state
throughput R and some function f(d, p). Then the follow-
ing theorem formalizes the fairness/delay tradeoff in such
systems.

THEOREM 6 (FAIRNESS/DELAY TRADEOFF). For con-
gestion control mechanisms that have steady state through-
put of the kind R = f(d, p), for some function f , delay d
and feedback p, if the feedback is based on purely end to end
delay measurements, you can either have fairness or a fixed
delay, but not both simultaneously.

PROOF. To guarantee fairness, the system must have a
unique fixed point. Consider N flows sharing a link of ca-

pacity C. Then, for each flow, we have Ri = f(d, pi), i =
1, . . . , N. There is an additional equation constraining the
throughput at the link,

∑
Ri = C. Hence we have N +

1 equations and 2N unknowns – {Ri, pi}, i = 1 . . . , N .
This is an underdetermined system with infinite (or no) so-
lutions. To make this system consistent, we need a common
pi, reducing the number of variables to N + 1. That can be
achieved either by marking at the switch (violating the as-
sumption of delay being the only feedback), or by making
this pi a function of the (common) queue length. However if
we control the delay to a fixed quantity, it becomes agnostic
of the number of flows which will make the system of equa-
tions inconsistent, since the constraint

∑
iRi = C implies

the steady state throughput of a flow depends on the number
of flows contending. Thus, to make the system consistent pi
has to be a function of the common queue length which de-
pends on the number of flows and hence we cannot control
the delay to a fixed quantity.

Remarks: The results of this theorem are generic to con-
gestion control protocols that use delay or ECN as feedback
and are not RDMA or TIMELY/DCQCN specific. Note that
a RED style AQM scheme can guarantee a unique fixed
point that depends on the number of flows. However, given
the low delay requirements in a data center environment,
that would require the RED marking profile to have a steep
slope (marking probability that goes from 0 to 1 over a small
buffer space). As shown in [15], a steep slope leads to an
unstable controller leading to oscillations in the flow rates,
increased jitter and loss of utilization. Also, the preced-
ing result does not apply to systems with limit cycles,9 with
which rate-based protocols do not have steady state through-
put.

9Some window-based protocols have limit cycles [3].
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Figure 18: DCQCN with PI controller
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Figure 20: Protocol stability with random feedback de-
lay up to 100 microseconds. DCQCN is more resilient to
jitter than TIMELY.

ECN marking is resilient to variable feedback transmis-
sion delay: Last but not the least, ECN marking is more re-
silient to the delay jitter during feedback transmission. After
being generated at the bottleneck in the network, the conges-
tion signal must be conveyed back to the sender. Any hard-
ware jitter or additional congestion in this process can delay
the arrival of ECN signal, or interfere round-trip delay mea-
surement. Although DCQCN and TIMELY both attempt to
mitigate this artifact, e.g., by prioritizing feedback packets,
the hardware jitter or feedback congestion on backward path
cannot be completely eliminated in practice.

ECN marking is more resilient to this problem, because
the queue length measurement at the bottleneck, and hence
the feedback signal is not affected, it is just delayed (more).
However, the variable delay of feedback directly injects noise
in the TIMELY feedback’ signal itself. This compounds the
problem of congestion or variable delay on the reverse path:
for delay based schemes you have delayed and noisy feed-
back, whereas for ECN based schemes you only have de-
layed feedback. Our simulation confirms this hypothesis. In
Figure 20, we inject uniformed random jitter to the feedback
delay of DCQCN (τ∗) and TIMELY (τ ′) models. With jitter
of [0,100µs], TIMELY becomes unstable compared to the
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Figure 21: The design choices and desirable properties.

same scenario without the jitter (Figure 12(a)). In contrast,
the same level of jitter does not impact DCQCN stability.

5.3 Summary
Based on the above three factors, i.e., the faster feedback

to the sources, the ability to simultaneously achieve fairness
and bounded delay point, and the resilience to variable delay
of congestion feedback transmission, we argue in favor of
using ECN instead of delay for congestion control in a data
center environment. We illustrate this in Figure 21.

Practical concerns: ECN can require creating per-flow
state on the receiver, if ECN marks must be aggregated.
DCQCN [31] does this, since RoCEv2 does not send per-
packet ACKs for efficiency reasons. No matter which sig-
nal is used, the sender also needs to maintain per-flow state.
This may not be scalable since RoCEv2 is implemented on
the NIC. Detailed discussion of these issues is outside the
scope of this paper.

While PI is not implemented in today’s commodity switches,
as shown in [14] it is a lightweight mechanism that requires
less or comparable computational power as RED, which is
supported by all modern switches. A variant of the PI con-
troller (PIE) is being used to solve bufferbloat [23, 22] , and
is part of DOCSIS 3.1 standard.



6. RELATED WORK
There is a vast amount of literature on congestion signals

(drop, ECN, delay), congestion control algorithms and their
analysis. See [27] for a succinct overview. Below, we dis-
cuss only a few representative papers.

In [3] and [4], Alizadeh et.al. analyze the DCTCP [2] and
QCN [16] protocols that DCQCN is derived from. These
papers served as useful guideposts during for our work.

Fluid model analysis of TCP under the RED AQM con-
troller, and subsequent development of the PI controller was
reported in [20, 14]. Our exploration of the PI controller for
DCQCN and TIMELY is guided by results in [14].

A number of congestion control protocols where the bot-
tleneck switch or a central controller plays a more active role
have been proposed. For example, RCP [9] and XCP [19] re-
quire the switches to send more detailed feedback, while
proposals like [29, 30, 24] use an omniscient central con-
troller for fine grain scheduling and pFabric [5] is a timeout
based congestion control that requires switches to sort pack-
ets. Comparison of these protocols to ECN and delay-based
protocols is outside the scope of this paper.

7. CONCLUSION AND FUTURE WORK
We analyzed the behavior of two recently proposed con-

gestion control protocols for data center networks; namely
DCQCN (ECN based) and TIMELY (delay based). Using
fluid models and control theoretic analysis we derived sta-
bility regions for DCQCN, which demonstrated a somewhat
odd non-monotonic behavior of stability with respect to the
number of contending flows. We verified this behavior via
packet level simulations. We showed that DCQCN converges
to a unique fixed point exponentially. In performing similar
analysis for TIMELY, we discovered that as proposed the
TIMELY protocol has infinite fixed points which could lead
to unpredictable behavior and unbounded unfairness. We
provide a simple fix to TIMELY to remedy this problem.
The modified protocol is stable, and converges quickly.

However, for both protocols, the operating queue length
grows with the number of contending flows, which can intro-
duce significant latency. Using a PI controller on the switch
to mark packets, we can guarantee bounded delay and fair-
ness for DCQCN. However we demonstrate and prove a fun-
damental uncertainty result for delay-based protocols: if you
use delay as the only feedback signal for congestion control,
then you can either guarantee fairness or a fixed, bounded
delay, but not both simultaneously. Based on this reason,
the fact that ECN marking process on modern shared-buffer
switches effectively excludes queuing delay from feedback
loop, and that ECN is more robust to jitter in the feedback,
we conclude that ECN is a better congestion signal in data
center environment.

Future work: we are doing a full exploration of PI like
controllers for congestion control protocols of RDMA in the
data center, including a hardware implementation. Our anal-
ysis also suggests that DCQCN can be simplified consid-
erably, to remove strange artifacts like the non-monotonic
stability behavior.

We also plan to analyze problems that are not covered in
the paper due to time and space limit. These include mul-
tiple bottleneck scenario, larger and realistic topolgoy and
workload, and the impact of PFC-induced PAUSES on the
two protocols. To capture these complicated behaviors, we
will need to develop more analysis tools and improve the
performance of DCQCN/TIMELY NS3 simulator [1].
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APPENDIX
A. DERIVING DCQCN CHARACTERIS-

TIC EQUATION
We derive DCQCN characteristic equation by linearizing

the system and Laplace transform.

Linearization. Below we denote δRC(t) = RC(t)− R∗C ,
δRC(t) = RC(t) − R∗C , δp(t) = p(t) − p∗, δα(t) =

α(t) − α∗, and A =
(

1
B + 1

TR∗C

)
. We again use Taylor

series to simplify the expressions of a, b, c, d, e to handle the
exponential forms like (1 − p)x. Due to lack of space, here
we only just show the linearized expression for dδRC

dt :

dδRC
dt

= − 1
2
(R∗C)2α∗δp− 1

2
p∗R∗Cα

∗δRC
− 1

2
p∗R∗Cα

∗δRC − 1
2
p∗(R∗C)2δα

+A
2

(R∗CδRT −R∗CδRC +R∗T δRC −R∗CδRC)
−
(

1
2

+ A
4

)
(p∗R∗CδRT − p∗R∗CδRC + p∗R∗T δRC)

−
(

1
2

+ A
4

) (
p∗R∗CδRC −R∗CR∗T δp+ (R∗C)2δp

) (33)

Laplace transform. We get the Laplace transform of the
above linearized model:

sRC(s)− δRC(0) =(
− 1

2
(R∗C)2α∗ −

(
1
2

+ A
4

)
R∗CR

∗
T +

(
1
2

+ A
4

)
(R∗C)2) e−sτ∗p(s)

+
(
− 1

2
p∗R∗Cα

∗ − A
2
R∗C +

(
1
2

+ A
4

)
p∗R∗C

)
e−sτ∗RC(s)

+
(
− 1

2
p∗R∗Cα

∗ − A
2
R∗C + A

2
R∗T
)
RC(s)

+
((

1
2

+ A
4

)
p∗R∗C −

(
1
2

+ A
4

)
p∗R∗T

)
RC(s)

− 1
2
p∗(R∗C)2α(s)

+
(
A
2
R∗C −

(
1
2

+ A
4

)
p∗R∗C

)
RT (s)

(34)
With Laplace transform of the other equations, we can use
RC(s) to express RT (s), p(s) and α(s). We then derive
the characteristic equation of RC(s). Finally we compute
the phase margin values of the characteristic equation with
different parameters, and show the results in Section 3.2.

B. PROOF OF DCQCN CONVERGENCE
Below we provide the additional details of our proof for

Theorem 2. Figure 22 illustrates the variables we use.

Part I: The analysis of RT . During the consecutive ad-
ditive rate increase, i.e., ∀t ∈ (Tk + 1, Tk+1], R(i)

C and R(i)
T

have following relationship according to DCQCN’s defini-
tion:

R
(i)
C (t+ 1) =

1

2

(
R

(i)
C (t) +R

(i)
T (t+ 1)

)
(35)

R
(i)
T (t+ 1) = R

(i)
T (t) +RAI (36)
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Figure 22: A more detailed view of DCQCN’s AIMD-
style updates of flow rate.

By (35)- 1
2×(36), we get:

R
(i)
C (Tk+1)−R(i)

T (Tk+1) +RAI

= 1
2

(
R

(i)
C (Tk+1 − 1)−R(i)

T (Tk+1 − 1) +RAI
)

= ... =
(

1
2

)∆Tk−1
(
R

(i)
C (Tk + 1)−R(i)

T (Tk + 1) +RAI
)
(37)

From this, we know that during a consecutive additive rate
increase phase,R(i)

T −R
(i)
C will converge towardsRAI expo-

nentially. In addition, at the beginning of the phase,R(i)
C (Tk+

1) = R
(i)
T (Tk) (Figure 6). Therefore:

R
(i)
T (Tk) = R

(i)
C (Tk) +

(
1− (

1

2
)∆Tk−1

)
RAI , ∀k = 1, 2, ...

(38)

Part II: The lower bound of α. To prove Equation 19, we
first need to estimate ∆Tk using α. In the period of ∆Tk, af-
ter the first time unit of rate decrease, the aggregated flow
rates will climb back to RT (Tk+1) by NRAI every time
unit. Thus we have:

∆Tk = 1 +

N∑
i=1

(
R

(i)
T (Tk+1)−

(
1− α(i)(Tk)/2

)
R

(i)
C (Tk)

)
NRAI

(39)
Supposeα(i)(Tk) already converged to the same valueα(Tk),
as guaranteed by Equation 17. We simplify it as:

∆Tk = 1 +

N∑
i=1

R
(i)
T

(Tk+1)−(1−α(Tk)/2)
N∑

i=1
R

(i)
C

(Tk)

NRAI

≈ 1 + (C+tNRAI+NRAI )−(1−α(Tk)/2)(C+tNRAI )
NRAI

= 2 +
(
t
2

+ C
2NRAI

)
α(Tk)

(40)

Where t is the time it takes for the flows to build up queue
and get packets ECN-marked, after the aggregated flow rates
exceed link capacity C, as shown in Figure 6. We can esti-
mate t by the queue being built up:

Nτ ′ (RAI + 2RAI + ...+ tRAI) = QECN ≤ Kmax

⇒ t ≤
(
−1 +

√
1 + 8Kmax

NRAIτ
′

)
/2

(41)

Now, we prove Equation 19, where α∗ is the solution of the
following:

α∗ = (1− g)∆T∗ ((1− g)α∗ + g) (42)

Once Equation 19 is proved, α(Tk) has a non-zero lower
bound, RC will converge exponentially. We prove this by

mathematical induction. The initial value of α is 1, as de-
fined by DCQCN. So, α(T0) > α∗ > 0. Now assuming
α(Tk) > α∗ > 0, we prove α(Tk) > α(Tk+1) > α∗. We
define f(α) as the RHS of Equation 16:

f(α) = (1− g)
2+
(

t
2

+ C
2NRAI

)
α

((1− g)α+ g) (43)

By analyzing the derivative of f(α), it is not hard to see
that with common parameter settings, f(α) is monotonically
increasing. Therefore,

α(Tk+1) = f (α(Tk)) > f (α∗) = α∗ (44)

In addition, because α(Tk) > α∗ => ∆Tk > ∆T ∗, α∗

satisfies:
α∗ > (1− g)∆Tk ((1− g)α∗ + g) (45)

Subtract this from Equation 16, we see α(Tk) is exponen-
tially converging towards α∗:

α(Tk+1)− α∗ < (1− g)∆Tn (α(Tk)− α∗) (46)

Equation 44 and 46 lead to α∗ < α(Tk+1) < α(Tk).


