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Abstract

Self-similarity over certain time scale range
has been repeatedly observed in high speed net-
work traffic. We propose a model motivated by
the physical process of teletraffic generation to
decipher such a phenomena. Our model is hi-
erarchical in nature. We examine some proper-
ties of our model from a signal theoretic point
of view, and explain why it will exhibit multi-
scale or self-similar behavior. Simulations of
synthetic traffic based on our model are pre-
sented and it’s multi-scale properties are com-
pared with that of the well-known Bellcore traf-
fic traces. We present some preliminary con-
clusions on the actual nature of the traffic and
the validity of our model.

1 Introduction

Teletraffic modeling is at a very interesting stage these days,
with the seminal findings of Leland et. al. [1] changing
the way we look at it. The key factor responsible for this
is the observation of “scale-invariance” or “long range de-
pendence”(LRD) in the traffic patterns [1],[2]. Implications
of such traffic are manifold and are predicted to affect sig-
nificantly network behavior like packet delay, buffer occu-
pancy, cell loss rate etc. The modeling for this phenomena
has given rise to two schools, one is the “self-similar” kind
of models while the others are based on Markovian models.
The first kind are asymptotically scale invariant and involve
“heavy tailed” distributions of some sort in the model. The
Markovian models, on the other hand, are (approximately)
scale invariant only for a finite range of timescales. Exam-
ples of “self-similar” models found in [3], [4], [5] and in
references therein. Markovian models have been proposed
in [6] and [7].

Unlike other models, we attempt to directly model the phys-
ical process of teletraffic generation. Our model is hier-
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archical in nature, the hierarchy consisting of independent
on-off processes. We show that the hierarchy naturally in-
duces the self-similar behavior and also show that the dis-
tributions of the periods of the individual on-off processes
are not critical in exhibiting the self-similar phenomena. We
also view and analyze the model from a linear system and
signal theoretic point of view, which yields fresh insights
into the fundamental nature of traffic. Our model reflects
the phenomena of “self-similarity” over a finite timescale
range.

2 Motivation and the mode

2.1 Sef-Similarity

Before we begin our modeling, we’ll briefly outline the con-
cept of self-similarity. The concept of long range depen-
dence and self-similarity are intimately related, and they are
characterized by a slowly (polynomial) decaying autocorre-
lation function. If x(t) is a wide sense stationary self-similar
process, then the autocorrelation takes the form

Rx(t) ~ cat™ @) t - oo (1)
and equivalently, the power spectral density is of the form
Sx (@) ~ cslo' " w =0 )

Where H is the Hurst parameter of the long range depen-
dent or self-similar process. H takes values between 0.5
and 1. The self-similar phenomena has also been referred to
as “scaling-phenomena” or “scale-invariant behavior”.

2.2 Thelife of a packet

Let’s consider the transmission of a packet between a
sender-receiver pair on a network, ethernet for instance. The
packet is transmitted when a number of things simultane-
ously happen. Firstly, a session has to be in progress be-
tween a sender-receiver pair. Next, within the session the
particular application intermittently requests/supplies data.
The sender then starts sending the data according to a proto-
col like TCP. The transmission rate of the data is decided by
the flow and congestion control mechanism. Finally, pack-
ets are allowed on an ethernet only one at a time, so each
packet has to wait it’s turn if the ethernet is busy, by the ran-
dom back-off mechanism. As is evident, a number of dif-
ferent conditions have to be true, pretty much independent



of each other, for a packet to appear on the ethernet. Not
only that, the time scales at which the events are occurring
are disparate. Clearly, one should expect multiple timescale
behavior from network traffic. It seems almost natural to
define the packet transmission process as an on-off process
which is a product of independent on-off processes operat-
ing at different time scales. We now define our model.

2.3 Hierarchical On-Off Process
Definition 1.1 An n-level Hierarchical on-off process (HOP)
Y (t) is defined by

Y () = MiLaXi(t) )

where each X;(t) is an independent on-off process.

We have made no assumption on the nature of the on-off
processes asides from independence till now. Let’s assume
the component on-off processes to be Markovian and exam-
ine it’s spectral properties.

Definition 1.2 A Markovian Hierarchical On-Off Process
(MHOP) is a HOP where the component processes are
Markovian.

We model our traffic as an aggregation of MHOPs. We also
assume in our model that the timescales of different On-
Off processes in an MHOP are disparate. We note that an
MHOP can be described by a Markov process with aug-
mented state. For example, let n = 3. The output of the
process is 1 only when it’s in the state 111. It could then
also be equivalently thought of as a Hidden Markov Model,
where the observation process has 7 Markov states mapped
into one state (“off”) and we directly observe the remaining
eighth state (“on™).

In the next section we explain how or why such a process
would exhibit certain degree of self-similar behavior.

3 Spectral Propertiesof the MHOP

The autocorrelation function of a Markovian on-off process
is given by
Rx(T) = Pon(L — pon)e~ MMM 4 p2, 4)

Where A is the transition rate from off to on and 1 the rate in
the reverse direction. They are related to pon via the relation
Pon = A/(H—+A). For the i’th process, let’s denote A; + y; by
Vi, P2, by kiz and pon(1 — pon) by kiz. The correlation of
a product of two independent processes would then be just
the product of the individual correlations, i.e.,

Rax, = R Ry
(ka1 + Kaze ™) (ko1 + kape ™2l
= kutkor + kizko1e ™1 4 kygkope V2Tl
+kqokpoe~(Vrtv2)lTl

The Fourier transform of the autocorrelation function gives
the power spectral density, and thus we have

2k12ko1v1
SXle(f) = k11k216( f) + m
1
2k11k2ov2
(2mf)2+v3
2k12koo (V1 + Vo)
(2T[f )2 + (Vl + V2)2

Let’s look at the last two terms in the above expression.
They can be rewritten as

(k22) (k11v2 + k12(V1 +V2)) -
(21 )% 4 (V1 4 V2)V2p
((2mf)24+v3)((2mf)2 + (V2 +V1)?)

where
_ ka1(v2+v1) +kiv2

" ka2(Va 4 V1) + kv

Viewed as a linear system, the above corresponds to a sys-
tem having two poles at v, and vi +Vv2 and a zero at
v/V2(v1+Vv2)p which lies between the two poles. In our
model, we have assumed that the time scales of opera-
tions of the component processes are well separated. Thus
v2 >> vy, which implies that both the poles and the zero
are bunched very close together. This causes what is known
as a pole-zero cancellation and we can approximate * the
system with one having a single pole and no zero. Making
that approximation and placing the resultant pole at v, we
get the power spectral density of the process as

2k3ov1 2ka3v2

S ~ k310(f
e & kand(F) + (2nf)24+vf  (2mf)2+v3

®)

where we have absorbed all the multiplicative constants into
new constants ksi,ks> and kszz. The last two terms can be
rewritten as

(21f)2 +v1vop
((2mf)2+vi)((2mf)2 +v3))

2(kzov1 + kazv2) 6)

where
_ kaovz +kazvy

~ kagvz + kaavy

Again viewing it as a linear system, this corresponds to
a system which has two poles at v, and v, and a zero at
+/V1v2p which lies between the two poles. Unlike the pre-
vious time, this time the poles and zero are well separated
and there is no cancellation. However, the presence of the
zero between the two poles leads to an interesting phenom-
ena, which is the reason why MHOPs would exhibit self-
similar behavior over a certain frequency range. The Bode

INote that we are making the approximation to only explain the phe-
nomena, the plots shown subsequently plot the exact spectrum.
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Figure 1: Power Spectral Density for 2-level MHOP and Self-
Similar Process

(double-log) plot for a pole in a linear system corresponds
to a flat line until the corner frequency (the pole) and then a
straight line with a slope of -2 beyond that. The Bode plot
of a zero is a flat line till the corner frequency and then a
straight line with slope +2 beyond that. The effect of hav-
ing a zero between two poles is that the rate of decay of the
power spectral density slows down in the frequency region
bounded on either side by the poles. If the zero is in exactly
the middle of the two poles on the Bode plot (i.e. is the geo-
metric mean of the two) then the decay of the power spectral
density is like that of a 1/f process, which is self-similar.
If the zero shifts to the left or right, then the decay is of the
form 1/fY, y< 1 and y > 1 respectively. This is shown in
Figure 1. The two poles and the zero are marked out on the
plot. We chose A = p for both levels and v, = 10v;. Be-
tween the frequencies bounded by the two poles, the decay
of the power spectral density slows down, and goes down
with a slope less than 1. A reference power spectral density
of a self-similar process corresponding to a Hurst parame-
ter of 0.88 is plotted alongside. Clearly, the 2-level MHOP
gives a close approximation to the self-similar process in
the frequency range bounded by the poles. Thus, if we have
an n-level MHOP, it would correspond to a cascade of such
pole-zero systems and would thus tend to approximate the
self-similar spectrum over the range of v’s of all the com-
ponent processes. To illustrate that, we plot a similar fig-
ure (Figure 2) for a 3-level process, again marking out the
poles and zeros and plotting a reference self-similar pro-
cess. Again, the approximation to the self-similar process
over the range of v’s (poles) is striking.

The range of self-similar processes that they approximate
(via the Hurst parameter), corresponds to the range ob-
served in network traffic [1], [8]. By changing the value
of the on probability p in our component processes (thereby
changing the A/ ratio) we can move the zero around be-
tween the poles and have considerable freedom in the range
of self-similar slopes that we can approximate. Since our
traffic model is an aggregation of independent MHOPs, the
spectrum of the traffic would be a summation of the individ-
ual spectra. For homogeneous traffic, this corresponds to a
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Figure 2: Power Spectral Density for 3-level MHOP and Self-
Similar Process

simple scaling.

An important factor here is that this exhibition of the self-
similar spectrum is not sensitive to the exponential distribu-
tion assumption. In the next 2 figures, we show the spec-
tra for a HOP with composed of Erlang-2 distributed on-off
sources and Hyper-exponentially distributed on-off sources.
As can be seen, in the relevant frequencies (timescales) the
processes still appears to be self-similar. This is important
since the Markovian assumption is unrealistic for the TCP
level on-off process and it is not memoryless. However,
at higher timescales (low frequencies), the spectrum of the
TCP process flattens out, appearing similar to a Markovian
source with a high arrival rate. The disparity in the mean
on-off periods of the various levels of the hierarchy makes
the TCP spectra look similar to a Markovian one in the rele-
vant frequencies. Under some general conditions, the spec-
trum of a phase-type distributed on-off process has a flat
spectrum as f — 0 and a 1/f? like spectrum as f — oo,
Around the mean of the on-off process, the transition (in
the Bode plot) of the slope of the spectrum from 0 to -2
(20 dB/sec) takes place. For a large class of distributions,
we can approximate the spectrum as being piecewise linear
with the corner frequency governed by the mean of the pro-
cess (per the asymptotes method familiar in linear system
analysis). Under those conditions, the preceding analysis
would hold and a hierarchy of such processes would exhibit
“self-similarity” over a finite range of timescales.

Now that we have seen the capability of HOPs to approx-
imate the spectrum of self-similar processes over a range,
the next natural question is that do these processes exhibit
the same scaling behavior? We ran several simulations and
present the results in a following section.

4 Simulationsand Analyses

To compare the behavior of MHOP with the Bellcore data
set, we generated samples which were equal in length and
with the same mean value as the various traces analyzed in
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Figure 3: Power Spectral Density for 3-level Erlang-2 HOP and
Self-Similar Process
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Figure 4: Power Spectral Density for 3-level Hyper-exponential
HOP and Self-Similar Process

[1], [8]. For the plots shown, we used v, = 10v; and vz =
30v,. For all the component processes, we had A/p = 0.8.
We used an aggregation of 16 independent such processes.
We’ll look at three plots , proposed previously, which in-
dicate “self-similarity” at certain time scales. The first one
is the “visual-proof”. This is similar to the plot shown in
[1]. We selected, completely at random, sections of the sim-
ulated traffic and the August Bellcore dataset and plotted
them side by side at the same resolution level. Similar to the
graphs plotted in [1], the plots at the highest resolution level
have the same random noise term added to both to avoid the
visually jarring quantization effect. This is shown in Figure
5. Visually at least, the simulated MHOP process exhibits a
similar bursty behavior as the Bellcore dataset over all the
levels plotted. Note that the length of the publicly available
Bellcore August dataset limits the number of points we can
plot at the coarsest resolution level.

The next plot (Figure 6) is the log(Variance) vs
log(aggregation level) plots, again similar to those in [1].
Again, the behavior is strikingly similar, with the variances
for both processes decaying at the same rate, slower than 1,
with increasing aggregation level m.

The final comparison is done via wavelet analysis. Wavelet
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Figure 6: The variance vs aggregation level plot for the two pro-
cesses. One of the plots has been shifted down to give
aclearer picture

analysis has become an important tool in studying self-
similarity [8]. The details of wavelet analysis can be found
in the reference, but to get a quick handle on the plots we
have used, think of them as mirror images of magnitude
Bode plots. The plots have scale on the x-axis, which corre-
sponds to log-frequency on the Bode plot, and have variance
of wavelet coefficients on the y-axis, which are an estimate
of the power spectral density at the particular scale (fre-
quency). The timescale increases from left to right, which
corresponds to a decrease in the frequency and hence the
plots appeared laterally inverted when compared to Bode
plots. Linear regions in the plot correspond to power law
behavior of the power spectral density, with the slope giv-
ing the estimate of the exponent of the frequency.

For a self-similar process, the plot of the variance of the
wavelet coefficients vs the scale should turn out to be
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Figure 7: The variance scale plot for Bellcore Dataset and Simu-
lated Process

a straight line, with the slope giving an estimate of the
Hurst parameter. We analyzed the two signals using the
Daubechies-4 wavelet. Simultaneous plot for the simulated
MHOP and Bellcore August Dataset shows a strong resem-
blance in the properties of the two processes, yielding a
nearly identical estimate of the Hurst parameter. This is
seen in Figure 7.

5 Discussion

5.1 Extrapolation: What happens beyond the scale in-
variant behavior?

As has been noted by various researchers [2], [8], the scale
invariant behavior occurs only over a finite range of scales.
We have seen that behavior in our simulated model which
matches that of actual traces. To go beyond what we have
graphically shown in the previous section, we need to look
at resolutions which are very fine (high frequency region)
and resolutions which are very coarse. In the game of
asymptotics, the dominant term wins. To look at low fre-
quencies or coarse resolution, the term to be considered
is the contribution from the highest level on-off process,
whereas for high frequencies it is the lowest level on-off
process. The coarse resolution analysis is limited by data-
length. As far as the high resolution analysis goes, we have
to first clearly define which process we are looking at. If we
simply look at packet counts, then the process operating at
the lowest level of our hierarchy would be a series of im-
pulses, indicating the arrival time of a packet. Modeling the
arrivals at that level as Poisson, the high frequency power
spectrum of the process would be a flat line like white noise
2. Again thinking of the variance-scale plot in the wavelet
analyses as the mirror image of the power spectral density,

2aroll off for very high frequencies can be expected as ided, infi nite
bandwidth white noise is not found in the physical world due to inertia.
In the Ethernet world, this inertia comes due to the fact that there is a
minimum inter-arrival time which is the sum of the shortest packet-length
and minimum required silence between frames.
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Figure 8: The variance scaleg plot for the two processes at
high resolution (frequencies) for the Bellcore August
Dataset. The time scales for two plots have been ad-
justed alittle to show how the Byte process and Packet
process differ in their departure from the scaling re-
gion.

we would expect the plot to have a flat region before the
scaling behavior due to higher level processes starts. If in-
stead of simple packet counts, we look at byte counts, in
effect looking at the time periods where a packet is being
transmitted or not, then our lowest level hierarchy again
reduces to a simple on-off process. A Markovian model
would then predict a roll off with a slope of -2 for frequen-
cies much higher than the v of the process. The mirror im-
age analogy again indicates a region before the scaling starts
with a higher slope than the one found in the scale-invariant
region for the variance-scale plot of the wavelet analysis of
the given trace. Both of the predictions based on our model
are shown in Figure 8 and are also confirmed by the findings
of Abry et al. [8].

Extrapolating at the other end of the spectrum, the very low
frequencies, requires datasets much longer than what we
have analyzed so far. Based on our model, we’d expect the
spectrum to flatten out at frequencies much smaller than the
v of the highest level on-off process. On the variance-scale
plot, this would correspond to a region of slope zero beyond
the scale invariant region.

5.2 Conclusion

We have proposed a new model for network traffic. The
model is motivated by physical arguments regarding the be-
havior of network traffic. Next we have shown the prop-
erties of our model which closely match those of “self-
similar” process over a given time range. The time range
depends on the choice of parameters of the model. Sim-
ulation runs of the model also show a close match to the
observed dataset as far as “self-similarity” goes. Thus, our
model provides a simulation tool which gives realistic traf-
fic without paying the full price of “self-similar simulation”.
In our opinion, observation of scaling phenomena over a



certain range of time scales cannot and should not be ex-
trapolated to all time scales, and can be well explained and
approximated by non self-similar, physically realizable and
realistic models as we have shown in the paper. Thus, if the
real traffic is scale-invariant only over a finite range of time
scales, then we could be looking at the wrong asymptotics
if we assume true self-similarity or heavy tailed behavior.
This could have an effect in evaluating the performances
of networks as well as call admission and congestion con-
trol strategies. In addition, a source centric model is con-
venient for call admission decisions. We emphasize that
unlike some other Markov models that also exhibit scale-
invariance over a time scale range, our model is based on
the physical structure of the traffic in the network. This
feature is of fundamental importance because it enables us
to explain various phenomena observed for real teletraffic.
The higher levels of our hierarchy are independent of the
underlying network, and depend on the nature of the ap-
plication and user behavior. Thus, a change in transmis-
sion control strategy for instance won’t significantly affect
the “self-similar” behavior of a source on large timescales.
The nature of applications or user behavior is not likely to
change much with change in the transport protocol. Thus
we can simply replace the lowest level of the hierarchy with
an appropriate process and not have to change the complete
model should the transport mechanism change. The need, in
our opinion, is to study application and user patterns care-
fully to arrive at a reasonable mechanism to predict and reg-
ulate traffic. There is plenty of data available for researchers
to look at structural models. The quest for parsimony, for
instance characterizing the traffic just by the Hurst parame-
ter, could be misleading and ignoring a lot of useful infor-
mation available. For example, we collected WAN traffic
data in the departmental LAN for seven consecutive days.
In Figure 9 we show the histogram plots (on a double-log
scale) of inter-arrival times for packets for 3 representative
sources in the LAN (plots for other sources are very simi-
lar). The plot shows some interesting characteristics. For
all the sources, there is a sort of “flat” region of inter-arrival
times. The region starts from the time corresponding to ap-
proximately the minimum possible inter-arrival time (gov-
erned by shortest packet length and minimum silence period
between frames) and goes on till about the averaged round
trip time observed for connections of individual sources.
Beyond that there is a sharp decline in the histogram plot.
Thus, there are clear zones of operation of the traffic pro-
cess, reinforcing the need to model and analyze them sep-
arately. We believe the first flat region corresponds to the
TCP level on-off process, whereas the region beyond that
corresponds to the inter-arrivals in the application and ses-
sion level on-off processes. Structural information like that
can be easily extracted from available data and reasonable
models built for both simulations as well as analysis. Look-
ing at sources (and traffic) in a hierarchical way also enables
us to make some predictions about the traffic. For instance,
if we employ some control strategy which has slow time
dynamics, it might affect and shift the pole for the relevant
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Figure 9: Histogram plots for inter-arrival times
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on-off process. It might end up making the traffic even more
long range dependent.
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