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Abstract

In this paper we critically reexamine some of the long standing beliefs regarding self-similarity
and long range dependence (LRD) on the Internet. Power law tails have been conjectured to be a
cause of LRD. In this paper, we reexamine the claims regarding heavy tails. We first examine the
generative models for the heavy tail phenomena, both in terms of the fragility of some proposed
mechanisms to modeling perturbations as well as the weak statistical evidence for the mechanisms.
Next, we take a look at some of the implications of LRD in key performance aspects of Internet
algorithms. Finally, we present an alternative model explaining the LRD phenomena of Internet
traffic. We argue that the multiple time-scale nature of the generation of traffic and transport
protocols make the observation of LRD inevitable.

1 Introduction
Long range dependence made a dramatic appearance in network traffic modeling, with the publication
of the seminal paper by Leland et al. in 1994 [1]. The paper clearly established that simple Poisson
models inherited from the telephony world were not appropriate for packet traffic, and one needed new
approaches and paradigms for modeling. Network traffic was shown to be “fractal”, or more accurately
long range dependent (LRD), and models and explanations were sought for this surprising behavior.
The paper also postulated that heavy tails (specifically power laws) of some distributions associated
with the generation of traffic were the likely cause of LRD.
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Researchers focused their efforts on detecting power laws, and sure enough, power laws were discov-
ered for web file sizes, web site connectivities, and the router connection degrees, see, for example,
[2, 3, 4, 5]. In this paper we focus on the importance of the power laws in the context of LRD.
These discoveries are important in the study of various protocols and algorithms. For example, the
web file size distribution is important for web-server scheduling. More importantly, these discoveries
motivate us to identify the mechanisms behind the observed power laws and therefore enable us to
design mechanisms to improve the current operational structure of the Internet.
In the past few years there has been a significant amount of research on the issue of power laws.
Various mechanisms have been proposed as the origins of power law phenomena, including reflected
or drifted multiplicative processes, exponentially stopped geometric Brownian motion, self-organized
criticality, preferential growth, and highly optimized tolerance among others [3, 6, 7, 8, 9]. There is
also a group of researchers advocating log-normal rather than power law distribution as the correct
description of the data (see, for example, [10]). The debate has focused on the “tail” behavior since,
for example, the primary difference between a log-normal distribution and a power law distribution
lies in the tail. We believe that this debate on the nature of the tail (power law vs. log-normal) is of
little practical interest or consequence. Expanding on this is the subject of this paper.
Our view on the “tail debate” is as follows: First, we believe that there is never sufficient data to support
any analytical form summarizing the tail behavior and therefore any summary could be misleading and
dangerous.
Second, all mechanisms aimed at explaining the power law or log-normal tail are fragile in the sense
that minor perturbations to their assumptions lead to different analytical forms for the tail. We will
make this concrete in the paper. It is important to understand that such perturbations seem to always
exist in engineering settings. For example, in the case of exponentially stopped Geometric Brownian
motion one needs a stopping time that has an asymptotic exponential tail, which can never be the case
in engineering settings since such a stopping time has to end at some finite value. In general, many
of the conclusions in the above mentioned studies are statements about the asymptotic tail behavior,
which never occur in practice.
Given the difficulty to identify the tail of a distribution from limited data, the fragility of mechanisms
to explain different tails, what is one to do as an engineer? Fortunately, as we will observe in this
paper, there is little evidence that the tail impacts the design of various algorithms and infrastructure
on the Internet. This leads to our next point, which is that engineers should focus on the behavior of
a distribution’s “waist”, that refers to the portion for which we have enough data to summarize the
distributional information, not its “tail”.
In the next part of the paper, we present a generative model for network traffic that does not rely on
heavy tails to produce LRD-like traffic. We argue that the multiple timescale nature of the generation
of traffic, coupled with transport protocol issues, make the appearance of LRD-like behavior inevitable
for Internet traffic.
The rest of the paper is organized as follows. In the next section, we cover some preliminaries regard-
ing the usage of the terms self-similarity and long range dependence in the context of network traffic
modeling and analysis. We present our point of view regarding these definitions. Next, we explore
some of the weaknesses concerning the power-law hypothesis as an explanation for LRD in network
traffic. We then present our generative model for network traffic and the impact of transport protocols
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on its correlation structure. Finally, we present our conclusions.

2 Preliminaries and definitions
We begin by first addressing some semantic issues related to “self-similarity” and LRD. The term
“self-similar” is one which is encountered in almost all recent literature dealing with traffic modeling.
The usage is often ambiguous, confusing and misleading. There are a variety of terms, we present
definitions of some commonly used ones.

Continuous Self-similar process A continuous time process Y (t) is said to be exactly self-similar
with self-similarity parameter H (the Hurst parameter) if it satisfies the following condition

Y (t)
d
= a−HY (at), ∀t ≥ 0, ∀a > 0, 0 < H < 1.

where the equality is in the sense of finite dimensional distributions.

Self-similar time series In the network traffic context, we normally deal with a time series rather
than a continuous process. The definition of self-similarity in that context goes as follows. Let
X = {X(i), i ≥ 1} be a stationary sequence. Let

X(m)(k) = 1/m
km∑

i=(k−1)m+1

X(i), k = 1, 2, . . . ,

be the corresponding aggregated sequence with level of aggregation m obtained by averaging
over non-overlapping blocks of size m. Then for all integers m, the following holds for a self-
similar process

X
d
= m1−HX(m) (1)

Second-order self-similar A stationary sequence is said to be second-order self-similar ifm1−HX(m)

has the same variance and auto-correlation as X for allm.

Asymptotically Second-order self-similar A stationary sequence is said to be asymptotically second-
order self-similar if m1−HX(m) has the same variance and auto-correlation as X as m →
∞. Asymptotically second-order self-similar processes are also called Long Range Dependent
(LRD) processes. This is the property that network traffic exhibits, and “self-similar” is often
used interchangeably with LRD processes which is misleading. An equivalent way to describe
asymptotic second-order self-similarity is in terms of it’s power spectral density ψ

ψX(f) ∼ k|f |1−2H , f → 0 (2)

These processes are also equivalently called 1/f processes.
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Fractional Brownian motion Fractional Brownian motion (fBm) is an example of a self-similar pro-
cess. A process X(t) is said to be an fBm if the increment process is normally distributed with
mean zero and variance t2H . The covariance of the process is described by

E[X(s)X(t)] =
1

2
(s2H + t2H − |s − t|2H)

where H is the self-similarity parameter.

Fractional Gaussian noise Fractional Gaussian noise (fGn) is the increment process of fBm.

Many publications in literature use the term self-similar and long range dependence interchangeably
and loosely and this has led to much confusion. Moreover, the Hurst parameter has also been used as a
parsimonious measure to describe the correlation structure of analyzed data, which is also misleading
since it must assume that the underlying process is self-similar. For Internet traffic in particular, it has
been known for a long time [11] that this is not true since the traffic exhibits strong daily and weekly
patterns, and the behavior has not changed over the years [12]. This can be observed in Figure 1 which
we have reproduced with permission from [12]. Each data point consisted of the traffic load at two
backbone links collected over 5 minute intervals. Daily and weekly patterns are clearly visible. Thus,
Internet traffic is not truly self-similar or LRD, as for long enough timescales the LRD-like behavior
disappears. This is not surprising, as most of the analyses that have been carried out in the context
of LRD have dealt with relatively short duration packet traces (of the order of an hour), before the
periodic behavior sets in. The “LRD” phenomena, thus, extends only over a finite range of timescales,
and we believe it is not appropriate to discuss limiting values as is typically done.
There have been attempts to generalize the concept of the Hurst parameter to models that are not self-
similar but exhibit a sustained correlation structure over a finite range of time-scales. Among these,
the work of [13] introduced the idea of pseudo self-similarity. However, these generalizations, and the
resultant terminology, also suffer pitfalls and will not be used in this paper. Instead, we will turn to the
frequency domain to classify such processes, and use the classical family of 1/f processes [14] as the
basis for our definition.
We define sustained correlation structure in terms of the power spectral density (PSD) ψ(f) of a pro-
cess. A 1/f process is generally defined as a process whose empirical PSD is of the form ψ(f) ≈ k/f ν

for some k > 0 and 0 < ν < 2 over several decades of frequency f . For a long range dependent (LRD)
processes, this relationship is true for arbitrary small frequencies, i.e., there is no low frequency roll-
off. However, there is a class of processes that behave like LRD processes over a certain range of
frequencies and the relationship ψ(f) ≈ k/f ν with ν previously defined, does not hold for some fre-
quency f < F1, but it does hold for all frequencies F1 < f < F2. We say such processes (which are
also 1/f processes) have a sustained correlation structure over a finite range of time-scales, where the
range of time-scales is determined by the frequency interval [F1, F2] and is given by [1/F2, 1/F1]1. A
classical example of such a process is the Markov on-off process. The PSD of this process resembles
that of a Weiner process, with a ν value of 2, bounded by the on-off time periods on the low frequency
1Note that a continuous time process under our definition can have F2 = ∞, but the inertia inherent in any physical

system makes F2 a finite value for any observable process. Moreover, [15] suggests that the small timescale behavior is
closer to Poisson or independent.
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Figure 1: Week long traffic load in bytes at two different links on the Sprint backbone

range (F1). However, unlike the Weiner process its spectrum flattens out for frequencies below F1

and it does not suffer from the infinite variance problem associated with LRD processes. The Markov
on-off process is a well known short range dependent (SRD) process, however one could easily be mis-
led if only a short finite frequency range is observed, as the process can possess sustained correlation
structure over the corresponding time-scales.

3 The fragility and importance of tails

3.1 Terminology
We now turn our attention to the study of power law tails and file size distributions. Before we begin,
we introduce terminology that will be used in the remainder of this section. First, consider two func-
tions f, g : IR+ → IR+. We say that f ∼ g iff limx→∞ f(x)/g(x) = c, 0 < c < ∞. We say that f ≺ g
iff limx→∞ f(x)/g(x) = 0.
The complementary cumulative distribution function (CCDF) of a random variable X is defined as
F̄X(x) = P (X ≥ x). We say that X is characterized by a power law distribution if F̄X(x) ∼ x−α,
where α > 0. We refer to the tail of a power law distribution as power tail (or, heavy tail, long tail).
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The Pareto distribution is the canonical power law distribution. It has probability density function

f(x) =
αbα

xα+1
, x ≥ b, α > 0, b > 0

If α ≤ 1, it has infinite mean; if 1 < α ≤ 2, it has finite mean and infinite variance; if α > 2, both the
mean and variance are finite. The corresponding CCDF is F̄X(x) = (b/x)α.
A positive random variable X is said to be lognormally distributed with two parameters µ and σ2 if
Y = ln X is normally distributed with mean µ and variance σ2. The probability density function ofX
is

fX(x) =

{
1√

2πσx
exp{− (ln x−µ)2

2σ2 } x > 0

0 x ≤ 0

3.2 Mechanisms for Generating Long-tailed Distributions
In this section, we briefly introduce several mechanisms which have been proposed to generate long-
tailed distributions, both lognormal distributions and power law distributions.

3.2.1 Multiplication Mechanism

Consider a sequence of independent and identically distributed positive valued random variables (rvs)
{Xi}∞i=1 with finite first two moments. Let Yn be defined as

Yn = Yn−1Xn, n = 1, . . . (3)

with Y0 = 1. Taking the logarithm of both sides yields

ln Yn =
n∑

i=1

ln Xi, n = 1, . . .

which, by the central limit theorem, converges in distribution to a normally distributed random vari-
able. Consequently, Yn converges in distribution to a lognormally distributed random variable.

3.2.2 Mixture Mechanisms

It is proved in [8] that a Geometric Brownian Motion (GBM) with randomly distributed stopping time
has double-Pareto distribution, although the GBMwith fixed stopping time has lognormal distribution.
Consider a Geometric Brownian Motion (GBM) with initial stateX0:

dX = µXdt + σXdw, (4)

where w is a standard Brownian Motion process. We are interested in the case where µ ≥ σ2/2. At
any fixed time t,

Yt ln(Xt) ∼ N(ln X0 + (µ − σ2/2)t, σ2t)
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Xt assumes a lognormal distribution with probability density function

fXt(x, t) =
1√

2πtσx
exp{−(ln x − lnX0 − (µ − σ2/2)t)2

2σ2t
} (5)

Let T be a nonnegative random variable with density fT (t), t ≥ 0. Reed [8] showed that if T is
exponentially distributed with parameter λ, fT (t) = λe−λt, the observation of the GBM made at time
T , XT X(T ), has a double Pareto distribution

fXT (x) =

∫ ∞

0

λe−λt × fXt(x, t)dt =

{
βθ
β+θ (

x
X0

)θ−1 x < X0

βθ
β+θ (

x
X0

)−β−1 x ≥ X0

(6)

where β and −θ (β, θ > 0) are two roots of the characteristic equation

σ2

2
z2 + (µ − σ2

2
)z − λ = 0

β determines the power coefficient of fXT (x) when x → ∞.

β =

√
(µ − σ2/2)2 + 2σ2λ− (µ − σ2/2)

σ2
(7)

For the discrete case, Mitzenmacher [16] investigate the tail behaviors when the stopping time has geo-
metric distribution. The tail of a geometric mixture of lognormal distributions can be approximated by
a power tail. This is due to the special form of the stopping time distribution, being either exponential
or geometric.

3.2.3 Optimization-based mechanisms.

Constrained optimization has been proposed as a mechanism behind many observed power law like
data sets [3]. The basic idea is that optimization of an expected performance index will decrease the
probabilities of events contributing significantly to such a mean value, and will increase the probabil-
ities of certain rare events correspondingly. This leads to heavy tailed distributions under appropriate
assumptions. For example, it has been shown in a simplified forest fire control model that an optimal
resource allocation indeed leads to power law tail under certain assumptions, which includes that the
form of the pre-optimization distribution tail is known exactly.

3.3 Fragility of Analytical Tail distributions
Analytical forms of the tail behavior are useful for many purposes. However they could be fragile to
the perturbations in the assumptions leading to the tail formulas. We give several examples below to
illustrate this point.
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3.3.1 The multiplication mechanism - fragility of the lognormal distribution.

Recall the multiplication mechanism as defined by (3). For any finite n, the Central Limit theorem
states that log Yn approximately assumes a distribution with both mean and variance proportional to
n. If we choose E[Xn] = 1, then E[ln Xn] < ln E[Xn] = 0 (by Jensen’s inequality). It can be
shown that ln Yn converges to −∞ in probability. Therefore Yn converges to 0 in probability while
limn→∞ E[Yn] = E[Y0].
Suppose that we add a reflection of the form that Yn is never allowed to fall below a threshold ξ > 0.
In other words, we modify the construction to be:

Yn = max{Yn−1Xn, ξ}, n = 1, . . . .

Gabaix, [17], has shown that Yn converges to an random variable with a Pareto distribution as n → ∞.
The smaller the reflection bound ξ, the slower the convergence. With finite stopping time n, the
distribution of Yn is determined by {Y0, ξ, n}. We illustrate the convergence of the distribution of Yn

by the following example: we choose Y0 = 1, ξ = 1/28, Xn = 2mn , where {mn} are i.i.d. random
variables with probability mass function:

P (m = l) =






1
3 l = −1
1
2 l = 0
1
6 l = 1

Let Zn log2(Yn/ξ), then the evolution of Zn is

Zn+1 = max{Zn + mn+1, 0}

Its probability mass function at time n can be solved from the corresponding Markov chain and the
initial conditionZ0 = log2(Y0/ξ). As n → ∞, Z∞ follows a geometric distribution independent of Z0,
and thus Y0 and ξ. Then the distribution of Y∞ has a power law, with ξ as its smallest value. Figure 2
compares CCDFs of the multiplication process with and without reflection at different stopping time:
n = 64, 128, 192, 256,∞. For each stopping time n, the distribution of the multiplication process
without reflection (ξ = 0) can be calculated as follows: letWk log2(Yk), then

Wk+1 = Wk + mk+1 (8)

We can solve for the probability mass function of Wn from the Markov chain defined by (8) and
W0 = log2(Y0). From those figures, we can see for finite stopping time and small reflection bound,
Xn tends to have a tail similar to lognormal, even though in the limitXn will eventually converge to a
power tail.
Therefore, the multiplication process for generating a lognormal distribution is fragile to a perturbation
on the reflection; if ξ = 0, it produces a lognormal distribution and otherwise a Pareto distribution.

3.3.2 The mixture mechanism

We revisit the mechanism described in Section 3.2.2. We have the following result:
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Figure 2: Reflective Multiplication Process with Finite Stopping Times

Theorem 1 Let T be a nonnegative random variable with density fT (t) and letXT denoteX(t) when
t = T . Then

1. t ≺ − ln fT (t) implies that fXT (x) ≺ x−α, ∀α > 1

2. − ln fT (t) ≺ t implies that x−α ≺ fXT (x), ∀α > 1

3. fT (t) ∼ e−λt implies that fXT (x) ∼ x−α for some α determined by λ.

See Appendix A for proof.
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Thus we observe that the distribution of X(T ) is sensitive to the tail behavior of fT (t); if it deviates
from an exponential decay, the power law disappears. This points to the fragility of a power law to the
assumptions regarding the specific mixture.

3.3.3 Fragility of the optimization mechanism

Optimization leads to a power law. While an optimization process does lead to a power law tail with
a suitably chosen objective function and under appropriate assumptions, it appears to be a fragile
mechanism against the assumptions. For example, one needs to know exactly the a priori distribution
model in order to perform the optimization procedure leading to a power law tail. Moreover these a
priori distribution models often need to have infinite tails themselves. These assumptions are difficult
to satisfy in an engineering system.

3.4 Difficulty of Estimating the Tail
The “waist” of the lognormal distribution and the power law distribution often look very similar. When
the variance is large, the body of a lognormal CCDF is very close to a straight line in the log-log plot.
Given a dataset of real web file sizes, we can fit most of the samples into either a lognormal model or
power law model by tuning the parameters. The dramatic difference between these two distributions
lies in the tail of their CCDFs. In a log-log plot, the CCDF of a power law decays with a constant
slope; the CCDF of a lognormal distribution decays with increasing slope. However in any set of
sample data, we only have a small number of samples in the extreme tail, which means it is hard to
determine which one is a better fit.
To further illustrate this difficulty, suppose we have a data-set of file sizes: {Xi, i = 1, 2, · · · , M}. As-
sume all samples in the data-set are i.i.d. samples of some random variable X with CCDF G(x).
We can estimate G(x) by the empirical CCDF Ḡ(x) 1

M

∑M
i=1 I(Xi > x), where I(A) is the

indicator function of set A. Ḡ(x) is an unbiased estimate of G(x) with variance V ar[Ḡ(x)] =
(1 − G(x))G(x)/M . (Note: the variance of the empirical CCDF Ḡ(x) is finite at any point x as
long as X assumes a legitimate distribution, even if the variance of X itself is infinite, as for a Pareto

distribution.) WhenM is large, Ḡ(x) should approach a normal distributionN(G(x),
√

(1−G(x))G(x)
M ).

The α-confidence interval for Ḡ(x) is
[

max
{

0, G(x) + a

√
(1 − G(x))G(x)

M

}
, G(x) + b

√
(1 − G(x))G(x)

M

]

where
∫ b

a e−x2/2dx =
√

2πα and a < 0, b > 0. When we plot the confidence interval in the log-log
plot and let G(x) , 1, the width of the confidence interval is:

W ≈ log(1 +
b√
Mx

) − log(1 +
a√
Mx

)

whereMx is the expectation of the number of files with size greater than x. W keeps increasing when
Mx decreases. W will blow up whenMX ≤ a2.
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Figure 3: Confidence Interval for Pareto and Lognormal Models

We plot the 95% confidence interval in Figure 3 for both the Pareto and the lognormal model used in
[10] to fit Crovella’s web file size data-set [2]. We observe that the confidence intervals of both models
diverge when file sizes grow. At the extreme tail, the two confidence intervals have a large overlap,
which makes it difficult to distinguish them.
This suggests that one really should take into consideration the information richness when investigating
distributional properties based on empirical data. Any inference should be made carefully in regions
where the information is sparse. This point is echoed by Marron et al. in their papers addressing
the variability of the heavy tailed durations in Internet traffic [18, 19]. They divided the tail of the
distribution of Internet flows’ durations into three regions: “extreme tail” – the part of the tail that
is beyond the last data point (thus with no information at all in the data); “far tail” – the part of the
tail where there is some data present, but not enough to reliably understand distributional properties;
and finally, “moderate tail” – the part of tail where the distributional information in the data is “rich”.
It provides a framework for duration distribution analysis in Internet traffic. They also observed the
wobbles in the tail of the duration distribution: the tail index varies and does not stabilize. Their
analysis in [19] generalized the theory for heavy tail durations leading to long range dependence.

3.5 Effect of tail behavior on the design and dimensioning of algorithms and
protocols on the Internet

An important factor to consider in support of our arguments is the effect that the extreme tail of a job
size distribution has on the configuration or design of existing mechanisms on the Internet. There do
not appear to be any design problems or adjustment to existing algorithms or protocols that depend
upon the fact whether a (job size) distribution has infinite variance or not, whether the tail is described
by a power law or not.
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3.5.1 Buffer dimensioning at routers

There have been numerous studies investigating the effects on the queue length of a multiplexer fed by
a heavy-tailed input [20], [21], [22]. All studies show that the tail of the queue length distribution is
significantly heavier for a heavy tailed input as opposed to a light tailed or exponential tailed input. For
a finite buffer, this implies that to maintain performance guarantees in terms of drop probability buffers
of significantly larger sizes would be required with a heavy tailed input as opposed to a light tailed one.
However, all the studies performed assumed an open-loop transport protocol. Files, on the Internet, are
(invariably) transported by TCP which is a closed-loop transport protocol. The arguments fall apart
when we consider the closed loop case, and loss rates in fact do not depend on the tail of the flow
length (file size) distribution. This was highlighted in simulation a study [23]. TCP is configured or
tuned according to fine timescale behavior, of the orders of a typical round trip time. Longer timescale
effects, where the extreme tail of a distribution is likely to show up, are not considered at all in the
design of TCP. Study in [24] also suggests that TCP moderates the effect of heavy tailed file sizes.
Buffer dimensioning on the Internet is done typically in tune with the bandwidth-delay product of the
output link of the router (typical values are 2-8 times bandwidth*delay). A major consideration is to
limit the amount of queueing delay for TCP flows, since the delay affects the overall throughput of a
feedback based flow control protocol like TCP. Hence the buffers are kept relatively small, and these
small buffers then filter out the tail effects. This implies that even if we consider open-loop transport
protocols, that share the link/buffer with TCP, the tail effects of the performance are largely filtered
out due to the small buffers. A recent study [25] also shows that at small time scales network traffic
can be well represented by the Poisson model.

3.5.2 The danger of extrapolation for simulation studies

Extrapolating a distribution without evidence can have serious consequences on simulation studies.
For example, in [26], Gong et al. have developed the MacLaurin series of the average waiting time
in GI/GI/1 queue. Assume the service time Bn can be expressed as θXn, where {Xn} is i.i.d. with
E[Xn] = 1, and {Xn} are independent of θ. Also assume the inter-arrival density f(t) has a strictly
proper rational Laplace transform. Then the average waiting time can be expressed as

E[W ](θ) =
∞∑

i=0

i+1∑

k=1

1

k

f (i)
∗(k−1)(0)

(i + 2)!
E[(X1 + ... + Xk)

i+2]θi+2, (9)

where f (n)
∗k (0) =

∑n−1
i=0 f (i)(0)f (n−1−i)

∗(k−1) (0). The distribution knowledge for the inter-arrival and ser-
vice time enter the average waiting time in different ways. While the inter-arrival density affects the
waiting time mostly through its derivatives around the origin, high moments of the service time are
very important. Long tail distributions are poor models for average waiting time, queue length and
their variance etc. One could fit a set of web-file size data as power law (Pareto) tailed, and give the
distribution to a simulation engineer to estimate queueing delays. The simulation engineer would gen-
erate service times according to the given power law tail and as a consequence, the simulation results
will depend heavily on how long simulation is run, as the longer it runs the greater the possibility of
generating an unrealistically large service time. Simulations with heavy-tailed workloads have been
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investigated in [27]. It has been shown that simulations with power law distributions are difficult to
converge to steady state and even at steady state there is often high variability.

3.6 The Effect of a Power Law Tail on Traffic
In this section we study the impact of file size distributions on the traffic correlation structure. In
particular, we evaluate how the tail of the file size distribution affects the LRD of the resulting net-
work traffic. We perform two tests, one “visual” test, similar to the one shown in [1] that strikingly
established the failure of Poisson modeling, and another more formal, statistical test. Because of its
simplicity, we use the M/G/∞ input process to model web traffic. An M/G/∞ input process b(t)
characterizes the number of busy servers at time t of a discrete time infinite server system fed by Pois-
son arrivals of rate λ and with generic service time σ distributed according to Fσ(x). One can think of
this as modeling the arrival of web sessions according to a Poisson process where each session desires
to transfer a file of size X and is given a rate of one unit per second. TheM/G/∞ input process has
been shown to be versatile and tractable [28]. The auto-covariance of b(t) has been established as:

Γ(h) cov(b(t + h), b(t)) = λ
∞∑

r=h+1

P [σ ≥ r] (10)

To obtain strict sense self-similar traffic, σ must have a power tail, i.e., F̄σ(x) ∝ 1/xα. In order to
evaluate the impact of the tail of F̄σ(x) on the auto-correlation of b(t), we generate two M/G/∞
input processes {b1(t), b2(t)} with two service time distributions: σ1 = .s1/, where random variable
s1 follows a Pareto distribution, with CCDF F̄s1(x) = (c/x)α, x > c, and σ2 = .s2/, where the
distribution of s2 is the mixture of a Pareto body and an exponential tail. The CCDF of s2 is

F̄s2(x) =

{
(c/x)α for c < x < x0

ke−βx for x ≥ x0

where k = cαeβx0/xα
0 . Then the CCDFs of {σ1, σ2} are

P [σ1 ≥ r + 1] = P [s1 > r] =

{
1 0 ≤ r ≤ 0c1
( c

r )
α r ≥ 0c1 + 1

(11)

P [σ2 ≥ r + 1] = P [s2 > r] =






1 0 ≤ r ≤ 0c1
( c

r )
α 0c1 + 1 ≤ r ≤ 0x01

ke−βr r ≥ 0x01 + 1

(12)

The decay in the auto-covariance function for the Pareto-body and exponential tail process is given by

Γ(h) − Γ(h + 1) =






0 0 ≤ h ≤ 0c1
( c

h)α 0c1 + 1 ≤ h ≤ 0x01
he−βh h ≥ 0x01 + 1

(13)
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Thus, we see that the auto-covariance of the process decays polynomially over a finite timescale,
defined exactly by the Pareto body of the file-size distribution. Now, in [29], the authors showed
that a polynomial decaying function over a finite time scale can be fitted with arbitrary accuracy by a
finite mixture of exponentials (the result was for a continuous function rather than the discrete auto-
covariance as in our case, but we can view the continuous function as a limiting case of theM/G/∞
arrival process as the time slot t goes to 0). The wavelet estimator [30] computes the power spectral
density of a process over a finite frequency range, governed by the length of the data and sampling
frequency. Thus, if we applied the wavelet test to a time series (traffic process) generated by a Pareto
body-exponential tail distribution, it would be statistically indistinguishable from a process generated
by a pure Pareto tail distribution over a finite frequency range. This is demonstrated in the following
simulation experiment:
The auto-covariance functions of the M/G/∞ processes {b1(t), b2(t)} can be computed from (10).
For this experiment, we set the arrival rate λ = 1, Pareto parameters α = 1.5, c = 5, the turning point
for the exponential tail x0 = G−1

1 (0.001), and the rate of exponential tail β = 0.1. Figure 4 shows the
two CCDFs in log-log scale.

100 101 102 103 104 105
10−6

10−5

10−4

10−3

10−2

10−1

100

Service Time

C
C

D
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Pareto
Pareto+Exponential

Figure 4: CCDF of the Simulated Service Time

We simulate {b1(t), b2(t)} by generating 500, 000 arrivals for each service time distribution and run-
ning them through the server system. Auto-Covariances of b1(t) and b2(t) are plotted in Figure 5. In
Figure 6 and 7 we show the evolution of bi(t) over different time scales. On time scale k, bi(t) is
averaged in windows of length k

b̄k
i (n ∗ k) =

1

k

k∑

j=1

bi((n − 1) ∗ k + j) i = 1, 2; n = 1, 2, · · ·

We observe that the shapes of both b1(t) and b2(t) are similar on timescales from 1 to 1000, although the
magnitudes decrease with the increase of timescale, which is consistent with the self-similar properties
described in Section 2, such as equation (1) . This suggests that a power tail is not necessary for visual
self-similarity within a finite range. Next we perform the wavelet test to study the impact of the tail.
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Figure 5: Auto-Covariance ofM/G/∞ Process

Energy-scale plot is an efficient tool to identify self-similarity and estimate Hurst parameter for time
series [31]. It plots a time series’ energy {yj}, the logarithm of the variance of the wavelet coefficients,
at different time scales. It has been shown in [32] that yj is a good spectral estimator of the time series
at the frequency determined by time scale j. The confidence interval of the estimates increases as we
increases the scale, as noted in [31]. This is due to the fact that it is essentially a power spectral density
(PSD) estimator, and at higher scales it is estimating low frequency components. The finiteness of the
data-length leads to increasingly inaccurate estimates of low frequency components. The linear region
in the energy-scale plot suggests self-similarity and the slope of the linear region is an estimate of the
Hurst parameter. Figure 8 compares the energy-scale curves of b1(t) and b2(t). As we can observe,
the two plots are indistinguishable from each other up to scale (octave) 11. From Figure 8(a), between
octave 6 and 12, the Hurst parameter of b1(t) can be estimated as H = 1+0.616

2 = 0.808. According to
[33], the H parameter of aM/G/∞ process with Pareto service time can be calculated as H = 3−α

2 ,
where α is the Pareto parameter. We used α = 1.5 to generate b1(t). Therefore the theoretical value
of H is 0.75. Energy-scale plot gives us a good estimate for the H parameter of b1(t). At the same
time, if we look at the Energy-scale plot of b2(t) and estimate its self-similarity index between octave
6 and 12, we will get a similar estimate of H = 1+0.597

2 = 0.798. If we had enough data points to
only reliably estimate up to scale 12, the presence or absence of a heavy tail makes no impact on
our estimate of the self-similarity index. It is the “power waist” that is the crucial factor here. To
distinguish the two processes, one would need enough data-points to obtain reliable estimates of the
PSD at low frequencies where the two processes deviate.
In this section, we have argued against focusing on the tails of file size distributions in order to study,
model and analyze network traffic. We have demonstrated that “waist” behavior is equally, if not
more, important. In the next section, we take it a step further, and develop a Markovian model for
traffic exhibits LRD-like behavior.
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Figure 6: Sample Path of b1(t)
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Figure 7: Sample Path of b2(t)
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Figure 8: Energy-Scale plot ofM/G/∞ Process

4 A Markovian model for LRD traffic
We now present a model, that is Markovian in its components, and yet exhibits LRD-like correlation
and spectral behavior. The model was originally proposed by us in [34]. The crucial observation in
developing the model is that layered nature of generation of traffic has an important role in determining
the correlation structure for individual traffic sources.

4.1 The life of a packet
Let’s consider the transmission of a packet between a sender-receiver pair on a network. The packet
is transmitted when a number of things simultaneously happen. Firstly, a session has to be in progress
between a sender-receiver pair. Next, within the session the particular application (e.g., web browsing)
intermittently requests/supplies data. The sender then starts sending the data, usually according to
a reliable transport protocol like TCP. The release of packets to the network is decided by the flow
and congestion control mechanism. Finally, if the link layer is shared, then packets are allowed on
shared access medium only one at a time. For instance, if the access medium is wireless, then packet
transmission is governed by the 802.11 mechanism, with intermittent transmission (if the channel is
free) and back off stages (if the channel is busy). As is evident, a number of different conditions
have to be true, largely independent of each other, for a packet to appear on the network. Not only
that, the timescales at which the events are occurring are disparate. The transport layer timescale
corresponds to typical round trip times, that are sub-second. Application layer on-off events (e.g.,
browsing, downloading, thinking) are of the order of seconds to minutes, whereas session layer events
last from minutes to hours (e.g., user login sessions). Clearly, one should expect multiple timescale
behavior from network traffic if it was generated using this mechanism. In the following section, we
demonstrate more precisely the multiple timescale nature of the traffic.
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Figure 9: A 3-level Hierarchical On-Off Process

4.2 Hierarchical On-Off Process
Definition 1.1 An n-level Hierarchical on-off process (HOP) Y (t) is defined by

Y (t) = Πn
i=1Xi(t) (14)

where eachXi(t) is an independent on-off process.
Graphically, the process is shown in Figure 9. The system has an output of 1 only when it is in the
leftmost state, i.e. all the on-off processes are on.
We have made no assumption on the nature of the on-off processes asides from independence till now.
Let’s assume the component on-off processes to be Markovian and examine its spectral properties.
Definition 1.2 A Markovian Hierarchical On-Off Process (MHOP) is a HOP where the component
processes are Markovian.
We model our traffic as an aggregation of MHOPs. We also assume in our model that the timescales
of different On-Off processes in an MHOP are disparate. We note that an MHOP can be described by
a Markov process with augmented state. For example, let n = 3. Then pictorially, the Markov chain is
illustrated in Figure 10. The output of the process is 1 only when it’s in the state 111. It could then also
be equivalently thought of as a Hidden Markov Model, where the observation process has 7 Markov
states mapped into one state (“off”) and we directly observe the remaining eighth state (“on”).
We now explain how or why such a process exhibits behavior similar to a 1/f process.
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Figure 10: Markov chain representation of 3-level MHOP

4.3 Spectral Properties of the MHOP
The autocorrelation function of a Markovian on-off process is given by

Rx(τ) = pon(1 − pon)e−(λ+µ)|τ | + p2
on (15)

Where λ is the transition rate from off to on and µ the rate in the reverse direction. They are related
to pon via the relation pon = λ/(µ + λ). For the ith process, denote λi + µi by νi, p2

on by ki1 and
pon(1 − pon) by ki2. The correlation of a product of two independent processes is then be just the
product of the individual correlations, i.e.,

Rx1x2 = Rx1 · Rx2

= (k11 + k12e
−ν1|τ |)(k21 + k22e

−ν2|τ |)

= k11k21 + k12k21e
−ν1|τ | + k11k22e

−ν2|τ | + k12k22e
−(ν1+ν2)|τ |
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The Fourier transform of the autocorrelation function gives the power spectral density, and thus we
have

Sx1x2(f) = k11k21δ(f) +
2k12k21ν1

(2πf)2 + ν2
1

+
2k11k22ν2

(2πf)2 + ν2
2

+
2k12k22(ν1 + ν2)

(2πf)2 + (ν1 + ν2)2

Observe the last two terms in the above expression. They can be rewritten as

(k22)(k11ν2 + k12(ν1 + ν2)) ·
(2πf)2 + (ν1 + ν2)ν2ρ

((2πf)2 + ν2
2)((2πf)2 + (ν2 + ν1)2)

where
ρ =

k11(ν2 + ν1) + k12ν2

k12(ν2 + ν1) + k11ν2

The above corresponds to the power spectral density of the response of a linear time invariant (LTI)
system to white noise excitation. The LTI system has two poles at ν2 and ν1 + ν2 and a zero at√

ν2(ν1 + ν2)ρ that lies between the two poles. In our model, we have assumed that the timescales of
operations of the component processes are well separated. In physical terms, it is reflecting the fact
that different layers like application, transport and link have very different timescales of operations,
ranging from seconds to microseconds. Thus ν2 >> ν1, which implies that both the poles and the zero
are bunched very close together. This causes what is known as a pole-zero cancellation and we can
approximate 2 the system with one having a single pole and no zero. Making that approximation and
placing the resultant pole at ν2, we get the power spectral density of the process as

Sx1x2 ≈ k31δ(f) +
2k32ν1

(2πf)2 + ν2
1

+
2k33ν2

(2πf)2 + ν2
2

(16)

where we have absorbed all the multiplicative constants into new constants k31, k32 and k33. The last
two terms can be rewritten as

2(k32ν1 + k33ν2)
(2πf)2 + ν1ν2ρ

((2πf)2 + ν2
1)((2πf)2 + ν2

1))
(17)

where
ρ =

k32ν2 + k33ν1

k33ν2 + k32ν1

Again viewing it as a linear system, this corresponds to the response of a system that has two poles at
ν1 and ν2 and a zero at

√
ν1ν2ρ that lies between the two poles. Unlike the previous time, this time

the poles and zero are well separated and there is no cancellation. However, the presence of the zero
between the two poles leads to an interesting phenomena, which is the reason why MHOPs exhibit
1/f -like behavior over a certain frequency range. The Bode (double-log) plot for a pole in a linear
system corresponds to a flat line until the corner frequency (the pole) and then a straight line with
a slope of -2 beyond that. The Bode plot of a zero is a flat line till the corner frequency and then
2Note that we are making the approximation to only explain the phenomena, the plots shown subsequently plot the

exact spectrum.

20



10−2 10−1 100 101 102
10−3

10−2

10−1

100

101

102

log(Frequency)

lo
g(

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
)

2−level MHOP            
Self−Similar with H=0.88

Figure 11: Power Spectral Density for 2-level MHOP and Self-Similar Process

a straight line with slope +2 beyond that. The effect of having a zero between two poles is that the
rate of decay of the power spectral density slows down in the frequency region bounded on either
side by the poles. If the zero is in exactly the middle of the two poles on the Bode plot (i.e. is the
geometric mean of the two) then the decay of the power spectral density is like that of a 1/f process,
which is LRD. If the zero shifts to the left or right, then the decay is of the form 1/f γ , γ < 1 and
γ > 1 respectively. This is shown in Figure 11. The two poles and the zero are marked out on the
plot. We chose λ = µ for both levels and ν2 = 10ν1. Between the frequencies bounded by the two
poles, the decay of the power spectral density slows down, and goes down with a slope less than 1.
A reference power spectral density of a self-similar process corresponding to a Hurst parameter of
0.88 is plotted alongside. Clearly, the 2-level MHOP gives a close approximation to the self-similar
process in the frequency range bounded by the poles. Thus, if we have an n-level MHOP, it would
correspond to a cascade of such pole-zero systems and would thus tend to approximate the self-similar
spectrum over the range of ν’s of all the component processes. To illustrate that, we plot a similar
figure (Figure 12) for a 3-level process, again marking out the poles and zeros and plotting a reference
self-similar process. Again, the approximation to the self-similar process over the range of ν’s (poles)
is striking.
The range of self-similar processes that they approximate (via the Hurst parameter), corresponds to
the range observed in network traffic [1], [31]. By changing the value of the on probability p in our
component processes (thereby changing the λ/µ ratio) we can move the zero around between the poles
and have considerable freedom in the range of self-similar slopes that we can approximate. Now that
we have seen the capability of MHOPs to approximate the spectrum of self-similar processes over a
range, the next natural question is that do these processes exhibit the same scaling behavior? We ran
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Figure 12: Power Spectral Density for 3-level MHOP and Self-Similar Process

simulations and present the results in a following section.

4.4 Simulation and Analysis of MHOP
To compare the behavior of MHOP with the Bellcore data set, we generated samples which were equal
in length and with the same mean value as the various traces analyzed in [1], [31]. While it is well
known that self-similar processes can be approximated byMarkovian processes, it is usually associated
with a state explosion problem. In contrast, here we use only three layers for the MHOP model. The
three layers (more appropriately, the timescales) could correspond to the transport, application and
session layers. For the plots shown, we used ν2 = 10ν1 and ν3 = 30ν2. For all the component
processes, we had λ/µ = 0.8. The timescale for ν1 was chosen to be 50 milliseconds. We used an
aggregation of 16 independent such processes3. We’ll look at three plots, proposed previously, which
indicate “self-similarity” at certain timescales. The first one is the so-called “visual-proof”.
This is similar to the plot shown in [1]. We selected random sections of the simulated traffic and the
August Bellcore dataset and plotted them side by side at the same resolution level. Similar to the
graphs plotted in [1], the plots at the highest resolution level have the same random noise term added
to both to avoid the visually jarring quantization effect. This is depicted in Figure 13. Visually at least,
the simulated MHOP process exhibits a similar bursty behavior as the Bellcore dataset over all the
3Note that while different application and session layers might be independent of each other, it is reasonable to expect

some correlation between the transport layer behavior of individual traffic sources. We will address the issue of transport
layer behavior in a later section
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Figure 13: “Visual” proof of Self-similarity
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Figure 14: The variance vs. aggregation level plot for the two processes. One of the plots has been
shifted down for clarity

levels plotted. Note that the length of the publicly available Bellcore August dataset limits the number
of points we can plot at the coarsest resolution level.
The next plot (Figure 14) is the log(Variance) vs. log(aggregation level) plots, again similar to those
in [1]. Again, the behavior is strikingly similar, with the variances for both processes decaying at the
same rate, slower than 1, with increasing aggregation levelm.
The final comparison is done via wavelet analysis described earlier. The variance vs. scale plot for the
two processes is nearly identical. The two time series are of identical length and hence the confidence
intervals for the variances as well as the estimate of the Hurst parameter turn out to be the same. This
is depicted in Figure 15.

4.5 The effect of Transport Protocols
In the preceding section, we developed a generative model for traffic that exhibited LRD-like behavior.
One of the issues with the model is that when we reach lower layers of the hierarchy, e.g., the transport
layer, a Markovian on-off process might be a poor approximation to the actual process, and even
independence between sources is not to be expected. Greater than 90% of all Internet traffic is carried
by TCP, and a simple on-off model to describe the complex behavior of TCP is inadequate. We address
the issue next and demonstrate that the PSD of TCP in fact resembles MHOP.
In [35] we developed a detailed model of the various mechanisms of TCP, and constructed a discrete
time Markov process to describe the behavior of TCP traffic. That model can be used as an abstraction
to replace a fast timescale component of MHOP.
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The power spectral density function of a discrete-time Markov process can be expressed in term of the
eigenvalues of the transition probability matrix. This result was derived in [36] and is given by:

ψ(ω) =
∑

l

βl(1 − λ2
l )

1 − 2λl cos(ωT ) + λ2
l

where ω is the frequency in radians, λl is the l-th eigenvalue of the transition probability matrix of
the Markov chain, and βl is the average power contributed by λl as defined in [36]. The parameter T
represents the time unit of the process, which in the model R, one round trip time.
Note that each eigenvalue λl contributes a component to ψ(ω) over all frequencies. The contribution
of λi is given by:

ψi(ω) = βi(1−λ2
i )

(1−λi)2+4λi sin2(ωT/2)

where the identity cos(ωT ) = 1 − 2 sin2(ωT/2) was applied.
Assuming wT , 1, we have sin(ωT

2 ) ≈ ωT
2 . As detailed in [35], this assumption is valid for frequen-

cies of interest. We then have

ψi(ω) =
βi(1 − λ2

i )/λ0T 2

(
1 − λi√

λiT

)2

+ ω2

Observe that the form of the PSD matches what we had for MHOP, i.e. a summation of first order
terms, each term defined by an eigenvalue of the transition probability matrix. Thus, if the eigenvalues
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are “well separated”, as in MHOP, the process exhibits LRD-like behavior following the analysis
of MHOP. Details of the model and its analysis are available in [35], but essentially the value of
the eigenvalues depends on the loss probability and round trip time experienced by TCP flows. We
reproduce a figure from the paper, that depicts the PSD of the model along with wavelet analysis of
simulated traces of the actual TCP protocol using the ns-2 simulator. Note that the traces are for a
single long-lived flow, so there is no power law distribution involved in the generation of this traffic.
We cannot over emphasize this point, that the LRD-like PSD is completely protocol determined and
file sizes are of little consequence as long as the transfer is long enough to generate data in the right
timescales.
The packet rate time series was generated using the simulation packet trace with a bin size of the
average RTT (R = 100 ms). Figure 16 shows the results of the wavelet analysis of the normalized
time series for different loss probabilities. The solid line indicates the simulation results with a 95%
confidence interval denoted by a vertical line over integer values of the time-scale. The dashed line
is the PSD of the TCP model, and the predicted time-scale marked on the plot depicts the time-scale
corresponding to the last eigenvalue of the TCP model. The time-scale is the model prediction where
the process starts to lose its correlation structure and the PSD/wavelet energy plot is expected to flatten
out.
Our first observation from Figure 16 is that a single TCP flow exhibits sustained correlation over a
finite range of time-scales. We note that this correlation structure is present across all loss probabilities.
Note that as the loss probability increases, the time-scales over which sustained correlation structure
is present increases. For a loss probability of 0.01, the time-scales range from 2R to 64R, while for
a loss probability of 0.3 it ranges from 2R to 1024R, which corresponds to a range from 0.2 to 102.4
seconds (almost two minutes). The wavelet plot then flattens out at higher timescales. Coupled with
higher layers of the protocol stack and utilizing the MHOP model, it is not surprising that Internet
traffic exhibits LRD-like behavior regardless of the tail behavior of the distribution of the data being
transferred.

5 Conclusions
In this paper we have argued that the focus on power law tails in the Internet is misguided. First, many
mechanisms have been proposed to explain where they come from. However, they are all very fragile,
sensitive to the underlying assumptions. Second, it is extremely difficult if not impossible to statis-
tically characterize a distribution tail based on a finite amount of data. Third, in many applications,
the tail plays little role in determining design and performance. Instead, it is the power “waist” that
does. The latter was illustrated through a simple example. Multiplicative model may be the source for
the “power law” waist that has been observed. This model suggests that hierarchies and proportional
growth could be the mechanisms behind the multiplications in the model, and in-homogeneity of the
hierarchies and the growth could be handled by appropriate clustering. One important feature of the
multiplicative model is that it is similar to the central limit theorem based models where many “small”
random effects add to the very robust Gaussian “body”. In our case we would say that the observed
power law or log-normal “waist” is due to many “small” random effects multiplied together. To this
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Figure 16: Wavelet analysis of simulation traces at differing loss levels and comparison with a TCP
model

end we would also like to point out that the Gaussian distribution in engineering practice refers to its
bell, and not the tail. The latter is also for the mathematical convenience and is as unrealistic as any
other tail.
In the second half of the paper, we have presented alternate models that explain the LRD-like behavior
of Internet traffic. We argue that the generation mechanism of traffic is inherently multiple timescale,
and hence sustained correlations are inevitable. Coupled with that is the fact that TCP, the protocol
that carries upward of 90% of Internet traffic, generates sustained correlations on its own.
Our point in this paper is that while limiting distributions of filesizes (e.g., power-law or lognor-
mal tails) offer a mathematically convenient and elegant explanation for LRD, they are fraught with
problems. The effort, instead, should be on studying the complex nature of generation of traffic and
understanding its implications.
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A Proof of Theorem 1
From equation (5), we have

fXt(x, t) ≺ fXt(x, s) ≺ x−β; ∀β ≥ 0, 0 ≤ t < s (18)

and
∂

∂t
fXt(x, t) =

fXt(x, t)

2σ2
(
(ln x − ln X0)2

t2
− σ2

t
− (µ − σ2/2)2)

∀T0 > 0, if (ln x − ln X0) > max{
√

2σ2T0,
√

2T0(µ − σ2/2)}, then ∂
∂tfXt(x, t) > 0 for t ∈ [0, T0].

Thus for any distribution fT (t),
∫ T0

0

fT (t) × fXt(x, t)dt <

∫ T0

0

fT (t) × fXT0
(x, T0)dt < fXT0

(x, T0) ≺ x−β ∀β ≥ 0 (19)

(1) ∀α > 1, in equation (7), we can choose λ = λ1, s.t. β1 > α− 1. Then
∫ ∞

0

λ1e
−λ1t × fXt(x, t)dt =

β1θ

β1 + θ
(

x

X0
)−β1−1 ≺ x−α

t ≺ − ln fT (t) ⇒ ∃T0, s.t. fT (t) < λ1e−λ1t, for t > T0.
∫ ∞

T0

fT (t) × fXt(x, t)dt <

∫ ∞

0

λ1e
−λ1t × fXt(x, t)dt ≺ x−α (20)
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From (19) and (20), we have

fXT (x) =

∫ T0

0

fT (t) × fXt(x, t)dt +

∫ ∞

T0

fT (t) × fXt(x, t)dt ≺ x−α

(2) ∀α > 1, in equation (7), we can choose λ = λ2, s.t. β2 < α− 1. Thus

x−α ≺
∫ ∞

0

λ2e
−λ2t × fXt(x, t)dt =

β2θ

β2 + θ
(

x

X0
)−β2−1 (21)

− ln fT (t) ≺ t ⇒ ∃T0, s.t. fT (t) > λ2e−λ2t, for t > T0.
From equation (19), ∫ T0

0

λ2e
−λ2t × fXt(x, t)dt ≺ x−α

together with (21)

x−α ≺
∫ ∞

T0

λ2e
−λ2t × fXt(x, t)dt

Finally,

fXT (x) >

∫ ∞

T0

fT (t) × fXt(x, t)dt >

∫ ∞

T0

λ2e
−λ2t × fXt(x, t)dt

Therefore, x−α ≺ fXT (x)

(3) From equation (6), ∫ ∞

0

c1e
−λt × fXt(x)dt = c2x

−α (22)

Given limt→∞
fT (t)

c1e−λt = 1, ∀ε > 0, ∃T (ε) s.t. if t ≥ T (ε),

(1 − ε)c1e
−λt ≤ fT (t) ≤ (1 + ε)c1e

−λt (23)

From (19),
∫ T (ε)
0 fT (t) × fXt(x)dt ≺ x−α, therefore ∃X1(ε), s.t. for x > X1(ε),

∣∣∣∣
∫ T (ε)

0

fT (t) × fXt(x)dt

∣∣∣∣≤ εx−α (24)

Likewise,
∫ T (ε)
0 c1e−λt × fXt(x)dt ≺ x−α, ∃X2(ε), s.t. for x > X2(ε),

∣∣∣∣
∫ T (ε)

0

c1e
−λt × fXt(x)dt

∣∣∣∣≤ εx−α (25)
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Let X(ε) = max{X1(ε), X2(ε)}, for x > X(ε),
∣∣∣∣

∫ ∞
0 fT (t) × fXt(x)dt

x−α
− c2

∣∣∣∣

≤
∣∣∣∣

∫ ∞
T (ε) fT (t) × fXt(x)dt

x−α
− c2

∣∣∣∣+
∣∣∣∣

∫ T (ε)

0 fT (t) × fXt(x)dt

x−α

∣∣∣∣

≤
∣∣∣∣

∫ ∞
T (ε) c1e−λt × fXt(x)dt

x−α
− c2

∣∣∣∣+ε×
∣∣∣∣

∫ ∞
T (ε) c1e−λt × fXt(x)dt

x−α

∣∣∣∣+ε by (23) and (24)

≤
∣∣∣∣

∫ T (ε)
0 c1e−λt × fXt(x)dt

x−α

∣∣∣∣+ε× c2 + ε by (22)

≤ε× (c2 + 2) by (25)

In other words, ∀ε > 0, ∃X(ε), s.t. for x > X(ε),
∣∣∣∣

∫ ∞
0 fT (t) × fXt(x)dt

x−α
− c2

∣∣∣∣≤ ε× (c2 + 2),

so we have

lim
x→∞

∫ ∞
0 fT (t) × fXt(x)dt

x−α
= c2
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