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Abstract— Managing the performance of multiple-tiered Web
sites under high client loads is a critical problem with the advent
of dynamic content and database-driven servers on the Internet.
This paper presents a control-theoretic approach for admission
control in multi-tiered Web sites that both prevents overload and
enforces absolute client response times, while still maintaining
high throughput under load. We use classical control theoretic
techniques to design a Proportional Integral (PI) controller for
admission control of client HTTP requests. In addition, we
present a processor-sharing model that is used to make the
controller self-tuning, so that no parameter setting is required
beyond a target response time.

Our controller is implemented as a proxy, called Yaksha, which
operates by taking simple external measurements of the client
response times. Our design is non-invasive and requires minimal
operator intervention. We evaluate our techniques experimentally
using a 3-tiered dynamic content Web site as a testbed. Using the
industry standard TPC-W client workload generator, we study
the performance of the PI admission controller with extensive
experiments. We show that the controller effectively bounds
the response times of requests for dynamic content while still
maintaining high throughput levels, even when the client request
rate is many times that of the server’s maximum processing rate.
We demonstrate the effectiveness of our self-tuning mechanism,
showing that it responds and adapts smoothly to changes in the
workload.

I. INTRODUCTION

E-Commerce is rapidly becoming an everyday activity as
consumers gain familiarity with shopping on the Internet [1].
Online merchants desire to maintain a continuous, consistent
presence on the Web in order to keep customers satisfied
and maximize both revenues and returns on their hardware
and software investments. The infrastructure behind such E-
Commerce Web sites is typically composed of a three-tiered
architecture, consisting of a front-end Web server, an applica-
tion server and a back-end database.

Two problems are frequently encountered with deploying
such Web sites. First is overload, where the volume of requests
for transactions at a site exceeds the site’s capacity for serving
them and renders the site unusable, frequently referred to as
the “slashdot effect.” Named after the Web site slashdot.org,
this occurs when a huge user base is referred to a previously
undiscovered Web site, which in turn is overwhelmed by the
sudden volume and crashes. Second is responsiveness, where
the lack of adequate response time leads to lowered usage of

a site, and subsequently, reduced revenues. This is sometimes
called the “abandoned shopping cart” problem. Both issues
are instances of a larger problem: given the unpredictability of
Web accesses, how can a e-Commerce site provide responsive
service to clients, even when user demand far outstrips the
capacity of the site?

This paper presents a method for controlling multiple-tiered
Web site performance, both by bounding response times and
preventing overload. Our approach uses a self-tuning propor-
tional integral (PI) controller for admission control, enabling
overload protection and bounding response time based on an
administrator-based policy (e.g., 90 percent of the requests
should see a response time of less than 100 milliseconds). By
using a self-tuning controller, our system automatically adapts
to variation in load and requires only two parameter settings.

Our approach is distinguished through several features:

• self-tuning: By utilizing a self-tuning controller, our ap-
proach does not require parameterization of controller
weights. The only input required is a desired response
time. The remainder of the discovery process is automatic
and the system can simply be placed in front of the site.

• multiple tiers: Our proposal works with complete Web
sites consisting of multiple tiers, not just the Web server.

• transparent: Our method works with existing N-tiered
Web sites, requiring no intervention or modifications to
the Web server, application server, or database.

• architecture-independent: Related to the transparency is-
sue above, many approaches are tied to the process-
based server model used by Apache 1.3. Our approach
works with any server model: process-based, thread-
based, event-based, and even kernel-based.

Other proposals have needed extensive modifications to
the operating system or a complete re-write of the server.
Our method requires no changes to the operating system,
Web server, application server or database. This allows rapid
deployment and use of pre-existing components.

We present an implementation of our controller in a proxy,
called Yaksha1. We evaluate our system with standard software
components used in multiple-tiered e-Commerce Web sites,
namely Linux, Apache, Tomcat, and MySQL. We drive the

1Yakshas are the guardians of wealth in the Hindu pantheon.



system using the industry-standard TPC-W benchmark, and
demonstrate that Yaksha achieves both stable behavior during
overload and bounded response times. Our results show that
a properly designed and implemented controller be used in a
complex environment, such as multiply-tiered Web sites.

The remainder of this paper is organized as follows: Section
II overviews related work and contrasts our approach to
previous proposals. Section III provides the formal description
for our controller. Section IV describes our controller imple-
mentation, experimental testbed, and methodology. Section V
shows our experimental results in detail. Finally, Section VI
summarizes our conclusions and offers possible directions for
future work.

II. BACKGROUND

In this section, we first provide a survey of previous work
on admission control and then contrast those works with our
approach.

A. Previous Work

Much related work has been done in the areas of overload
control, admission control, service differentiation and quality
of service (QoS) for Web servers. Due to space limitations,
we provide a very brief overview here.

Priority and Service Differentiation: Early works focused
simply on differentiating service to different classes of cus-
tomers based on priority [2], [3]. Here the idea was simply
to provide better service to higher-priority customers, with-
out attempting to provide either relative or absolute service
guarantees. Almeida et al. [2] compare user-level and kernel-
level request scheduling policies, showing that high-priority
requests can receive improved response times at the expense
of lower-priority requests. Eggert and Heidemann [3] compare
three application-level mechanisms for providing service dif-
ferentiation. More recently, McWherter et al. [4] study this
issue in the context of databases.

Kernel Mechanisms: Other research has investigated admis-
sion control, sometimes referred to as overload control. Mogul
and Ramakrishnan [5] demonstrate how packet arrivals in
software-based routers could create a scenario called “receive
livelock,” a form of overload. They show how a polling-based
approach, instead of an interrupt-driven one, can eliminate this
problem. Druschel and Banga [6] show a similar concept in the
context of Web servers, demonstrating how a network subsys-
tem architecture that isolates processing costs could provide
improved stability and throughput under high loads. Voigt et
al. [7] study different kernel and user-space mechanisms for
admission control and service differentiation in overloaded
Web servers. They evaluate their proposed mechanisms in AIX
with a static content workload and find that the kernel-based
mechanisms provide better performance.

Combining Admission Control with Differentiation: More
recent approaches seek to combine differentiated service with
admission control. Bhatti and Friedrich [8] proposed an archi-
tecture for Web servers to provide QoS to differentiated clients,
incorporating request classification, admission control, and

request scheduling. They provide an example implementation
using Apache. While they show how premium clients receive
preferential service over basic clients, they do not experi-
mentally demonstrate sustained throughput in the presence of
overload when premium requests outstrip capacity. In addition,
their implementation and evaluation ignore dynamic content.

Li and Jamin [9] provide an algorithm for allocating dif-
ferentiated bandwidth to clients in an admission-controlled
Web server based on Apache. They evaluate their algorithm
using Apache with static content. Bhoj et al. [10] present
the Web2K mechanism, which prioritizes requests into two
classes: premium and basic. Connection requests are sorted
into two different request queues, and admission control is
performed using two metrics: the accept queue length and
measurement-based predictions of arrival and service rates
from that class. The authors evaluate their system using
Apache, and show how high priority requests maintain stable
response times even in the presence of severe overload. They
emulate the use of dynamic content, using a very simple
model of execution costs where a CGI script runs up to 25
milliseconds.

Pradhan et al. [11] present an observation-based framework
for “self-managing” Web servers that adapt to changing work-
loads while maintaining QoS requirements of different classes.
Their evaluation is done primarily using static workloads,
although they also examine a synthetic CGI script that blocks
for a random amount of time. Kanodia and Knightly [12]
propose a mechanism that integrates latency targets with
admission control. Using both request and service statistical
envelopes, the mechanism improves the percentage of requests
that meet their QoS delay requirements. The authors evaluate
their scheme via trace-driven simulation.

Control-Theoretic Approaches: Several researchers have
examined how control theory can be applied in the context of
Web servers. Lu et al. [13] present a control-theoretic approach
to provide guaranteed relative delays between different service
classes. Abdelzaher et al. [14] propose using classical control
theory for Web servers to provide performance isolation (i.e.,
isolating different virtualized servers from each other), service
differentiation, and QoS adaptation (similar to service degrada-
tion). They provide an implementation using the Apache Web
server. Diao et al. [15], [16] advocate a similar approach, using
control theory to maintain Apache’s KeepAlive and Max-
Client parameters, showing quick convergence and stability.
However, these parameters do not directly address metrics of
interest to the Web site, such as response time or throughput.
The authors also limit their attention to static content. Lassettre
et al. [17] apply control theory to the provisioning problem
in the application server tier. They use a control-theoretic
approach for dynamically swapping application servers in and
out in order to meet a response time target. They do not
address admission control, however, for when requests exceed
available resources.

Admission Control for Dynamic Content: Welsh and Culler
[18] describe an adaptive approach to overload control in the
context of the SEDA [19] Web server. SEDA decomposes



Internet services into multiple stages, each one of which
can perform admission control. By monitoring the response
time through a stage, each stage can enforce a targeted 90th-
percentile response time. Admission is controlled by using
an additive-increase multiplicative decrease (AIMD) control
algorithm that adapts the rate at which tokens are generated
for a token bucket traffic shaper. The control parameters are
set by hand after running tests against the system. Their
evaluation includes dynamic content in the form of a web-
based email service. Elnikety et al. [20] demonstrate a method
for admission control in 3-tiered E-Commerce Web sites. Their
approach requires an administrative setup phase in order to
determine the capacity of the system, which is then fed back
into the admission control mechanism.

Other Issues in Admission Control: Cherkasova and Phaal
[21], [22] identify that users interact with Web sites in sessions
comprised of multiple requests, and thus that performing
admission control on requests in isolation can cause sessions
to be aborted unnecessarily. They show that by considering
session characteristics in admission control, rather than just
individual requests, fewer sessions will be rejected. Chen
et al. [23] propose a very similar concept. Schroeder and
Harchol-Balter [24] show how preferential scheduling can be
used to improve the response time of static content requests
during transient overload conditions.

B. Contrasts to Our Approach

Our approach differs from the above works in many re-
spects; we broadly outline them here based on several cat-
egories. The full description of our design is presented in
Section III.

Self-Tuning: Unlike other control-theoretic approaches to
admission control [14], [15], [16], [13] Yaksha utilizes a self-
tuning proportional integral (PI) controller. The self-tuning
and design is done based on the queuing model abstraction
that we use in our paper. While approaches like system
identification can lead to models that might be more accurate
on a per-system basis, our approach provides a general and
simple model and is not specific to the details of the system
architecture, e.g., the particular web-server, application server
or database server employed. This eliminates the requirement
for off-line measurements and parameter setting that is present
in these other approaches. By minimizing the learning aspects
of the controller, we aim to design a system that is portable
across different architectures of 3-tiered websites. Typically
the assumption is made that service costs are linear in pro-
portion to the size of the response generated. As will be seen,
dynamic content service times have much greater variability
which has no relation to the size of the response generated.
Using a self-tuning controller makes our system more robust
to variation and unpredictability in the workload.

Multiple Tiers and Dynamic Content: Most of the above
work has only addressed static content, a much simpler work-
load, whereas our approach is fundamentally concerned with
multiple-tiered Web sites that include dynamic content and
back-end databases. Of the few that do considered dynamic

content, two use a simple linear approximation of the service
cost in the form of a dummy CGI script [10], [11]. We use
a full implementation of the dynamic functionality and incur
actual execution costs, which can vary by orders of magnitude.

Relatively few works are closely related to ours in terms of
being implemented (as opposed to modeled or simulated) and
addressing dynamic content: Neptune [25], Aron’s resource
management framework [26], SEDA [18], [19], and Gate-
keeper [20]. Neptune and Aron’s framework both use search
as a dynamic workload, whereas we use a transaction-oriented
e-Commerce workload. SEDA’s evaluation includes dynamic
content in the form of a custom email service driven by a
home-grown workload generator. Our evaluation is performed
using generic software components and driven using TPC-W,
an industry-standard e-Commerce workload. While SEDA’s
approach is perhaps more general, Yaksha has the advantage
that it is completely transparent to the Web site and is thus
more easily deployable. In addition, SEDA currently requires
a complex administrator-driven discovery process to determine
controller weights. Gatekeeper similarly requires a configura-
tion stage to determine the capacity of the system. Yaksha, on
the other hand, requires much less parameterization. Instead,
it is driven by a self-tuning controller and is thus more robust
to variation in load. In addition, Gatekeeper has only been
evaluated with a database, whereas our system protects all
three tiers.

Transparency and Architecture-Independence: Virtually all
the above approaches require invasive surgery to the affected
systems. Many modify Apache [14], [10], [8], [27], [15], [16],
[3], [9], [13], [11] or require a completely new architecture
[25], [18]. Our approach preserves investment in pre-existing
infrastructure, and allows for rapid deployment. In addition,
Yaksha’s architecture-independence allows use with servers
utilizing any concurrency architecture. For example, many
previous works are based on Apache 1.3, which is process
based, yet Apache 2.0 is now thread-based for performance.
IIS is also thread-based, and many sites use Tux [28], a kernel-
based server, to handle static content. As a transparent reverse
proxy, Yaksha can inter-operate with any of these architectures.

Other Contrasts: Finally, many previous works have at-
tempted to identify overload through indirect measurements
such as queue length or bandwidth utilization. Others have
taken the direct indicator of response time, but considered
only relative performance guarantees rather than absolute
guarantees. Yaksha addresses the concept of load directly by
dropping requests.

III. MODELING AND DESIGN

In this section we present the system model and design
procedure for Yaksha. Our abstraction for the E-commerce
server is an M/GI/1 Processor Sharing queue. This abstrac-
tion encapsulates everything that sits behind Yaksha.

We begin by introducing some notations. We denote by
T (x) the mean response time of a job whose job size (or
service time) is x. The job size in an M/GI/1 is an i.i.d.
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random variable, denoted by X , whose probability distribution
function is F (x), with a mean E[X].
It is well known that

TPS(x) =
x

1 − ρ
. (1)

where ρ is the load of the queue. The mean response time
for all jobs, TRT , is simply

TRT =
∫ ∞

0

TPS(t)dF (t),=
E[X]
1 − ρ

(2)

The task of Yaksha is to control TRT , by controlling an
acceptance probability pa of requests to the system. We model
the feedback control system using a fluid model. Fluid models
have been very successful in the analysis and controller design
for network flows [29], [30]. Similar to their model, we work
with the mean value of the response time as the variable to
control. One important difference between their approach and
our approach is that while they were controlling the mean
queue length, that mean queue length has also been shown
[31], [32] to be the deterministic fluid limit (as opposed to a
mean valued fluid model) of the sample path as the number
of flows is scaled. Thus, the queue and the controller in their
model deals effectively with a sample path quantity directly.
The difficulty in our case is that the mean value is not a
fluid limit, and we don’t have access to the mean value
directly. Instead, we use smoothed, measured values of the
response time as our estimate of the mean. This smoothing
and averaging is assumed to be part of the system, and we do
not have a separate low pass filter to model this aspect of the
system.

Returning to the system model, it is depicted in Figure 1.
Requests arrive to Yaksha with a mean rate λ(t), and get
modulated with an admission probability pa(t), with the Web
server observing a mean arrival rate of pa(t) ·λ(t). The mean
response time is then given by

TRT (t) =
E[X]

1 − pa(t)λ(t)E[X]

Similar to previous approaches, we assume that there is an
operating point p0 of the system, that achieves TRT = Tref

for a given λ, where Tref is our desired response time. We
then linearize the response function about the operating point,
and work with a small signal model. The linearization is a
simple gain function, which is the derivative of the expression
for the mean response time with respect to pa, evaluated at
p0, i.e.,

δTRT

δp

λ0T 2re f

sKp+Ki
s

Web Site

PI Controller

Fig. 2. Small signal model for the feedback loop

.

∂TRT

∂pa
= E[X]

λ0E[X]
(1 − paλE[X])2

|pa=p0

= λ0T
2
ref

This yields

˙δTRT (t) = λ0T
2
ref

˙δpa(t)

Where

δTRT
.= TRT − Tref ;

δpa
.= pa − p0

The linearized closed loop system model is then depicted
in Figure 2. We control δTRT , the deviation of TRT from the
equilibrium value, and our feedback signal is δpa, again the
deviation of pa from the equilibrium value p0. The feedback
signal can be provided by any controller, our choice for this
problems is the PI controller [33]. We use integral control since
we desire zero steady state error in the response time. A pure
proportional controller is unable to control the response time
to a specific value. The PI controller has a transfer function
given by

PI(s) = Kp +
Ki

s

in the frequency domain. A PI controller has the desirable
property that the steady state error of the controller is 0, in
other words it can control the input to any desired value. Care
must be taken however, to ensure that the controller is stable.
We briefly outline our design process. The closed loop transfer
function of the system, C(s) is given by

C(s) =
λ0T

2
refPI(s)

1 + λ0T 2
refPI(s)

We first assume a nominal value of E[X], the mean job size
of the workload distribution. As it will become clear in the
self-tuning section, the exact value is not important. Using
the relationship λE[X] = ρ, given a value of E[X], we can



compute λ0 from Equation (2). The design algorithm is simple:
we first fix the time constant of the controller to 10 seconds,
that fixes the closed loop pole at s = -0.1 (i.e., the denominator
of the closed loop transfer function evaluates to 0 at s =
0.1). Next we provide a phase margin of 45, see [33] for
detailed explanations, but in a nutshell phase margin reflects
the relative stability of the controller: the amount of deviation
the controller can tolerate in the system parameters before
instability sets in. Note here instability refers to oscillatory
behavior, rather than unbounded growth of any queue.

The two design constraints together fix the parameters of the
base controller. We keep a large phase margin because we do
not want our controller to be too aggressive. The response time
samples that we obtain from the system are smoothed values,
but still they are not true means. Hence we want the controller
to operate at a slower time scale to allow the response time to
converge to a mean. The design process yields a design in the
continuous domain, however it must be implemented digitally.
Our nominal loop transfer function is

L(s) = Kg(Kp +
Ki

s
) (3)

where Kg is given by Kg = λ0T
2
ref

Choosing a phase-margin of -135 degrees gives us the
following relation:

|Kp| = |Ki

ω
| (4)

At the natural frequency of the system ωg , using |L(jω)| =
1 gives us

Kg

√
K2

p +
K2

i

ω2
g

= 1 (5)

Using Equations 4 and 5 at ω = ωg , we get the following
equtions for the design parameters.

Kp =
1√
2Kg

(6)

Ki = −POLE ∗ (Kp +
1

Kg
) (7)

where POLE is the pole value we choose.
After using bilinear transform [34] to convert Equation 3

into digital form, we get the following equations for A and B.

A = Kp +
Ki

2fT
(8)

B = Kp − Ki

2fT
(9)

and the controller executes the following update mechanism
at fixed intervals:

pd := A ∗ (T − Tref ) − B ∗ (Told − Tref ) + pold

pold := pd

Told := T

Here pd is the drop probability, which is simply 1−pa where
pa is the admission probability. T is the smoothed averaged

response time as measured at the proxy. A and B are the
design parameters of the PI controller.

Next we outline the self-tuning aspects of the controller.

A. Self-tuning of the PI controller

The parameters of our controller are decided by the place-
ment of the closed loop pole and our specification of the
phase margin. Both of these quantities depend on the open
loop transfer function of the plant. Earlier we had derived
the open loop transfer function to be a pure gain value, the
partial derivative of the response time function. We want
the controller to be robust to variations in the workload
distribution. Apriori we have no knowledge of the mix of
servlets in the request distribution, the arrival rate of individual
requests and indeed the operating point of the system. In
other words, we do not know either F (X) or the arrival λ,
which makes the design task difficult. What we do know, is
that F (X) is a weighted sum of job sizes for the individual
servlets. The weights are decided by the rate at which requests
for individual servlets arrive. If the workload changes, λ0

changes. We use this fact to estimate the system parameters
at the server in the following manner. Recall that we have

Kg = λ0T
2
ref

where we assume a nominal λ0 in the design process.
However, the effective arrival rate of jobs that the system
observes is paλ, where pa is the admission probability that
the controller computes. Hence, by observing pa, assuming
pa converges, we can estimate the true arrival rate λ.

Now if the workload changes, the controller needs to self-

tune. To accomplish this, we set Kg =
λ0T 2

ref

pa
, where λ0 is

the nominal arrival rate we used in the design process. Then
successively using Equations 6, 7, 8 9, we get the new values
of A and B. The controller keeps a running average of pa as

pa = αpa + (1 − α)(1 − pd) (10)

where α > 0 is a constant that operates on a much slower
time scale. The moving average and adaptation is done over 10
seconds to allow pa to converge. With the technique outlined
above, we come up with a lightweight, self-tuning controller.

IV. IMPLEMENTATION

In this section we describe the experimental testbed we use,
the experimental methodology and the hardware and software
environment.

A. Controller Implementation

We use tinyproxy v1.6.1 [35] and modify it to act as a
controller. Tinyproxy is a lightweight HTTP proxy which
is much faster and consumes fewer resources than regular
HTTP proxies. All HTTP requests from the client are directed
towards this proxy, which then relays them to the Web and
application server after the control decision. All responses
from the Web and application server to the client also go
through the proxy. Figure 3 displays the baseline measurement
of response times of the various servlets under no load.
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We inserted a controller module in tinyproxy, which distin-
guishes different types of servlet queries. The controller also
measures the response times of each of the HTTP requests
which is then used as feedback for the control loop.

B. Hardware and Software

The overall structure of our testbed is shown in Figure 4. It
consists of five machines. Three of them are used as clients to
generate HTTP requests. One machine is used as the Web and
application server and another hosts the database server. The
client machines drive the system with a workload generator
which is described in more detail in section IV-D below.

Each machine is a 2.8 GHz Intel Xeon, 1 GB RAM PC with
Gigabit Ethernet connected point-to-point full duplex with the
switch. All machines run RedHat Linux kernel 2.4.20. We use
Jakarta Tomcat v4.1.27 [36] as the Web and application server
and MySQL v4.1.0-max-alpha [37] as the database server.

The controller embedded inside tinyproxy resides on the
machine hosting the Web and application server.

C. TPC-W Benchmark

When evaluating Web server performance, a workload gen-
erator is typically used to drive the system in a hopefully
representative manner. We use what is effectively the current
standard workload generator for e-Commerce sites, TPC-
W [38], [39]. The TPC-W benchmark from the Transaction
Processing Council (TPC) is a transactional Web benchmark
specifically designed for evaluating e-commerce systems. It

is meant to model a “typical” e-commerce site, in the form
of an online bookstore. The TPC-W specification requires 14
different interactions, each of which must be invoked with a
particular frequency. More detail about TPC-W can be found
in [38]. The database contains multiple tables that are meant
to represent the data needed to maintain a real site, including
customers, addresses, orders, credit information, individual
items, authors, and countries. We scaled the TPC-W database
to 10,000 items and 288,000 customers, which corresponds to
350 MB of data.

TPC provides a specification but not source code. We
thus use the freely available Java TPC-W implementation
developed by the PHARM research group at the University
of Wisconsin-Madison [40]. The implementation captures all
the functionality required by the TPC-W specification that
affects performance and is consistent with the official TPC-
W specification version 1.0.1.

D. Client Workload Generator

The Java TPC-W implementation includes a workload gen-
erator, which is a standard closed-loop session-oriented client
emulator. Each emulated browser represents a virtual user.
The amount of load generated is determined by the number
of emulated browsers. Each client opens a session to the
front-end Web server using a persistent HTTP connection,
issues a series of requests for the duration of the session,
and then closes the connection. Within each session, the client
repeatedly makes a request, parses the server’s response, waits
a variable amount of time, and then follows a link embedded
in the response. The server’s response is a Web page consisting
of the answer to the queries in the request, and contains links
to the possible set of pages that the client can transition to from
this response. A finite-state Markov model is used to determine
which subsequent link from the response should be followed,
using a transition matrix with probabilities attached to each
transition from one state to another. Each state in the transition
matrix corresponds to a particular interaction defined in the
TPC-W specification. The variable amount of time between
requests is called the think time, and is intended to emulate
a real client who takes some period of time before clicking
on the next request. Think time is exponentially distributed
with a mean of 0.7 seconds and bounded at a maximum of 7



seconds.

V. EXPERIMENTAL RESULTS

In this section we present detailed experimental results
to show the effectiveness of the PI controller in controlling
response times while maintaining high levels of throughput.

A. Controller Overhead

The Yaksha controller is implemented as an HTTP proxy.
All HTTP requests from the client are handled by this proxy
which acts as a relay between the clients and the Web and
application server. We show that adding this proxy component
to the overall system has negligible overheads.

Figure 5 shows the variation of average response times with
increasing load when clients connect directly to the Web and
application server. The experiment is repeated but now with
the proxy relaying all connections (i.e., no controller is used
and no requests are dropped). The nearly identical response
time curves show that adding the proxy mechanism does
not have any significant impact on the system performance.
Note that the response times we plot here are measured at
the client, and they should not be directly compared to the
response times measured at the proxy that we plot later on
in this section. Response times at the client have additional
overheads, including network delays and client processing
delays, e.g., Java virtual machine overheads.

From now on, for the rest of the experiments we use
the Yaksha controller embedded in tinyproxy for admission
control and call this the “controlled” experiment. Furthermore
for comparing with the situation when there is no admission
controller, we slightly modify the same Yaksha controller so
that it always accepts new connections. We use this modified
controller as a “Null Controller” and call the experiments
“uncontrolled”. This allows us to measure response time and
throughput from the same perspective, namely, at the proxy.
Figure 6 is a validation of the processor sharing abstraction
that we employ for our design. Recall that

TPS(X) =
E[X]
1 − ρ

(11)

where ρ is λ
µ , with λ being the job arrival rate and µ the

capacity of our abstract processor (encompassing all the three
tiers of the Web site). Now given a particular response time
T1, we have

T1(X) =
E[X]
1 − λ1

µ

Assuming an average job size E[X], we can compute the
processor capacity if we know the response time and the job
arrival rate. In Figure 6 we plot the empirically computed
processor capacity, µ̂, as we slowly vary the number of
emulated browsers using the system in an experiment. Both
the response time and the number of requests (the empirical
arrival rate λ) are smoothed over 10 seconds. The plot shows a
fairly constant value of the empirical processor capacity, with
a mean of about 50 jobs per second, thereby validating the
processor sharing abstraction.
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B. Response Time Control at Overload

As client load increases, the throughput increases until the
load reaches a threshold after which the throughput drops and
response times grow. A major motivation for using a admission
controller is to maintain reasonable throughput levels at high
loads. We show that the Yaksha controller is able to bound
response times and maintain significant throughput levels even
at excessive load levels.

Figure 7 shows how throughput varies with increasing load
for both controlled and uncontrolled experiments. As can be
seen, Yaksha is able to maintain significant throughput levels
even at very high load levels. Note the downward trend for
the uncontrolled case as overload takes its toll.

Figure 8 shows the average response times of the servlets for
increasing load for both the “controlled” and “uncontrolled”
cases. As can be observed, Yaksha prevents server overload
and so is able to effectively bound request response times
while maintaining high throughputs. We set the reference value
Tref to be 150ms for the experiment, and that is the value
Yaksha tries to control the running average of the response
time. Figure 9 shows the cumulative throughput variation for
the same experiment.

C. Adaptation to Changing Workload

Adapting effectively to changing client workloads is a
necessity for a good admission controller. In the next set of
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experiments we demonstrate the effectiveness of the Yaksha
adaptation (self-tuning) process. Figures 10, 11,12 and 13
show how the various parameters of the controller adapt to
changing workload scenario.

TPC-W has three types of in-built workload mixes, namely
the “Browsing Mix”, the “Shopping Mix” and the “Order-
ing Mix”. The three generators have distinct frequencies of
requesting different types of servlets and hence different
workload characteristics.

To test how well Yaksha adapts to changing workloads, we
conducted the following experiment, highlighted in Figures
10–13. In these experiments, we control for an average re-
sponse time of 150 milliseconds. At time 0, 700 EBs of the
“Browsing Mix” start requesting transactions at the site. At
time 50, 700 EBs more of the “Shopping Mix” join in, and
then another 700 EBs of the “Ordering Mix” at time 100.
Hence, in this experiment, not only does the load level change
significantly, but the distribution mix of the workload also
undergoes a dramatic variation as the experiment progresses.

Figure 10 shows how response time varies in reaction to
the changes in workloads. Figure 11 plots the request drop
probability over the period, and Figures 12 and 13 show the
adaptation of the A and B parameters. As can be observed, at
every arrival of an overload (new workload mixes start gener-
ating transactions), A and B adapt quickly and the controller
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is able to bring down the response time below the desired
value. Towards the end of the experiment the response time
starts building again, as the EBs start regenerating requests,
and the controller is able to react quickly. We contrast this
behavior with a static controller to bring out the benefits
of self-tuning. In Figure 14 we plot the response times for
the two types of controllers. The static controller is designed
for the base case of 700 EBs, and as we observe it cannot
handle overloads well. It is slow to react, and the response
time stays well above the target value of 150ms. In another
experiment, we design a controller that is more “aggressive”,
it is designed for a nominal load of 2000 EBs. This static
controller on the other hand displays oscillatory behavior, and
again the performance suffers in comparison to Yaksha. This
can be observed in Figure 15. The aggressive controller has
response times oscillating above and below the target value
between the arrival of bursts. This can be more clearly seen
in Figure 16, where we plot the drop probabilities of the two
controllers. While Yaksha responds to the burst arrivals, the
static controller over-reacts, resulting in oscillatory behavior.

VI. SUMMARY AND CONCLUSIONS

In this paper we have designed an admission controller for
3-tiered websites based on classical control theoretic ideas.
A fundamental aspect of our design is our use of a good
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modeling abstraction. With the help of our model, we are able
to simplify the design process considerably, and the controller
is completely self-tuning. We implement our controller design
in the form of a proxy, Yaksha, and perform extensive ex-
periments on a testbed using standard workload generators.
Experimental results demonstrated that Yaksha is able to
bound the response times for the requests and yet maintain a
high throughput under overload. Moreover, Yaksha effortlessly
adapts to varying loads and workload characteristics because
of the underlying self-tuning design. A primary contribution
of this paper is to demonstrate the benefits of using the right
modeling abstraction for system design, in this specific case,
an admission controller.

For future work, we are exploring further refinement of
the model and the adaptation mechanism. Another avenue
of further study is to add session awareness as opposed to
request awareness. We are also analyzing real traces to come
up with reasonable design parameters (e.g., time constants of
the controller) for the system.
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[34] K. J. Åström and B. Wittenmark, Computer Controlled Systems: Theory
and Design, T. Kailath, Ed. Prentice-Hall, 1984.

[35] R. J. Kaes and S. Young, “tinyproxy,” http://tinyproxy.sourceforge.net/.
[36] The Apache Jakarta Project, “Jakarta Tomcat servlet container,” http:

//jakarta.apache.org/tomcat.
[37] MySQL AB, “The MySQL database,” http://www.mysql.com.
[38] D. A. Menasce, “TPC-W: A benchmark for e-commerce,” IEEE Internet

Computing, May/June 2002.
[39] The Transaction Processing Council (TPC), “TPC-W,” http://www.tpc.

org/tpcw.
[40] T. Bezenek, H. Cain, R. Dickson, T. Heil, M. Martin, C. McCurdy,

R. Rajwar, E. Weglarz, C. Zilles, and M. Lipasti, “Characterizing a Java
implementation of TPC-W,” in 3rd Workshop On Computer Architecture
Evaluation Using Commercial Workloads (CAECW), Toulouse, France,
January 2000.

[41] C. Amza, E. Cecchet, A. Chanda, A. L. Cox, S. Elnikety, R. Gil,
J. Marguerite, K. Rajamani, and W. Zwaenepoel, “Specification and
implementation of dynamic Web site benchmarks,” in Proceedings of the
5th Workshop on Workload Characterization, Austin, Texas, November
2002.

[42] J. Challenger, A. Iyengar, K. Witting, C. Ferstat, and P. Reed, “A
publishing system for efficiently creating dynamic Web content,” in
IEEE Infocom, Tel-Aviv, Israel, March 2000.

[43] A. Iyengar and J. Challenger, “Improving Web server performance by
caching dynamic data,” in Proceedings of the USENIX Symposium on
Internet Technologies and Systems, Monterey, CA, December 1997.

[44] Y. Lu, T. F. Abdelzaher, C. Lu, and G. Tao, “An adaptive control
framework for QoS guarantees and its application to differentiated
caching services,” in International Workshop on Quality of Service
(IWQoS), 2002.


