
1

On Resource Management for Cloud Users: A
Generalized Kelly Mechanism Approach

Richard T.B. Ma
Advanced Digital Science Center, Illinois at Singapore Pte. Ltd.

Dah Ming Chiu and John C.S. Lui
Department of IE and CS&E, The Chinese University of Hong Kong

Vishal Misra and Dan Rubenstein
Department of Computer Science, Columbia University

Abstract

Cloud computing provides network software companies with a platform to develop Software as a Service (SaaS) applications.
The pay-as-you-go pricing model unties these SaaS providers from large capital outlays in hardware deployment and maintenance.
Depending on the level of virtualization and service abstraction, cloud vendors provide different functionalities to the SaaS
providers. For example, with a high-level service abstraction, Google AppEngine can provide automatic scalability for web
applications; however, it cannot support general-purpose applications and does not give service controls for the SaaS providers.
On the other hand, Amazon EC2 provides a low-level virtualization that allows for general-purpose applications. Nevertheless, it
cannot scale the applications automatically for SaaS providers. Moreover, managing the computing resources for SaaS processes
can also be challenging for a SaaS provider. The aim of this paper is to provide a theoretical framework for resource management
for Saas providers so they can efficiently control the service levels of their users, and as to easily scale their applications under
dynamic user arrivals/departures. Our resource bidding and allocation framework can be viewed as a generalization of the Kelly
mechanism. Previous work showed that the efficiency loss of the Kelly mechanism is bounded by 25% of the optimal social
welfare. By using a built-in penalty differentiation, our mechanism is able to close the efficiency gap. To achieve this efficiency,
a feedback control mechanism is proposed to maximize the aggregate valuation of users.

I. Introduction
Cloud computing vendors, e.g. Amazon and Google, provide computing services as a utility and charge cloud users in a pay-

as-you-go manner. By adopting this cloud computing paradigm, network software companies can avoid large capital outlays in
hardware deployment and maintenance and provide Software-as-a-Service (SaaS) to their users. Through virtualization, cloud
providers isolate low-level functionalities and the underlying hardware from cloud users. Based on the level of abstraction at
which cloud users can manage resources, we can identify different classes [4] of cloud computing services.

With a high-level service abstraction, Google AppEngine [2] works exclusively for web applications. Although application
providers cannot control the resources and service level for their users, AppEngine can automatically scale and provide high-
availability for the applications. However, AppEngine’s scaling ability relies on the request-reply nature of web applications,
which makes resource provisioning easy, it cannot serve general-purpose computing services. Amazon Elastic Compute Cloud
(EC2) [1], on the other hand, allows low-level controls over virtualized hardware, e.g. raw CPU cycles and IP-level connectivity.
Each EC2 Virtual Machine (VM) instance is specified by number of virtual CPU cores, capacity of RAM and storage. However,
Amazon cannot achieve automatic scalability for the applications. Thus, it becomes the cloud users’ responsibility and concern
to provide resource allocation and service control for their SaaS processes and the scalability for their SaaS applications.

Without a clear resource management model provided by cloud providers, it can be quite difficult for cloud users to manage
the virtualized resources so as to achieve service levels and scalability. If resources are over-provisioned, cloud users might
still need to pay for the idle instances of virtual machines, e.g. Amazon EC2 instances; if resources are under-provisioned, then
too many SaaS processes will be assigned to a single instance of virtual machine and the service quality will deteriorate. With
the unpredictable dynamic user demand, the mismatch between resource and service demand will become more severe if the
cloud users cannot scale their application accordingly. To address this problem, we propose a resource management framework
under which the cloud users can easily manage the virtualized resources and provide service controls and scalability to their
SaaS applications.

In particular, we design a resource allocation mechanism that generalizes the Kelly mechanism [14]. By carefully choosing
a penalty differentiation, it can also close up the efficiency gap of the Kelly mechanism. Our contribution includes:
• We design (Section II-B) a novel build-in penalty differentiation to generalize the Kelly mechanism.
• We analyze (Section III) the resource competition game induced by the generalized mechanism and show:

– Under any penalty differentiation, the competition game has a unique Nash equilibrium (Thm. 1).
– Any non-dictatorial resource allocation can be realized as a unique Nash equilibrium (Theorem 2).
– There exists a bijective mapping between the domain of penalty and resource allocation (Theorem 5).

2

• We characterize the optimality condition for the social welfare and design a feed-back control mechanism to maximize it
(Section IV).

• We further generalize the mechanism for heterogeneous resources for cloud computing services (Section V).
We believe that our new framework provides cloud users with better resource management for their SaaS processes as well as
better service and quality controls for their applications.

II. Resource Management Model and Assumptions
A. A Three-party Overview

We use a similar three-party view of Armnrust el. al. [4] to illustrate a common cloud computing architecture. Figure 1
depicts these three parties: the cloud providers, the cloud users (or the SaaS providers) and the SaaS users (or processes).

Fig. 1. A three-party view of cloud computing.

Unlike the Google AppEngine that only supports web applications, we assume that the cloud providers support general-
purpose cloud computing services, and that the SaaS applications and users are invisible to the cloud providers. Cloud providers
allocate VM instances to cloud users on demand, but they do not provide automatic scaling feature for the SaaS applications
running on the VMs. We do assume that, for each VM instance, the cloud providers will give an interface for its users to
manage various computing resources, e.g. CPU, RAM and bandwidth, for different SaaS processes on the VM instance. Figure
2 illustrates the interaction between a typical cloud user and its cloud provider. Each cloud user decides when and how many
VMs to allocate/de-allocate, e.g., the cloud user is allocating two VMs to host four of its SaaS processes. For each VM
instance, the cloud user manages its SaaS processes in terms of how much resource each process consumes, e.g. on VM 1,
the cloud user decides to give a higher priority to one of the SaaS processes and delivers the resource allocation command to
the cloud provider. The cloud provider then executes the resource allocation command without knowing the identities of the
SaaS processes.

Fig. 2. Interaction between a cloud provider and a cloud user.

The objective of a cloud user is to provide service level controls on its SaaS processes as well as to scale the application
based on the demands. Figure 3 illustrates the interaction between a cloud user with its SaaS processes. Each process makes
resource request to the cloud provider, who aggregates the resource requests and decides the resource allocation.

If the cloud provider knows the characteristics of its user processes, it might be able to manage resources in a centralized
manner without resource requests. However, each SaaS process might have private information of the user and dynamic
conditions that affect the resource requirements, e.g., instantaneous bandwidth capacity. Although, we assume a resource
request/allocation communication paradigm, the real implementation of the resource requests can be conducted by SaaS users
or automated for them by the SaaS provider.

3

Fig. 3. Interaction between a cloud user and its SaaS processes.

B. Resource Allocation Mechanism

A cloud user decides the demand of VMs based on the arrival/departure of its SaaS processes. For the time being, we focus
on a single VM and a fixed number of N SaaS processes running on the VM. We will consider the dynamic arrival/departure
of SaaS processes in a later section. We assume that the VM has fixed amounts of divisible resources, e.g. CPU, bandwidth
and RAM. Without loss of generality, we first focus on the allocation of a single resource with fixed capacity C. We will
extend our model and results for multiple resources in a later section. We quantify the satisfaction of a SaaS process i by a
valuation function vi(·), where vi(di) defines the utility of process i when given di amount of the resource. We make the same
assumption as in [12], [13] on the valuation function as follows.

Assumption 1: For each i, over the domain di ≥ 0 the valuation function vi(di) is concave, strictly increasing, and continuous;
and over the domain di > 0, vi(di) is continuously differentiable. Furthermore, the right directional derivative at 0, denoted
v′i(0), is finite.

Remark: The concavity assumption implies that although the more resource a process gets, the higher utility it values, the
marginal utility diminishes when the allocation increases.

From a cloud user’s perspective, a natural goal is to maximize the aggregate valuation of the SaaS processes, i.e., the social
welfare of the system in the economics terminology. Mathematically, each cloud user tries to solve the following convex
optimization problem:

Maximize
N∑
i=1

vi(di) (1)

Subject to
N∑
i=1

di ≤ C; (2)

di ≥ 0, i = 1, · · · , N. (3)

The above problem is not difficult to solve if the valuation functions are known to the cloud user; however, the challenge
comes in when the valuation functions are private information of the SaaS users who do not want to reveal them voluntarily.
Moveover, if requested to submit their valuations, SaaS users might misreport the true valuations of the processes so as to
maximize their own allocation of resources and utilities.

To address the above problem, we use a resource bidding and allocation mechanism under which each SaaS process i submits
a positive bid ti and then obtains an amount of resource di. The resource allocation result d = {d1, · · · , dN} is determined
by a proportional sharing according to the bids:

di(t) =
ti∑N
j=1 tj

C, i = 1, · · · , N, (4)

where t = {t1, · · · , tN} is the bidding profile of the processes. Throughout this paper, we use the notation di and d for
two purposes. When expressed without parenthesis, they are pre-determined resource allocation result or requirement; when
followed by parenthesis, i.e., di(·) and d(·), they represent the proportional allocation function defined by Equation (4).

To achieve the above resource allocation, the SaaS providers only need to forward the bidding profile t to the cloud provider.
The latter then uses each ti as the weight for proportional scheduling, e.g. weighted round robin for CPU cycles and weighted
fair queueing for bandwidth resource.

By bidding ti, each SaaS process i will be penalized by pi × ti where pi is the unit penalty for her bid. We denote ui as
the utility function of i defined by

ui(t,p) = vi(di(t))− piti, (5)

4

where p = {p1, · · · , pN} is the penalty profile decided by the SaaS provider. Without a penalty mechanism, processes will bid
as high as possible to obtain a large proportion of the resource. We introduce the penalty p as a control mechanism for the
SaaS provider to reveal the underlying valuations of the processes and balance the resource allocation among them. Notice that
the penalties do not have to be monetary, and can be any inconvenience imposed by the SaaS provider. We do not restrict the
form of penalty in practice; however, we do assume that pi× ti will be the disutility to process i, measured in the same unit as
the valuation, but not necessarily induces monetary benefits for the SaaS provider. When p = 1, our mechanism coincides with
the Kelly mechanism [14], under which the processes are penalized by how much they bid. We denote M p as the mechanism
associated with the penalty vector p. In particular, M 1 denotes the Kelly mechanism.

The interaction between the SaaS providers and users described in Figure 3 can be substantiated by the following three
steps: 1) the SaaS provider will inform each SaaS process i its unit penalty pi, 2) each process i submits its bid ti to the
provider, and 3) the SaaS provider broadcasts the virtual price

µ =

∑N
j=1 tj

C
, (6)

from which each process i can derive the amount of allocated resource by di = ti/µ. Despite of the differentiated penalties,
our mechanism inherits the implementation simplicity of the Kelly mechanism in two ways: 1) the strategy space is still
one-dimensional, i.e. a single bid; and 2) only a single feedback, i.e. µ, is required to send to all processes.

III. Resource Competition Game and Properties
In this section, we study the resource competition game induced by our resource allocation mechanism. The goal is to

understand how the penalties affect the bidding behavior and the resulting resource allocation. In the next section, we will use
the penalties to manage the resources for SaaS process.

A. Resource Competition Game

Given a resource allocation mechanism M p, each SaaS process i tries to maximize its utility ui. Kelly’s original work [14]
studies the competitive equilibrium of M 1, which is a bidding profile t that satisfies the following condition:

ui(t) = vi(
ti
µ
)− ti ≥ vi(

t̂i
µ
)− t̂i, ∀t̂i ≥ 0, i = 1, · · · , N, (7)

where µ is defined by Equation (6). The rationale of the competitive equilibrium relies on a price-taking assumption: the
so-called market clearing price µ will not be affected by the action of a single player. Kelly proved that the resource allocation
d(t) induced by the competitive equilibrium t solves the optimization problem defined in (1)-(3).

The price-taking assumption works well when the system has a large number of players such that a single bid’s impact on
the aggregation is infinitesimal. However, with only a few players at presence, each player’s bid will have a large impact on µ
as well as other players’ resource allocation. Taking that into consideration, a further step is to model price-anticipating players
and regard the resource allocation mechanism as a competition game, through which each player i chooses her strategy ti to
maximize her utility of ui. More precisely, given a mechanism M p, each i chooses the strategy ti that solves:

Maximize ui(ti; t−i,p) = vi(di(t))− piti, (8)

where t−i denotes the strategy profile of the players other than i. A strategy profile t∗ is a Nash equilibrium of the resource
competition game if for any i, the following is satisfied:

ui(t
∗
i ; t
∗
−i,p) ≥ ui(t̂i; t∗−i,p), ∀t̂i ≥ 0. (9)

Hajek and Gopalakrishnan [11] showed that the Kelly mechanism, i.e., M 1, induces a unique Nash equilibrium. Johari
and Tsitsiklis [13] showed that the worst efficiency loss of this Nash equilibrium relative to the optimality of (1)-(3) is 25%.
Despite of the well-studied Kelly mechanism, our generalization has not been studied yet. In the rest of this section, we will
study the Nash equilibrium t∗ of the generalized mechanism M p and the relationship between p and the resulting allocation
d(t∗).

B. Properties of M p

We first show that for any strictly positive vector p, the generalized mechanism M p induces a unique Nash equilibrium. The
result is parallel to Theorem 2.2 of Johari [12], originated from Hajek and Gopalakrishnan [11]. We first define the feasible
set of penalty vectors P to be strictly positive:

P = {p| pi > 0, ∀i = 1, · · · , N}.

Remark: With pi ≤ 0, a process can keep increasing ti to increase utility, and therefore no Nash equilibrium exists. We present
the proofs of selected theorems in appendix.

5

Theorem 1 (Unique Nash equilibrium): Suppose N > 1 and Assumption 1 holds. For any p ∈ P , there exists a unique Nash
equilibrium t ≥ 0 for the resource competition game under M p, and at least two components of t are positive.

Theorem 1 states that for any p ∈ P , there is a corresponding Nash equilibrium. Thus, we denote tp as the unique Nash
equilibrium of M p that satisfies:

ui(t
p
i ; t

p
−i,p) ≥ ui(t̂i; tp−i,p), ∀t̂i ≥ 0. (10)

After knowing that each M p has a unique equilibrium, we ask the reverse question: Whether any resource allocation d can
always be realized as a Nash equilibrium of some mechanism M p? If the answer is positive, then the SaaS provider might be
able to use p as a control mechanism to achieve its desirable resource allocation d for the system. Theorem 1 tells that at least
two components of an equilibrium t are positive. This implies that the resulting allocation under our generalized mechanism is
non-dictatorial, meaning no single process can obtain the whole capacity C. We denote D as the set of feasible non-dictatorial
allocation defined as:

D = {d |
N∑
j=1

dj = C, and 0 ≤ dj < C, ∀j = 1, · · · , N}.

Next, we show that any non-dictatorial allocation can be implemented as a Nash equilibrium of some mechanism M p.
Theorem 2 (Nash Implementation): For any d ∈ D, there exists a mechanism M p, whose unique Nash equilibrium tp induces
the resource allocation of d, i.e.

di(t
p) = di, i = 1, · · · , N.

In particular, if p is defined by

pi = hi(di) = v′i(di)(1−
di
C
), i = 1, · · · , N, (11)

the Nash equilibrium strategy profile tp equals d as well.
Theorem 2 tells that with an appropriate penalty p, any non-dictatorial allocation can be realized as the unique equilibrium

of the resource competition game. However, the solution of Equation (11) depends on the valuation functions that are unknown
to the SaaS provider. In the next section, we will characterize the desirable p and reach it by a feedback control algorithm.

Next, we explore the dynamics of penalty and the resulting allocation, i.e., how the resource allocation changes when the
penalty vector varies. Intuitively, the resource allocated to a process should be monotonic in its unit penalty. In other words,
by increasing the unit penalty of a particular process and keeping all the remaining fixed, this process’s allocation should be
non-increasing in equilibrium.
Theorem 3 (Monotonicity): For any p ∈ P and any process k, let a new vector p′ ∈ P be defined as:

p′i

{
= pi, if i 6= k;
6= pi, if i = k.

Let di = di(t
p) and d′i = di(t

p′) be the resource allocation under M p and M p′ . Let ρ =
∑N

i=1 t
p
i /C, ρ′ =

∑N
i=1 t

p′

i /C,
and hi(di) = v′i(di)(1− di/C) for all i.

1) If dk > 0 and p′k > pk, the resource allocation under M p′ satisfies:

d′i

 < di, if i = k;
> di, if i 6= k and pi < hi(di)/ρ

′;
= di = 0, otherwise.

2) If dk > 0 and p′k < pk or if dk = 0 and p′k < hk(0)/ρ, the resource allocation under M p′ satisfies:

d′i

 > di, if i = k;
< di, if i 6= k and di > 0;
= di, if i 6= k and di = 0.

3) If dk = 0 and p′k ≥ hk(0)/ρ, the resource allocation under M p′ satisfies:

d′i = di, ∀i = 1, · · · , n.

Theorem 3 identifies the conditions under which the monotonicity properties holds. Case 1 and 2 says when a process had
a positive amount of resource, after increasing or decreasing its unit penalty, the amount of resource is decreased or increased
respectively. However, case 2 and 3 identifies a penalty threshold hk(0)/ρ, below which a zero-resource process will start to
obtain a positive amount of resource. In practice, the monotonicity property enables the SaaS provider to dynamically and
gracefully adjust the penalty vector so as to control and achieve desirable resource allocations.

Although each M p induces a unique Nash equilibrium tp, two different mechanisms might induce the same resource
allocation and process utilities. We define the equivalence class of mechanisms as follows.

6

Definition 1: We define two mechanisms M p and M q to be equivalent, if they induce the same resource allocation and
process utilities in equilibrium, i.e. d(tp) = d(tq) and u(tp,p) = u(tq,q) for all i = 1, · · · , N .

For any p ∈ P , we denote Ep as the set of processes that get zero allocation in equilibrium, defined as the following:

Ep = {i|tpi = 0}. (12)

Based on the result of Theorem 3, we can characterize a class of equivalent mechanisms as the following.
Corollary 1 (Zero-allocation Equivalence): For any p ∈ P , let the set Qp be

Qp = {q | qi = pi, ∀i /∈ Ep; qi ≥ pi, ∀i ∈ Ep}.

Then for any q ∈ Qp, the unique Nash equilibrium of M q is tq = tp. Moreover, M q is equivalent to M p.
Corollary 1 tells that for the processes that get zero resource in an equilibrium, keep increasing their unit penalties will not

change the equilibrium. Processes will use the same strategy profile and keep the same penalties and utilities.
Theorem 4 (Linear Equivalence): For any p,q ∈ P with q = kp for some k > 0, the unique Nash equilibrium of M q is
tq = 1

k t
p. Moreover, M q is equivalent to M p.

Theorem 4 states that when the penalty vector is scaled by a positive constant k, the resource allocation does not change in
equilibrium. However, the strategy profile scales 1/k and keeps the penalties unchanged. As a result, the utility of the processes
will be the same as well in both equilibria. A simple consequence of this theorem is the following.
Corollary 2 (Equivalent Kelly Mechanisms): For any scalar k > 0, the mechanism M k is equivalent to the Kelly mechanism
M 1.

Theorem 1 implies that any M p maps to a unique resource allocation d. Theorem 4 and Corollary 1 imply that this mapping
can be many-to-one. Theorem 2 states that the mapping from M p to D is indeed onto. From Theorem 4, we know that the
mechanisms that have linearly dependent p vectors are equivalent. Without loss of generality, we focus on the domain P̂ ⊆ P
defined inside a unit simplex as:

P̂ = {p |
N∑
j=1

pj = 1 and pj > 0, j = 1, · · · , N}.

The following theorem reveals a one-to-one and onto mapping relationship between D and a subset of P̂ .
Theorem 5 (Mapping): There exists a connected set P̃ ⊆ P̂ such that, the mapping f : P̃ → D defined by

f(p) = d(tp), ∀p ∈ P̃

is continuous and bijective. Particularly, if n = 2, then P̃ = P̂ .If we focus on the set P̂ , we eliminates the linear dependency of the p vectors addressed in Theorem 4. Theorem 5 states
that there always exists a subset of P̃ ⊆ P̂ that maps to D continuously and bijectively. The mapping from P̂ to D might
still be many-to-one, because there might still exist equivalent mechanisms addressed in Corollary 1. However, when n = 2,
P̂ maps to D bijectively, because no process gets zero allocation in equilibrium.

C. Interpretation and Illustration

In this subsection, we connect the properties of our mechanism into a big picture and use two examples to illustrate.

Fig. 4. Mapping between penalty and allocation.

Figure 4 visualizes the relationship between the domain of mechanisms M p and the resulting resource allocations d. T
defines the space of feasible bidding profiles. V defines the space of valuation functions under Assumption 1. By Theorem 1
and 2, we know that each p maps onto D; however, the mapping is many-to-one due to the linearly equivalent mechanisms
addressed in Theorem 4. If we normalize every p ∈ P into P̂ , the mapping from P̂ to D might still be many-to-one. After
reducing the equivalent mechanisms addressed in Corollary 1, we finally obtain P̃ that maps to D bijectively. The exact set
of P̃ and the mapping to D totally depend on the underlying valuation space V of the processes.

7

Fig. 5. An example of 2 SaaS processes with linear valuation.

In the first example, we have N = 2, C = 10, v1(d1) = θ1d1 and v2(d2) = θ2d2 for some positive constant θ1 and θ2. Figure
5 illustrates the resource allocation for both processes under various p ∈ P̂ . p1 varies along x-axis and 1 − p1 corresponds
to p2. On the y-axis, we plot d1(p), i.e. the resource allocation to process 1 in equilibrium. We can also easily identify the
resource allocation to process 2 as C − d1(p) correspondingly in the figure. We observe that the resource allocation depends
on both the penalty and the ratio of θ1/θ2. Particularly, when θ1 = θ2, the resource allocation is inversely proportional to the
penalty of the processes.

Fig. 6. An example of 3 processes with linear valuation.

In the second example, we have N = 3, and v1(x) = v2(x) = v3(x) = θx for some θ > 0. Figure 6 illustrates the
mapping from the penalty simplex P̂ to the non-dictatorial resource allocation set D. In particular, there is a proper subset
P̃ = {p | 0 < pi ≤ 1

2 , i = 1, 2, 3} that maps to D bijectively. The points in P̂\P̃ are mapped to the triangular boundary of
D, where one of processes gets zero allocation. Readers can also check that the mapping from P̃ to D satisfies

di(p) = (1− 2pi)C, i = 1, 2, 3.

IV. Revealing Valuations and Optimizing Efficiency
By Theorem 2, any non-dictatorial resource allocation can be achieved as a Nash equilibrium. Thus, in theory, we can close

the 25% efficiency gap by choosing an appropriate penalty p that maximizes the social welfare. In practice, however, we need
to know the valuation functions that are private information and may not be disclosed by the SaaS users. Next, we try to derive
the hidden valuations via observing the resulting bidding profile of the processes as follows.
Theorem 6 (Observability of Marginal Utility): Suppose for any p > 0, we can observe the bids tp. For any non-zero bid
tpi , let di = di(t

p) be the equilibrium allocation for i. Then the marginal utility of process i at the resource level of di is

v′i(di) =
pi

C − di

N∑
j=1

tpj . (13)

Theorem 6 states that by observing the bidding profile, we can derive processes’ marginal utilities at the allocated resource
level. By the monotonicity property of Theorem 3, we can gradually change one process’s penalty to achieve various resource
levels for that process. Thus, by calculating the marginal utility of a process at various resource level, we can fully reveal its
hidden valuation function in principle. However, this method might be tedious and slow. To maximize the social welfare, we
explore the direct relationship between the optimal resource allocation and the corresponding penalty.

8

Theorem 7 (Condition of Optimality): Suppose the optimality of problem (1)-(3) is a strictly positive resource allocation
vector, i.e. d∗ ∈ D and d∗i > 0 for all i = 1, · · · , N . A vector p∗ > 0 induces the unique Nash equilibrium with the allocation
d∗ if and only if the following condition is satisfied:

p∗i : p∗j = C − d∗i : C − d∗j , ∀i, j = 1, · · · , N. (14)

In particular, when N = 2, d∗ is achieved when both processes incur the same amount of penalty, i.e. p∗1t
p
1 = p∗2t

p
2 .

Theorem 7 states that for any pair of processes i and j, the optimal penalty ratio should equal the ratio of C − d∗i : C − d∗j .
This result not only gives us a way to verify the optimality without knowing hidden valuations, but it also provides a heuristic
feedback control mechanism to update the penalty vector so as to achieve the optimality.

A Feedback Control Mechanism: We update the penalty vector p at the beginning of each time period and assume that the
length is long enough for the processes to reach the Nash equilibrium by the end of the time period. We start with the Kelly
mechanism (by setting all pis to be the same) and reach a resource allocation d[0] by the end of time period 0. If a process i
joins in at time k, pi[k] will be set to be the average price in the system. Otherwise, at the beginning of each time period k,
we update the p vector as the following:

pi[k] = C − di[k − 1] ∀i = 1, · · · , N.

To illustrate, let us consider the following experiments. We have five SaaS processes, each are CPU-bound. The valuation
of each of these five processes are depicted in Figure 7. In particular, process 2 and 5 have a linear valuation function while
other processes have different concave valuation functions.

Fig. 7. An example of 5 SaaS processes with different valuation functions.

We perform two experiments wherein SaaS processes arrive and depart at different times. For experiment A, the five processes
stay in the system during the time interval (1,30), (6,20), (11,40), (16,35) and (21,30) respectively. For experiment B, the five
processes stay in the system during the time interval (1,40), (21,30), (21,40), (1,35) and (11,25) respectively. Figure 8(a) and
9(a) show instantaneous resource allocation to each process while Figure 8(b) and 9(b) show the instantaneous aggregate
valuation in both experiments respectively. One can observe that our resource allocation and feedback mechanism can (a)

(a) Resource Allocation (b) Social Welfare

Fig. 8. Experiment A.

dynamically adapt to the changing resource demand of SaaS processes; (b) quickly converge to the optimal resource allocation
level; (c) allocate more resource to linear valuation function, where the efficiency gap is big for the Kelly mechanism.

V. Multiple Resources
In this section, we generalize our results to a multi-resource context, where SaaS processes need heterogeneous resources,

e.g. CPU and network bandwidth, at the same time. We consider R divisible resources. Each resource r has a capacity of Cr.
We define a R×N resource allocation matrix D as

D = (d1, · · · ,dN) =

 d11 . . . d1N
...

. . .
...

dR1 . . . dRN

 =

 D1

...
DR

 .

9

(a) Resource Allocation (b) Social Welfare

Fig. 9. Experiment B

Each di is a column vector that represents the resource allocation to process i and each Dr denotes a row vector that
represents the distribution of resource r to N processes.

Each process i’s valuation is defined by vi(di). We generalize the assumption on the valuation function as the following.
Assumption 2: For each i, over the domain di ≥ 0 the valuation function vi(di) is quasi-concave, strictly increasing,
continuous, and continuously differentiable. Furthermore, the right directional partial derivative for any resource r at 0, denoted
∂rvi(0), are finite.

Remark: Quasi-concavity, a weaker condition than concavity, requires the upper contour sets {di|vi(di) ≥ v} be convex.
Intuitively, it means that if two bundles of resources are valued higher the current bundle, then a linear mixture of these two
bundle values higher than the current bundle as well.

The social welfare maximization problem becomes:

Maximize
N∑
i=1

vi(di) (15)

Subject to
N∑
i=1

dri ≤ Cr, r = 1, · · · , R; (16)

dri ≥ 0, r = 1, · · · , R, i = 1, · · · , N. (17)

Similar to D, we define matrices P = {pri} and T = {tri}. pri denotes the unit penalty for i to bid resource r and tri denotes
its bid. We denote pi and ti as the penalty and bid with respect to process i and Pr and Tr as the penalty and bid with respect
to resource r. Each r is allocated by:

dri(Tr) =
tri∑N
j=1 ttj

Cr, i = 1, · · · , N. (18)

We denote MP as the joint allocation mechanism for R resources. Accordingly, process i obtains a utility of

ui(T,P) = vi(di(T))− pT
i ti. (19)

A bidding profile matrix T∗ is a Nash equilibrium if for any process i, the following is satisfied:

ui(t
∗
i ; t
∗
−i,P) ≥ ui(ti; t∗−i,P), ∀ti ≥ 0. (20)

We focus on the non-degenerated cases where each resource has multiple processes to compete for. We define the domain
of non-dictatorial allocation for resource r as follows:

Dr = {Dr |
N∑
i=1

dri = Cr, 0 ≤ dri < Cr, ∀i = 1, · · · , N}.

Similarly, the domain of penalty for resource r is defined as:

Pr = {Pr | pri > 0, ∀i = 1, · · · , N}.

Then we redefine the domain of resource allocation D and penalty P for multiple resources using the Cartesian products of
the individual resource domains as follows:

D =
∏

r=1,··· ,R
Dr, P =

∏
r=1,··· ,R

Pr.

Although the multi-resource context enlarges the strategy space, many desirable properties are inherited. We present the
parallel results corresponding to Theorem 1, 2, 6 and 7.

10

Theorem 8 (Uniqueness of Nash equilibrium): Suppose any P ∈ P , N > 1 and Assumption 2 holds. Then there exists
a unique Nash equilibrium T for the resource competition game of mechanism MP.
Theorem 9 (Nash Implementation): For any D ∈ D, there exists a mechanism MP, whose unique Nash equilibrium TP will
yield the resource allocation of D, i.e.

di(T
P) = di, i = 1, · · · , N.

In particular, if P is defined by

pri = ∂rvi(di)(1−
dri
Cr

), r = 1, · · · , R, i = 1, · · · , N,

the Nash equilibrium bidding profile TP equals D as well.
Theorem 10 (Observability of Marginal Utility): Suppose for any P ∈ P , we can observe the equilibrium bids TP. Let
di = di(T

P) be the allocation for i. For any non-zero bid tPri, process i’s marginal utility with respect to r is

∂rvi(di) =
pri

Cr − dri

N∑
j=1

tPrj . (21)

Theorem 11 (Condition of Optimality): Suppose the optimality to the problem (15)-(17) is a non-dictatorial resource alloca-
tion, i.e. D∗ ∈ D and d∗ri > 0 for all r = 1, · · · , R and i = 1, · · · , N . A matrix P ∈ P will induce a unique Nash equilibrium
with the same resource allocation D∗ if and only if for every resource r the following condition is satisfied:

p∗ri : p
∗
rj = Cr − d∗ri : Cr − d∗rj , ∀i, j = 1, · · · , N. (22)

We carry out two experiments and consider multi-resource allocation. We have three SaaS processes, each of these processes
needs both the CPU and network bandwidth resources. Process 1, 2 and 3 stay in the system during the time interval (1,20),

(a) CPU Allocation (b) Bandwidth Allocation

(c) Social Welfare

Fig. 10. Experiment C

(1,30) and (11,30) respectively. The total CPU resource is C1 = 20 and total bandwidth resource is C2 = 30. The valuation
function for three SaaS processes in Experiment C are: v1(x, y) = log(18x+1) log(2y+1), v2(x, y) = log(9x+1) log(9y+1)
and v3(x, y) = log(2x + 1) log(18y + 1). For Experiment D, the valuation functions of these processes are: v1(x, y) =
x log(2y + 1), v2(x, y) = log(9x + 1) log(9y + 1) and v3(x, y) = y log(2x + 1). Note that in both experiments, process 1
is more CPU intensive while process 3 is more bandwidth intensive. However, in Experiment D, the linear component of
valuation functions imply that the CPU and bandwidth resources bring much higher valuations to process 1 and 3 compared
to those in Experiment C.

Figure 10 and 11 illustrate the resource allocations and the social welfare in both experiments respectively. We see that
our algorithm can efficiently and adaptively allocate resources. In Experiment C, the mechanism balances the allocation so
as to maximize the social welfare, and does not allocate plenty of CPU resource to process 1 (and does not allocate plenty
of bandwidth resource to process 3 as well). In contrast, the mechanism allocates most of the CPU resource to process 1
(and most of the bandwidth resource to process 3) to maximize the social welfare in Experiment D, in which we can close a
relatively big efficient gap of the Kelly mechanism.

11

(a) CPU Allocation (b) Bandwidth Allocation

(c) Social Welfare

Fig. 11. Experiment D

VI. RELATED WORK

Cloud computing has received increased attention within both the IT industry [1], [2], [3] and the research community [4],
[5]. Due to the severe competition among cloud providers, the prices of cloud computing services keep declining; however,
the commoditized services deemphasize service requirements [8], e.g. guaranteed levels of performance and availability. This
work proposes a framework to support resource management and service controls for the SaaS applications.

Resource allocation [14], [12] and pricing [18], [9] for network resources, e.g. bandwidth, have been studied extensively
during the last decade. Among various proposed pricing and allocation mechanisms, the Kelly mechanism [14] stands out as a
simple and practical mechanism with low strategic flexibility (one-dimensional space) and low pricing flexibility (single price)
[13]. It was argued in [13] that if we increase the strategic flexibility while preserving the single price restriction, the efficiency
loss can be arbitrarily large.

To achieve efficiency, many mechanisms have been designed by introducing pricing flexibility into the proportional allocation
mechanism. Maheswaran and Basar [15], [16] modified the proportional allocation rule by adding a parameter ε to the total bids
in the denominator and designed explicit price functions for players with different valuation functions. Nguyen and Vojnovic
[17] introduced weights to the proportional allocation function and studied the revenue maximization problem for the resource
provider. In our mechanism, the proportional allocation remains the same; however, the players are penalized at different
constant rates. Our objective is to maximize social welfare instead of the total penalties.

Another major line of extending pricing flexibility is to apply the celebrated Vickrey-Clarke-Groves (VCG) [20], [6], [10]
mechanism with the proportional allocation rule. Yang and Hajek [21], [22] and Johari and Tsitsiklis [13] independently
design VCG-type of mechanism with one-dimensional bids from the players. Dimakis, Jain and Walrand [7] considered VCG
mechanism in multiple divisible goods allocation for a two-dimensional strategy space. Stoenescu and Ledyard [19] designed a
mechanism that can implement efficient allocation in the sense of Pareto optimality as a Nash equilibrium in a two-dimensional
strategy space. We introduce the pricing flexibility as a build-in parameter, integrated into the proportional allocation mechanism
itself; therefore, we view our mechanism as a generalization of the Kelly mechanism instead of an add-on pricing mechanism
to the players.

VII. CONCLUSIONS

In this paper, we propose a resource management framework for SaaS providers to allocate resources and control service
levels of their SaaS processes. Under this framework, we allocate resources proportional to processes’s request bids; however,
processes are penalized by their bids as well. By differentiating the unit penalty of different processes, we generalized the
Kelly mechanism and show that the competition game under the generalized mechanism satisfies desirable properties: 1) each
mechanism under a differnt penalty vector has a unique Nash equlibrium, 2) any non-dictatorial resource allocation can be
realized as the unique Nash equilibrium of a penalty vector. By observing the bidding profile in equilibrium, we can derive
the underlying valuation functions of the SaaS processes. We further characterize the optimality condition of the penalty and
design a feed-back control algorithm to maximize the social welfare. We show that our feed-back control mechanism adapts
to dynamic process arrival/departure and closes the efficiency gap of the Kelly mechanism.

12

REFERENCES

[1] Amazon elastic compute cloud (ec2). http://www.amazon.com/ec2.
[2] Google app engine. http://appengine.google.com.
[3] Microsoft windows azure. http://www.microsoft.com/windowsazure/.
[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the

clouds: A berkeley view of cloud computing. Technical Report EECS-2009-28, UC Berkeley, 2009.
[5] R. Buyya, C. S. Yeo1, and S. Venugopal. Market-oriented cloud computing: Vision, hype, and reality of delivering computing as the 5th utility.

Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, page 1, 2009.
[6] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11:19–33, 1971.
[7] A. Dimakis, R. Jain, and J. Walrand. Mechanisms for efficient allocation in divisible capacity networks. In Proceedings of the 45th IEEE Conference

on Decision and Control, San Diego, CA, USA, December 2006.
[8] D. Durkee. Why cloud computing will never be free. Communications of the ACM, 53(5), May 2009.
[9] M. Falkner, M. Devetsikiotis, and I. Lambadaris. An overview of pricing concepts for broadband IP networks. IEEE Communications Surverys, 3(2),

2000.
[10] T. Groves. Incentives in teams. Econometrica, 41(4):617–631, 1973.
[11] B. Hajek and G. Gopalakrishnan. Do greedy autonomous systems make for a sensible Internet? Presented at the Conference on Stochastic Networks,

Stanford University, 2002.
[12] R. Johari. Efficiency loss in market mechanisms for resource allocation. PhD thesis, Massachusetts Institute of Technology, June 2004.
[13] R. Johari and J. N. Tsitsiklis. Efficiency of scalar-parameterized mechanisms. Operation Research, 2008.
[14] F. P. Kelly. Charging and rate control for elastic traffic. European Transactions on Telecommunications, 8:33–37, 1998.
[15] R. T. Maheswaran and T. Basar. Nash equilibrium and decentralized negotiation in auctioning divisible resources. Group Decision and Negotiation,

12(5):361–395, 2003.
[16] R. T. Maheswaran and T. Basar. Efficient signal proportional allocation (ESPA) mechanisms: Decentralized social welfare maximization for divisible

resources. IEEE Journal on Selected Areas of Communications, 24(5):1000–1009, 2006.
[17] T. Nguyen and M. Vojnovic. The weighted proportional allocation mechanism. Microsoft Technical Report MSR-TR-2009-123, September 2009.
[18] S. Shenker, D. Clark, D. Estrin, and S. Herzog. Pricing in computer networks: Reshaping the research agenda. Telecommunications Policy, 20(3):183–201,

1996.
[19] T. Stoenescu and J. O. Ledyard. Implementation in Nash equilibria of a rate allocation problem in networks. Forty-fourth Annual Allerton Conference,

September 2006.
[20] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal of Finance, 16(1):8–37, 1961.
[21] S. Yang and B. Hajek. Revenue and stability of a mechanism for effocoent allocation of a divisible good. Preprint, 2005.
[22] S. Yang and B. Hajek. VCG-Kelly mechanisms for allocation of divisible goods: Adapting VCG mechanisms to one-dimensional signals. IEEE Journal

on Selected Areas of Communications, 25(6):1237–1243, 2007.

APPENDIX

Lemma 1 (Nash equilibrium condition): A strategy profile t is a Nash equilibrium of the mechanism M p if and only if at
least two components of t are positive, and for each i, the following conditions hold:

1

pi
v′i

(tiC∑N
j=1 tj

)(
1− ti∑N

j=1 tj

)
=

∑N
j=1 tj

C
, if ti > 0; (23)

1

pi
v′i(0) ≤

∑N
j=1 tj

C
, if ti = 0. (24)

Proof of Lemma 1: The proof follows the same argument of Hajek and Gopalakrishnan [11] and Johari [12] and takes the
price vector p as a new parameter.

Step 1: If t is a Nash equilibrium, at least two components of t are positive. Suppose we have a strategy profile t such
that only ti > 0 for some user i and tj = 0 for all j 6= i. This strategy profile cannot be an equilibrium, because user i can
always be better off by reducing the bid ti slightly. However, t = 0 cannot be an equilibrium as well, because any user can
be better off by bidding an infinitesimal amount and obtains the whole bandwidth. Thus, in equilibrium, t must have at least
two positive components.

Step 2: For any p > 0 and t ≥ 0 with at least two positive components, the function ui(ti; t−i,p) is strictly concave and
continuously differentiable in ti, for ti ≥ 0. Because t has at least two positive components, the utility function ui can be
written as

ui(ti; t−i,p) = vi(
ti

ti +
∑

j 6=i tj
C)− piti.

Because ti/(ti +
∑

j 6=i tj) is a strictly increasing function of ti (for ti ≥ 0) and vi(·) is a strictly increasing, concave,
and differentiable function by assumption, by extracting a linear function piti, ui is also a strictly increasing, concave, and
differentiable function in ti.

Step 3: Let t be a Nash equilibrium. By Steps 1 and 2, t has at least two positive components and ui(ti; t−i,p) is strictly
concave and continuously differentiable in ti ≥ 0. Thus ti must be the unique maximizer of ui(ti; t−i,p) over ti ≥ 0, and
satisfy the following first order optimality conditions:

∂ui
∂ti

(ti; t−i,p)

{
= 0, if ti > 0;
≤ 0, if ti = 0.

13

By multiplying
∑N

j=1 tj/C, the above conditions become the conditions (23)-(24).
Conversely, if we have a strategy profile t with at least two positive components, by Step 2, we know ui(ti; t−i,p) is strictly

concave and continuously differentiable in ti ≥ 0. The conditions (23)-(24) imply that ti maximizes ui(ti; t−i,p) over ti ≥ 0.
Thus t is a Nash equilibrium.

Proof of Theorem 1: The proof uses Lemma 1 and follows the same argument of Johari [12].
Step 1: The function v̂i defined in (??) is strictly concave and strictly increasing over 0 ≤ di ≤ C. By differentiating v̂i,

we obtain v̂′i(di) =
1
pi
v′i(di)(1 − di/C). Since vi is concave and strictly increasing, we know that v′i(di) > 0, and that v′i is

non-increasing. Because 1−di/C is decreasing over 0 ≤ di ≤ C, we conclude that v̂′i is is nonnegative and strictly decreasing
in di over 0 ≤ di ≤ C, as required.

Step 2: There exists a unique d and scalar ρ such that:

v̂′i(di) =
1

pi
v′i(di)(1−

di
C
) = ρ, if di > 0; (25)

v̂′i(0) =
1

pi
v′i(0) ≤ ρ, if di = 0; (26)

N∑
j=1

dj = C. (27)

The vector d is the unique optimal solution to the optimization problem (??)-(??). By Step 1, we know that the optimization
problem (??)-(??) has a unique optimal solution. This optimal solution d is uniquely identified by the optimality conditions
(25)-(26) and the constraint

∑N
i=1 di ≤ C. Because each v̂i is strictly increasing, the constraint must be tight and satisfies

(27). Finally, because at least one di is strictly positive, ρ is uniquely determined by Equation (25).
Step 3: If (d, ρ) satisfies (25)-(27), then t = ρd is a Nash equilibrium. First, we show that at least two components of

d is strictly positive and ρ > 0. From Equation (27), we know at least one component of d is strictly positive. If only one
component di > 0, we know that di = C, and from Equation (25), ρ = 0. However, since v′i(0) > 0, condition (26) cannot
hold. Thus at least two components of d are strictly positive and ρ > 0 follows from Equation (25).

By Lemma 1, we only need to check the conditions (23)-(24). Using Equation (27), we rewrite t = ρd as:

ρ =

N∑
i=1

ti/C; di = tiC/

N∑
i=1

ti.

By substituting the above into (25)-(26), we obtain the conditions (23)-(24), and therefore, t is a Nash equilibrium.
Step 4: If t is a Nash equilibrium, then the corresponding resource allocation d and ρ =

∑N
i=1 ti/C are the unique solution

to (25)-(27). We can reverse the argument of Step 3. The uniqueness of (d, ρ) follows by Step 2.
Step 5: There exists a unique Nash equilibrium t, and the resource allocation d defined by (4) is the unique optimal solution

to (??)-(??). Existence follows by Steps 2 and 3, and uniqueness follows by Step 4 (since the transformation from t to (d, ρ)
is one-to-one). Finally, that d is an optimal solution to (??)-(??) follows by Steps 2 and 4.

Proof of Theorem 4: Let t = 1
k t

p. We want to prove that t is a Nash equilibrium of M q. Since tp is a Nash equilibrium,
by Lemma 1, at least two components of tp are strictly positive; and therefore, so as the vector t.

By Lemma 1, we know that the Nash equilibrium tp satisfies the following conditions:

1

pi
v′i

(tpi C∑N
j=1 t

p
j

)(
1− tpi∑N

j=1 t
p
j

)
=

∑N
j=1 t

p
j

C
, if tpi > 0;

1

pi
v′i(0) ≤

∑N
j=1 t

p
j

C
, if tpi = 0.

By substituting pi = 1
k qi and tpi = kti into the above, we obtain the following conditions:

1
1
k qi

v′i

(ktiC∑N
j=1 ktj

)(
1− kti∑N

j=1 ktj

)
=

∑N
j=1 ktj

C
, if kti > 0;

1
1
k qi

v′i(0) ≤
∑N

j=1 ktj

C
, if kti = 0.

14

After dividing k on both sides, we obtain the following:

1

qi
v′i

(tiC∑N
j=1 tj

)(
1− ti∑N

j=1 tj

)
=

∑N
j=1 tj

C
, if ti > 0;

1

qi
v′i(0) ≤

∑N
j=1 tj

C
, if ti = 0.

Since t has at least two strictly positive components and satisfies the above stationarity conditions, by Lemma 1, we conclude
that t = 1

k t
p is a Nash equilibrium of M p. By Theorem 1, t is also the unique Nash equilibrium tq of M p.

Since tq = 1
k t

p, the proportional share rule of (4) gives the same resource allocation, i.e. d(tq) = d(tp). Each user i’s
payment under M q is qit

q
i = kpi

1
k t

p
i = pit

p
i , which is the same as the payment under M p. Since users have the same

valuation and payment under both M p and M q, they achieve the same amount utility as well. Thus, we conclude that M q

is equivalent to M p.

Proof of Theorem 1: Let t = tp. We want to prove that t is a Nash equilibrium of M q. Since tp is a Nash equilibrium, by
Lemma 1, at least two components of tp are strictly positive; and therefore, so as the vector t.

To prove t to be a Nash equilibrium of M q, by Lemma 1, we need to show that the following conditions are satisfied:

1

qi
v′i

(tiC∑N
j=1 tj

)(
1− ti∑N

j=1 tj

)
=

∑N
j=1 tj

C
, if ti > 0;

1

qi
v′i(0) ≤

∑N
j=1 tj

C
, if ti = 0.

Since qi = pi for all tpi > 0, the first equation is the same as the stationarity condition of (23) for tp being a Nash
equilibrium. Since qi ≥ pi for all tpi = 0, we want to show

1

qi
v′i(0) ≤

1

pi
v′i(0) ≤

∑N
j=1 tj

C
, if ti = 0.

The above condition is the same as the stationarity condition of (24) for tp being a Nash equilibrium. By Theorem 1, t is
also the unique Nash equilibrium tq of M p.

Since tq = tp, both mechanisms achieve the same resource allocation, i.e. d(tq) = d(tp). Each user i’s payment under
M q is

qit
q
i = qit

p
i =

{
pit

p
i , if tpi > 0;

0, if tpi = 0.

This is the same as the payment under M p. Since users have the same valuation and payment under both M p and M q, they
achieve the same amount utility as well. Thus, we conclude that M q is equivalent to M p.

Proof of Theorem 2: Let t = d and p be defined as in Equation (9). Since
∑N

i=1 ti =
∑N

i=1 di = C, the resource allocation
to the strategy profile t becomes d(t) = d under the proportional share rule (4). Now, we want to prove that t is a Nash
equilibrium of M p. Since t = d ∈ D, at least two components of t are strictly positive.

To prove t to be a Nash equilibrium of M q, by Lemma 1, we need to show that the following conditions are satisfied:

1

pi
v′i

(tiC∑N
j=1 tj

)(
1− ti∑N

j=1 tj

)
=

∑N
j=1 tj

C
, if ti > 0;

1

pi
v′i(0) ≤

∑N
j=1 tj

C
, if ti = 0.

Since
∑N

i=1 ti = C, the right hand sides of the above equal 1. By substituting ti = di and pi = v′i(di)(1 − di/C) into the
above, the left hand sides equal 1 too. By Theorem 1, t = d is also the unique Nash equilibrium tp of M p.

Proof of Theorem 5: We provide a constructive proof by building a one-to-one mapping from D to a set P̃ ⊆ P̂ .
Step 1: We first construct P̃ . We define a mapping h : D → RN as the following:

hi(di) = v′i(di)(1−
di
C
), i = 1, · · · , N.

15

We define a mapping g : D → P̂ as the following:

gi(d) = di(h(d)) =
hi(di)∑N

j=1 hj(dj)
=

v′i(di)(1− di

C)∑N
j=1 v

′
j(dj)(1−

dj

C)
.

Since d ∈ D, di < C for all i, and therefore hi(di) > 0 for all i. We can verify g(d) ∈ P̂ by showing
∑N

i=0 gi(d) = 1 and
gi(d) > 0 for all i. We define P̃ as the imagine of D under g, i.e. P̃ = g(D) ⊆ P̂ .

Step 2: We show that g is a continuous mapping. Because vi is continuously differentiable, hi = v′i(di)(1 − di/C) is
continuous over the domain di ∈ [0, C). The resource allocation function di(h) defined in (4) is also continuous over the
domain [hi(0), hi(C)). Since g is a composite function of di(·)s and hi(·)s, we conclude that g a continuous mapping from
D to P̂ .

Step 3: g is onto P̃ . This follows by the definition of P̃ = g(D).
Step 4: g is a one-to-one mapping. For any d ∈ D, by Theorem 2, we know d(th(d)) = d. Because g(d) = kh(d) with

k = 1/
∑N

j=1 hj(dj), by Theorem 4, we know that d(tg(d)) = d(th(d)) = d. By Theorem 1, the mechanism M g(d) has a
unique Nash equilibrium, and therefore d is the unique resource allocation in D. Thus, we conclude that g is a one-to-one
mapping.

Step 5: There exists a continuous, one-to-one and onto mapping f : P̃ → D such that f(p) = d(tp). By Step 2,3 and 4,
g is continuous, one-to-one and onto. Therefore, it has a continuous, one-to-one and onto inverse mapping g−1. Let f = g−1

be the inverse mapping of g. By Step 4, we know that d(tg(d)) = d. Let p = g(d) ∈ P̃ and substitute p into d(tg(d)) = d,
we get d(tp) = d = g−1(p) = f(p).

Step 6: P̃ is connected. This is because the imagine of f , i.e. D, is connected and f is a continuous mapping.
Step 7: P̃ = P̂ when n = 2. By Theorem 1, any p ∈ P̂ has a unique mapping in D. We only need to show that there does

not exist p1,p2 ∈ P̂ with p1 6= p2 such that f(p1) = f(p2). When n = 2, D = {d | d1 + d2 = C, 0 < d1, d2 < C}, where
d1 and d2 cannot be zero. Therefore, t1 and t2 cannot be zero in equilibrium. By Lemma 1, the following condition of (23)
must be satisfied:

1

p1
v′1

(t1C

t1 + t2

)(t2
t1 + t2

)
=
t1 + t2
C

1

p2
v′2

(t2C

t1 + t2

)(t1
t1 + t2

)
=
t1 + t2
C

From the above equations, we get

p1
p2

=
v′1

(
t1C
t1+t2

)
v′2

(
t2C
t1+t2

) t2
t1

=
v′1(d1)

v′2(d2)

d2
d1
.

The above equation implies that for any d = (d1, d2) ∈ D, the price ratio p1/p2 is fixed. Thus, there does not exist p1,p2 ∈
P̂ = {p1 + p2 = 1, p1, p2 > 0} with p1 6= p2 such that f(p1) = f(p2).

Lemma 2 (Resource allocation): For any p ∈ P with the unique Nash equilibrium tp, let ρ =
∑N

i=1 t
p
i /C and hi(di) =

v′i(di)(1 − di/C) for all i. If d = d(tp) is the resource allocation under M p, then d is the unique solution that satisfies∑N
j=1 dj = C and the following condition:

1

pi
hi(di)

{
= ρ, if di > 0;
≤ ρ, if di = 0. (28)

Proof of Lemma 2: The condition of (28) is equivalent to (25) and (26) in the proof of Theorem 1. This result follow the
same argument of Step 4 in the proof of Theorem 1.

Proof of Theorem 3: We first show that hi(di) = v′i(di)(1−di/C) is a strictly decreasing function over the domain di ∈ [0, C)
for all i. vi is a concave function, and therefore, v′i is non-increasing. Since (1−di/C) is a strictly decreasing function, hi(di)
is a strictly decreasing function too. Thus, we have

hi(d
′) > hi(d)⇔ d′ < d, ∀d, d′ ∈ [0, C) (29)

By Lemma 2, the following conditions must be satisfied:
hi(di) = piρ, if di > 0 and i 6= k;
hi(di) ≤ piρ, if di = 0 and i 6= k;
hk(dk) = pkρ, if dk > 0;
hk(dk) ≤ pkρ, if dk = 0.

(30)

16
hi(d

′
i) = piρ

′, if d′i > 0 and i 6= k;
hi(d

′
i) ≤ piρ′, if d′i = 0 and i 6= k;

hk(d
′
k) = p′kρ

′, if d′k > 0;
hk(d

′
k) ≤ p′kρ′, if d′k = 0.

(31)

N∑
i=1

di =

N∑
i=1

d′i = C. (32)

Next, we prove the three mutually exclusive cases.

Case 1: dk > 0, p′k < pk or dk = 0, p′k < hk(0)/ρ. From (30), we know that pk = hk(dk)/ρ for dk > 0, and therefore, the
first case is equivalent to p′k < hk(dk)/ρ.

Step 1a: We want to show that ρ′ > ρ. We use proof by contradiction. Suppose ρ′ ≤ ρ. For any di > 0, i 6= k, by (30) and
(31), we have

hi(d
′
i) ≤ piρ′ ≤ piρ = hi(di).

Since hi(d′i) ≤ hi(di), by (29), we know d′i ≥ di for all di > 0, i 6= k. Since d′i ≥ 0 for all i, d′i ≥ di for all i 6= k. For user
k, by (30), (31) and the condition p′k < hk(dk)/ρ, we have

hk(d
′
k) ≤ p′kρ′ ≤ p′kρ < (hk(dk)/ρ)ρ = hk(dk).

Since hk(d′k) < hk(dk), by (29), we know d′k > dk. However, by (32), we know that with d′k > dk, it is impossible to have
d′i ≥ di for all i 6= k. Thus, we conclude that ρ′ > ρ.

Step 1b: We show that d′i < di for di > 0, i 6= k. If d′i = 0, then d′i = 0 < di. If d′i > 0, by (30), (31) and ρ′ > ρ, we have

hi(d
′
i) = piρ

′ > piρ = hi(di).

Since hi(d′i) > hi(di), by (29), we know that d′i < di.
Step 1c: We show that d′i = di for di = 0, i 6= k. Suppose d′i > di = 0, by (30) and (31), we have

hi(d
′
i) = piρ

′ > piρ ≥ hi(di) = hi(0).

Since hi(d
′
i) > hi(0), by (29), we would have d′i < 0, which is not possible. Thus, we conclude that d′i = di = 0 for

di = 0, i 6= k.
Step 1d: We show that d′k > dk. By Lemma 1, we know at least two components of tp are strictly positive. By the

proportional share rule of Equation (4), we know that at least two components of the resource allocation d are strictly positive.
Therefore, at least one user i 6= k has a strictly positive resource allocation di, and by Step 1b, d′i < di. By Step 1b and 1c,
we know that d′i ≤ di for all i 6= k. By condition (32), we conclude that d′k > dk.

Case 2: dk > 0 and p′k > pk.
Step 2a: We want to show that ρ′ < ρ. Similar to Step 1a, we use proof by contradiction. Suppose ρ′ ≥ ρ. For any d′i > 0,

i 6= k, by (30) and (31), we have
hi(d

′
i) = piρ

′ ≥ piρ ≥ hi(di).

Since hi(d′i) ≥ hi(di), by (29), we know d′i ≤ di for all d′i > 0, i 6= k. Since d′i ≤ 0 for all i, d′i ≤ di for all i 6= k. For user
k with d′k > 0, by (30), (31) and the condition p′k > pk, we have

hk(d
′
k) = p′kρ

′ ≥ p′kρ > pkρ = hk(dk).

Since hk(d′k) > hk(dk), by (29), we know d′k < dk. If d′k = 0, we also have d′k < dk. However, by (32), we know that with
d′k < dk, it is impossible to have d′i ≤ di for all i 6= k. Thus, we conclude that ρ′ < ρ.

Step 2b: We show that d′i > di for piρ′ < hi(di), i 6= k. By (30), (31) and piρ′ < hi(di), we have

hi(d
′
i) ≤ piρ′ < hi(di) ≤ piρ.

Since hi(d′i) < hi(di), by (29), we know that d′i > di.
Step 2c: We show that d′i = di = 0 for piρ′ ≥ hi(di), i 6= k. First, we show that di = 0. Since ρ′ < ρ, we have

piρ > piρ
′ ≥ hi(di)⇒ hi(di) < piρ.

By (30), we know that di = 0. Suppose d′i > di = 0, by (31), we have

hi(0) = hi(di) ≤ piρ′ = hi(d
′
i).

Since hi(d′i) ≥ hi(di), by (29), we would have d′i ≤ di = 0, which contradicts to d′i > di = 0. Thus, we conclude that
d′i = di = 0 for piρ′ ≥ hi(di), i 6= k.

17

Step 2d: We show that d′k < dk. Similar to Step 1d, by Lemma 1, we know at least two components of tp are strictly
positive. By the proportional share rule of Equation (4), we know that at least two components of the resource allocation d
are strictly positive. Therefore, at least one user i 6= k has a strictly positive resource allocation di, and by Step 2b, d′i > di.
By Step 2b and 2c, we know that d′i ≥ di for all i 6= k. By condition (32), we conclude that d′k < dk.

Case 3: dk = 0 and p′k ≥ hk(0)/ρ.
Step 3a: Let d′i = di for all i and ρ′ = ρ, we verify that condition (31) is satisfied. This is because the conditions in (30) and

(31) are the same for users i 6= k, and for user k, since hk(dk) = hk(d
′
k) and p′kρ

′ = p′kρ, we have hk(d′k) ≤ p′kρ′ because

hk(d
′
k) = hk(dk) ≤ p′kρ = p′kρ

′.

Step 3b: By Lemma 2, d′i = di is the unique resource allocation under M p′

Proof of Theorem 6: This is simple result from the Nash equilibrium condition (23) for tpi > 0. By substitute the resource
allocation from Equation (4) into the Nash equilibrium condition (23), we get the above Equation (13).
Proof of Theorem 7: We start with the “only if” part. Because d > 0, the optimality condition for d being optimal is

v′i(d
∗
i) = v′j(d

∗
j), ∀i, j = 1, · · · , N.

Suppose p induces a Nash equilibrium that achieves d. Then the Nash equilibrium condition of (23) can be rewritten as:

1

pi
v′i(d

∗
i)(C − d∗i) =

N∑
j=1

tpj , ∀i = 1, · · · , N.

Therefore pi : pj = v′i(d
∗
i)(C − d∗i) : v′j(d∗j)(C − d∗j) = C − d∗i : C − d∗j for all i, j = 1, · · · , N .

Then we solve the “if” part. By Theorem 2, we know that p defined by Equation (9), i.e. pi = hi(d
∗
i) = v′i(d

∗
i)(1 −

d∗i
C)

for all i = 1, · · · , N induces d∗. Since v′i(d
∗
i) is the same for any user i, we know p satisfies condition (14). Then any price

vector p̂ that satisfies condition (14) can be expressed as p̂ = kp for some positive constant k. By Theorem 4, we know p̂
achieves d∗ as well.

