Distributed Server Replication in Large Scale Networks”

Bong-Jun Ko
Department of Electrical Engineering
Columbia University
New York, NY

kobj@ee.columbia.edu

ABSTRACT

Quality of service for high-bandwidth or delay-sensitive ap-
plications in the Internet, such as streaming media and on-
line games, can be significantly improved by replicating server
content. We present a decentralized algorithm that allocates
server resources to replicated servers in large-scale client-
server networks to reduce network distance between each
client and the nearby replicated server hosting the resources
of interest to that client. Preliminary simulation results
show that our algorithm converges quickly to an allocation
that reduces the expected client-server distance by almost
half compared to the distance when the assignment of repli-
cated servers is done at random.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Distributed
networks; C.2.4 [Distributed Systems]: Client/server

General Terms

Algorithms, Performance, Design

Keywords

Server replication, Distributed algorithm, Convergence

1. INTRODUCTION

The emergence of Internet applications that demand large
bandwidth or small delay has motivated content (or service)
providers to replicate contents or resources to provide bet-
ter quality of service to their clients. For instance, stream-
ing video, which requires relatively large bandwidth, is of-
ten distributed via Content Distribution Networks(CDN)[1].

*This material was supported in part by the National Science
Foundation under Grant No. ANI-0117738 and CAREER Award
No. ANI-0133829, and by a gift from Lucent Technologies. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NOSSDAV' 04, June 16-18, 2004, Cork, Ireland.

Copyright 2004 ACM 1-58113-801-6/04/0006 ...$5.00.

Dan Rubenstein
Department of Electrical Engineering
Columbia University
New York, NY

danr@ee.columbia.edu

CDNs replicate contents to multiple points in the Internet,
serving users with the closest copy, thereby bypassing bottle-
neck points in the Internet. In networked online games[6, 9],
which are traditionally supported via a client-server archi-
tecture, a game player’s gaming experience is negatively af-
fected by large propagation delay between server and clients.
Game providers often utilize multiple game servers such that
users can play the game at a nearby server to achieve a small
delay.

Since these applications typically strive to serve massively
large number of clients, application providers must deploy a
large number of replicated servers to provide satisfactory ser-
vice to all users, sometimes incurring excessive deployment
and management costs. For this reason, application service
providers often rely on outsourcing service from third-party
server-network providers, who offer to their customers (i.e.,
content/application providers) services such as server host-
ing, placement and management, and end-user interfaces
(e.g., user redirection, server directory). Rather than use
dedicated servers for each content owner, these hosting ser-
vice providers typically use a common pool of servers to host
the needs of their customers, and assign available server re-
sources dynamically to each content owner as a function of
its demand.

In this paper, we focus on the problem of assigning repli-
cated resources to servers in large-scale client-server net-
working environments, where we would like to place server
replicas such that each client can find nearby servers hold-
ing its resource of interest. We note that it is often unde-
sirable in large-scale networks to perform the placement us-
ing a centralized mechanism, which typically requires global
topological information and suffers from a central point of
failure.

In [12], we proposed a distributed algorithm to place repli-
cated resources in peer-to-peer-type networks where each
server is also a client. In this paper, we extend that work to-
ward large-scale client-server networking systems. The key
difference is that, while in [12], each node in the network
must hold a replicated resource for itself and other nearby
nodes, here we have two different types of nodes: servers
holding replicas and clients demanding them. This different
environment gives rise to the following main challenges that
were not present in [12].

e The placement of each replicated resource must be
performed in a manner that respects the needs of all
clients’ demands. For instance, two different game ti-
tles may be played by two flash crowds simultaneously
in some region where there are only limited number of

Figure 1: Example server-client network

server resources available. One must somehow deter-
mine which server should be allocated to each game to
maximize “average” client performance.

e The placement mechanism must deal simultaneously
with heterogeneous servers and clients; a server may
host only a limited set of services. For example, some
servers may have been designed specifically to host me-
dia streaming services and others specifically for Web
services. Furthermore, some clients may be interested
in only specific types of services.

In dealing with these challenges, we note that the perfor-
mance of a replica placement mechanism, such as the dis-
tance between clients and replica servers, is in most cases
determined locally (clients are interested in nearby replicas,
not those far away). Our philosophy is to allow local deci-
sions to be made in localized regions and avoid unnecessary
interaction between nodes placed far apart from one another
in the network. By doing this, we can improve the resilience
and robustness of large-scale networking systems since the
impact of unexpected failure and network dynamics is con-
tained and can often be repaired quickly within the localized
area.

The problem is explored in the context of server-client
system, where each server is assigned one of K colors and a
color represents a specific replicated resource, e.g., a specific
game title, a specific web site. In our algorithm, each server
decides its own color based on local distance information to
the clients interested in its color. Preliminary simulation
results show that our algorithm is scalable in terms of the
number of servers and clients, and that the coloring achieved
by the algorithm yields a distance between each client and
its desired resources that quantifies significantly better than
what resulted by randomly assigning colors.

The paper is organized as follows. In the following section,
we present the system model and formally state the prob-
lem. We present our distributed algorithm in Section 3, and
the performance evaluation results in Section 4. We briefly
review related work in Section 5, and Section 6 concludes
the paper.

2. MODEL AND PROBLEM

We consider a server-client network in which each server
is capable of hosting some subset of replicated resources and
each client is interested in some subset of resources. Figure
1 illustrates a simple example of such a system, where 5 dif-
ferent resource types, A through F, are to be replicated over

a set of servers, {y1,y2,ys}. In this system, each client has a
different set of demands; For instance, client x; is interested
in resources B, C, and F, while client x4 is interested only
in resource E. Similarly, a server may restrict the resources
it hosts. For instance, server y2 only supports replicated
resources A and D, and can therefore only serve clients 2,
and x3, but not x1 and x4.

We view the server-client system as an undirected, bi-
partite graph G = (N, E), where N is the set of servers
and clients and FE is the set of non-negative weighted edges.
N is further divided into two disjoint subsets, Ns and N,
where N, is the set of servers and N, is the set of clients.
We assume that each server and each client has a unique
identity. An edge in F connects a client x and a server y.
The edge’s weight, d(x,y), represents the distance between
z and y. We assume that the graph G remains fixed during
the execution of the algorithm.

Let I' = {c1,--+ ,ckx} be a set of K colors, where each
color in I' represents a specific replicated resource type that
a server can be assigned. A server coloring, or simply a
coloring, C': Ny — T, is a function that maps each server
in N, to one of K colors, where C(y) is the color assigned
to server y.! We further define T'.(2) C {c1,--- ,ck} as the
set of colors that interest client x, and I's(y) C {c1, -+ ,ck }
as the set of colors to which server y can be assigned.

A client z’s color distance to color c, d(z, c), is defined
as the distance between x and the closest server of color cg
to z, i.e., d(z,cx) = mingen,{d(z,y) : C(y) = ck}. sk(x)
denotes the closest server of color ci to client x. If there
is no server of color ¢, in the graph, then d(z,cr) = oo.
Furthermore, let d2(z,cr) denote the distance between x
and the second closest server to x of color ¢;. If client z is
not interested in some color cg, i.e., if ¢x € I' — I'c(z), then
we say the color distance of x to ci is 0.

Our goal here is to assign colors to servers such that the
distance from each client to the closest server of each color
can be made “as small as possible”. This general prob-
lem can be posed more specifically in the context of one of
several possible optimization functions. For example, one
may want to minimize the sum of average color distances of
all clients, or minimize the maximum color distances of all
clients. However, none of these optimization problems nec-
essarily satisfies our goal of placing multiple replica types
such that the placement respects the needs of all clients.
For instance, in online gaming networks, a game player’s
experience is influenced by the mazimum delay between a
game server and all clients that are connected to that server.
In this case, minimizing the average (or sum) of the color
distance does not improve the performance since, even if the
average distance is small, some client may still be far from
the server. Simply minimizing the maximum color distance
does not solve the problem, either, since we are interested
in reducing the distances to all replica types (not just the
furthest one) from each client. Instead, we posit that a
lexicographically optimal color allocation|[3] best fits our
problem, which is defined as follows.

Consider an [-dimensional ordered vector, V = (1117 S L),
where the v;’s, i = 1,--- ,l are ordered in decreasing order,
ie, v1 > w2 > --- > v;. We say that V is lexicographically
smaller than another ordered vector W = (wa,--- 7wl> if

1Extonding this model to the cases where a server is simultane-
ously assigned multiple colors can be easily done by mapping that
server into multiple servers, each with a single color.

there is some 0 < ¢ < [where v; = w; for all 7 < % and
v; < w;. We also say that, for two arbitrary, unordered
n-dimensional vectors V' and W', V' is lexicographically
smaller than W' if the ordered version of V' is lexicographi-
cally smaller than that of W’. We write V' < W' to indicate
V' is lexicographically smaller than W', and V' < W’ to in-
dicate V' is lexicographically smaller than or equal to W'.

In the context of our problem, the lexicographically op-
timal coloring is defined as follows. Given G and a server
coloring C' in our model, consider an |N|K-dimensional vec-
tor V(G) = (v1,--- ,vn, k) Whose components consist of all
K color distances for all clients in the network, i.e., d(z,cx),
1 <z <|Ne|, 1 <k < K. Note that d(x,cr) > 0 by defi-
nition. A lexicographically optimal color allocation, Copr,
is one that assigns each server to a color such that the re-
sulting vector Vopr(G) is lexicographically smaller or equal
to any other vector V(G), resulted by any other coloring C,
ie., VopT(G) < V(G).

The advantage of lexicographically optimal coloring is that
it minimizes each color distance of each client, i.e., if the
largest color distance cannot be reduced further, it seeks to
reduce the next-largest color distance when possible. We
can show that this problem is NP-hard by reducing an in-
stance of 3-SAT to an instance of our problem. The proof
of NP-hardness can be found in [13].

3. DISTRIBUTED SERVER COLORING

In this section, we describe our distributed algorithm that
assigns colors to servers in large-scale, decentralized net-
works. Our approach is to let each server decide its own color
based on the color distance information of nearby clients. In
this environment, we must address several challenges that
were not issues in [12].

e Partial knowledge of topology : The enormity of
the network considered here implies that each client in
the network can interact with only a subset of nearby
servers to determine its distances to those servers. The
distributed placement of replicated resources must be
designed such that a global measure of color distances
can be optimized by using only this local distance in-
formation.

e Color distance inconsistency : In our algorithm,
each server decides and changes its own color based on
the color distances of the clients, and clients’ color dis-
tances change as servers change their colors. Keeping
the consistency of color distance information between
the servers and clients is difficult in the presence of
network delay, which can result in servers’ selecting
their colors based on outdated client color distance in-
formation.

e Servers oblivious of one another : Since we as-
sume that there is no special entity in the network
that coordinates the communication among nodes in
the network, each server’s independent selection of its
own color can impact another server’s selection in nu-
merous situations. For example, two nearby servers
may simultaneously select the same color, c¢;, without
knowing each other’s (same) selection, while it would
have been better to have only one server of that color
and have the other change to some other color in that

region. A decentralized mechanism is needed to coor-
dinate nodes in the network to avoid such undesirable
configurations.

In what follows, we describe how we address these chal-
lenges with our distributed server coloring algorithm, begin-
ning by describing the rule with which each server decides
its color.

3.1 Coloring Rule

Let S(x) denote the set of servers that interact with client
z and could be assigned one of the colors of interest to ,
ie., I's(y) [Te(z) is non-empty for any y € S(z). Similarly
let R(y) be the set of clients that interact with server y, i.e.,
R(y) = {x € Nely € S(z)}.2

Assume for now that each server y can obtain the color
distances, d(z,c;) and da(z, ¢;), for all z € R(y) and for all
¢, 1 =1,---, K through the color distance update mecha-
nism described in Section 3.2.

Suppose a server y whose color is currently c¢; changes its
color to some other color ¢;. We note that y’s color change is
“good” for some clients interested in c;, but it can be “bad”
for some clients interested in ¢, because we now have one
less server of ¢, and one more server of ¢; after the change.
More specifically, if y was the closest server of color ¢ to z,
i.e., y = sk(x) before y’s color change, then d(z, cx) increases
to da2(z,cr). (If y was not sg(x), d(z, ck) does not change.)
On the other hand, if y becomes the closest server of color
¢; to some client x after y's change, d(z,c;) decreases to
d(z,y).

Now let Vi,(y) denote a 2r-dimensional color distance
vector whose components are the color distances to c¢x and
¢; of the clients in R(y), i.e.,

Vii(y) = (d(z1,), d(m1, ¢5), - -+, d(@r, ck), d(Tr, €5)),

where {z1, - ,2z,} = R(y). We similarly define a “future”
color distance vector, V. ;(y), as

Vk,,](y) = (dl(x17ck)7d,(x17cj)7 e 7d,(x7‘70k)7dl(x7‘70j))7

where d'(x, c) and d’'(x, c;) denote the distances to color ¢,
and c;, respectively, that would result for client x if server
y € S(x) would change its color from ¢ to ¢;.

With this color distance information, servers change their
colors by the following color change rule.

Color change rule : Server y decides to change its color
from ci, to ¢ if

e y can be assigned ¢, i.e., ¢ € I's(y), and

o Vii(y) < Viu(y), ie., Vi (y) is lexicographically smaller
than Vi (y).

This change rule states that a server changes its color (1)
if color distance of some client would decrease, and (2) if
the increased color distance of any client after the change
is smaller than the largest value among those color dis-
tances that would decrease. In other words, it ensures that

2There can be several factors that determine S(z), such as the effi-
ciency and scalability of server discovery mechanism, each client’s
capability to maintain the states and connections of servers, etc.
However, this issue is out of scope of this paper, and we describe
our algorithm such that it is orthogonal to this issue.

31If there are more than one such color, ¢;, that satisfies the above
properties, then y arbitrarily selects one of them.

a server’s color change always produces a “better” coloring
in a lexicographic sense.

(a) Before y4’s change (b) After y4’s change

Figure 2: Example of server color changes

In our distributed algorithm, servers continually change
colors by the above color change rule. This color change pro-
cess is illustrated in Figure 2, in which there are 4 servers,
Y1, ,ya, and 2 clients, z1 and x2. The numbers along
the lines connecting each client and each server represent
the distance between servers and clients, and we want to
assign servers one of 3 colors, c¢1, c2, and c3. Consider a
color assignment in Figure 2(a), where A solid line indicates
d(zi,c) for each client and a dashed line da(zi,cx). Ac-
cording to the color change rule, server ys4 can change from
cs to c1 since the change decreases d(z2,c1) from 7 to 1 and
increases d(x2,c3) to 5 but not greater than the previous
value, 7, of d(z2,c1). Figure 2(b) shows the coloring after
ya’s change, in which there is no server that can further
decrease the color distance of any client without increasing
some other distance beyond the largest distance that de-
creases.

In what follows, we proceed to the decentralized proce-
dure used by servers and clients to keep the consistency
of clients’ color distance information and to coordinate the
color changes of individual servers. Due to lack of space, we
only provide a sketch of the mechanism; a detailed descrip-
tion can be found in [13].

3.2 Color Change Procedure

Servers and clients exchange messages to update new color
distance information and to keep this information consis-
tent between servers and clients. There are 6 types of mes-
sages: Change, Update, Request, Accept, Reject, and
Abort. Here we briefly describe how and when these mes-
sages are used.

e Request : When, by the color change rule, server
y decides to change its color from a color ¢, to an-
other color ¢;, it sends this message to each client in
R(y), asking the clients to verify that the color dis-
tance information y used to decide the color change is
the up-to-date color distances perceived by the clients.
After sending this message, y waits for Accept or Re-
ject messages from all clients in R(y).

e Accept or Reject: A client = sends either of these
two messages to server y as the response to a Request
message from y. x sends an Accept message if the
color distance information that y used in its decision
to change its color is a valid one that reflects the up-
to-date color distances perceived by z. Otherwise, x
sends a Reject message to y.

e Abort or Change : Server y, which has issued a
Request message, sends this message to the clients in
R(y) without changing color if it receives a Reject mes-
sage from any client. On the other hand, if y receives
Accept messages from all z € R(y), it changes its color
and sends Change messages to the clients in R(y), no-
tifying that it has changed from some color, cg, to
another color, ¢;.

e Update : Whenever client = perceives (by a Change
message) its closest or second-closest server to any
color has changed, it sends this message to each server
in S(z), notifying that some of its color distances has
changed. This color distance information is used by
servers when servers decide to change their colors.

Servers inform the clients of their new colors with the
Change messages, and clients inform the servers of their
new color distances using Update messages. Based on the
color distance information carried in Update messages, each
server decides whether or not to change its color using the
color change rule. When a server does decide to change, it
initiates a three-way handshake exchange of Request-Accept
(or Reject)-Change (or Abort) messages to ensure that the
color distance information it used to decide the color change
is valid in comparison to the actual distances perceived by
the clients. This three-way handshake mechanism overcomes
any discrepancy of information in servers and clients that
can occur because of the network propagation delay.

However, because servers can change their colors simulta-
neously without knowing other servers’ changes, there can
be cases where one server’s intended color change conflicts
with those of others, which can cause various race condi-
tions. For example, suppose a client x has received requests
from two nearby servers, both of which want to change to the
same color. If x accepts both requests, then both servers will
change colors and the process can livelock since they may
keep changing their colors when they become aware of the
other’s new color. If both requests are rejected, then the
process can again livelock, since both will re-attempt and
possibly never be able to make a color change. If x simply
holds the requests without sending Accept or Reject, then
the process deadlocks — both will wait indefinitely.

We address this problem by introducing an order-based
holding mechanism similar to what is used in [12] — clients
hold requests from higher-ordered servers until the outcome
of conflicting request of lower-ordered servers becomes avail-
able, whereas lower-ordered requests are immediately re-
jected if any conflicting request from higher-ordered server
has been accepted.

We have proven that, by using color change rule in con-
junction with the three-way handshake protocol and the
holding mechanism, the server coloring converges to a state
where no server changes its color. Its proof and more de-
tails on three-way handshake and holding mechanism can
be found in [13].

4. PERFORMANCE EVALUATION

In this section, we present some preliminary results eval-
uated by event-driven simulations on top of Internet-like
topologies generated by the BRITE Topology Generator|[5].
We generate a transit-stub network consisting of 5,000 nodes
(100 nodes/AS x 50 AS), and select servers and clients

among those 5,000 nodes uniformly at random. We vary
the number of servers, |Ns| = 25,50, 100, and the number
of clients, |N.| = 25,50, 75,100, 150, 200. We also vary the
number of colors K = 5,10, 15, 20, and the number of servers
contacted by a client R = K, 2K for each value of K.

We use two different types of server configurations: S-
ALL (each server is capable of all K colors) and S-RAND
(each server is capable of a random subset of colors) Simi-
larly, we simulate two types of clients’ interests: C-1 (each
client is interested in one color selected at random) and C-
RAND (each client is interested in a random subset of col-
ors). Due to space limitations, here we present only some
representative simulation results.

The distance d(x,y) between a client x and a server y is
set to the shortest-path distance in the transit-stub topology
generated. We also use this distance to drive the message
propagation delay between a server and a client, though our
algorithm will converge for any message passing delay distri-
bution between nodes. The average message delay between
server and client is 50 msec.

At the start of the simulation, each client selects R closest
servers among all servers. The simulation terminates when
clients and servers cease sending messages, i.e., when servers
cease to change colors. The measurement data was obtained
by averaging out values from 10 simulations.

First, we evaluate the color distances in the coloring gener-
ated by our algorithm by comparing these distances to those
in graphs where each server is assigned its color uniformly at
random. We also present the color distances that could be
achieved by the centralized version of the our algorithm, in
which the placement is performed by an oracle that knows
the color distances of all clients assuming that each client can
reach all servers in the network. Note that the centralized
algorithm is not optimal, and is essentially equivalent to the
distributed algorithm when each client knows the distances
to all servers. We show the results of the centralized algo-
rithm to evaluate our distributed algorithm’s performance
when the interaction between servers and clients is limited
within localized regions.

60
o 00 : + 3
Z 40 ¢ i
D30 [g - i
© 20 | el random — |
e distributed R=K =
© 10 t distributed R=2K -

0 ‘ _ centralized K

50 75 100 125 150 175 200
clients
Figure 3: average color distances of clients (|Ns| = 50,

K =20, S-ALL/C-1)

Figure 3 depicts the average distance from each client to
the colors of interest, i.e., avg, cr_(,)d(, ¢i), averaged over
all clients x, when |Ns| is 50 and K is 20. Each client is
interested in a randomly-selected color, and each server can
support all colors. We vary the number of clients along the
z-axis. In general, we expect that the distributed algorithm
would perform better than random coloring but worse than
the centralized algorithm. We find that our distributed al-
gorithm reduces the color distance of each client by 30 to 50

% compared to when servers are assigned their colors at ran-
dom, and also that the distance is identical to the distance
computed by the centralized algorithm for both values of R.
This indicates that when each client is interested in only one
color, our algorithm allows clients to find the color of inter-
est in a nearby server by contacting only a small number of
servers.

= 17 ‘ ‘ ‘

= Tt —F t

g 16 1

g 15 ¢ 1

o 14+t I 3

2 PR D S *

L 13% 1

s 12t random —

E 11t distributed R=2K eeelhenees |

g ‘1 ‘ _centralized K

>

© 50 75 100 125 150 175 200
clients

maxc,; d(z,c;)

Figure 4: Normalized max color distances :)
op

(INs| = 50, K = 10, S-RAND/C-RAND)

Figure 4 plots the distance from each client = to the fur-
thest color among those in I'c(z), ie., max,,cr, () d(z, i),
divided by the distance to the |I'c(x)|-th closest server, which
we denote by dopt(z). dopt(x) represents the minimum dis-
tance that x must travel to reach all colors in I'.(z), provid-
ing a lower bound of max,,cr,(z) d(x,ci). We see from the
figures that on average, our coloring algorithm achieves the
distance to the furthest color from each client within factor
of 1.3 from the minimum possible distance. This is quite an
impressive result considering that, in many cases, there is
no coloring in which each client x can reach all colors within
dopt (), in particular when nearby clients compete against
each other over different sets of colors.

Now, we turn our attention to the transient performance
of our algorithm by measuring the convergence time, that
is, the time elapsed until the last message in the simulation
is received by a node (server or client).

<

é 10000 =5 —— ‘ ‘ ‘]
< k=10 -

m 8000 | =7

£ 6000 | k=2

o -

S 4000 3

% ..

§ 2000 |

>

g 0
[5)

50 75 100 125 150 175 200
clients

Figure 5: Convergence time (|Ns;|] = 50, R = K, S-
ALL/C-RAND)

Figure 4 shows the convergence times (in msec) for differ-
ent number of colors as the number of clients is varied along
z-axis. We observe that the convergence time increases sub-
linearly as we increase the number of clients. This suggests
that the color change procedure is naturally parallelized
across different regions of the network, especially when the
size of the network is large. The increase of the convergence
time as the number of colors increases also appears to be
sub-linear (note that the gap between curves gets narrower

as K becomes larger). This result suggests our algorithm
is scalable not only in terms of the size of the network, but
also of the number of colors.*

o

Q

2] T T
£ 14000 d-coloring
QE) 12000 r r-delay D
£ 10000 | r-delay 2D
2} r-delay 3D
2 8000 ; r-delay 4D
2 6000 [/ I delay 5D
© 4000 § - =
g F
§ 2000 F

o 0 L L
=4 25 50 75 100

clients

Figure 6: Convergence time : comparison to randomly
delayed servers(S-ALL/C-1, |Ns| =25, R = K = 10)

In Figure 6, we compare the convergence time of our al-
gorithm to an alternative mechanism that solves race condi-
tions by introducing a random delay in servers’ color changes
rather than utilizing the 3-way handshake. More specifically,
if a server decides to change color, it does not initiate the 3-
way handshake exchange of messages. Rather, it delays the
color change and the transmission of Update message by a
time interval picked exponentially at random. We use the
average delay p = D,--- ,5D, where we arbitrarily set the
constant D as the maximum distance between nodes in the
network, in this case about 100 msec. We observe that our
distributed algorithm always stabilizes faster than this alter-
native mechanism that uses randomized delays to break the
synchronization. In particular, it is interesting to observe
that it often takes a very long time for the random-delay
mechanism to stabilize when the delay is relatively small
(convergence time for 4 = D is too high to appear within the
y-axis range of this plot). This confirms our conjecture that
independent operation of distributed servers will introduce
race conditions, slowing down the stabilization process.

5. RELATED WORK

Our goal of assigning replicated resources to a set of server
to minimize distances from the clients to nearby copy of re-
sources is similar to that of optimal facility location prob-
lems[17] and of minimum k-center problems[8]. Though
much work has been done in this area, including those in
the context of web server replica placement[16], our goal
differs significantly from these problems in that we allocate
multiple resources (or “facilities”) concurrently to a given
set of locations, while the goal of facility location problems
is to open up a single type of facilities in a subset of lo-
cations that minimizes the distance from the clients to the
nearby facility. The work by Kangasharju et al[11] is prob-
ably the most closely related to ours. However, it solves the
problem of placing replicas of arbitrary “objects” in nodes
in CDNs using centralized algorithms, while we use on-line,
decentralized algorithm that places replicated “servers”.

Online gaming networks have recently drawn many re-

searchers’ interests, including gaming network architectures[7,

2], state synchronization techniques|[7, 14], and scalable state
management[4, 15]. Yet to our knowledge, there has been

4Though not shown here, we found the convergence time is some-
what insensitive to the number of servers.

no distributed mechanism that addresses server placement
problem in gaming networks. [10] presents an interesting
observation on game players’ preferences in selecting game
server, which we can take into account when designing the
server placement mechanism. We plan to do so in the near
future.

6. CONCLUSION

We have presented a distributed, provably self-stabilizing
algorithm that assigns server resources to replicated servers
in large-scale server-client networks. We model the prob-
lem as a server coloring problem, where a color represents a
specific replicated server type. In our algorithm, each server
determines its own color based on local information obtained
from nearby clients, and servers and clients co-operate in a
distributed manner to help the server coloring stabilize. The
simulation results show that the average distance between a
client and the closest copies of the servers of interest to the
client can be decreased by almost 50% compared to when
the server replicas are randomly assigned.

7. REFERENCES

[1] Akamai. http://www.akamai.com/.

[2] D. Bauer, S. Rooney, and P. Scotton. Network
infrastructurc for massively distributed games. In
NetGames ’02, April 2002.

[3] D. Bertsekas and R. Gallager. Data Networks. Prentice
Hall, 1992.

[4] A. R. Bharambe, S. Rao, and S. Seshan. Mercury: a
scalable publish-subscribe system for internet games. In
NetGames ’02, April 2002.

[5] BRITE. http://www.cs.bu.edu/brite/.

[6] Counter-Strike.net. http://www.counter-strike.net/.

[7] C. Diot and L. Gautier. A distributed architecture for
multiplayer interactive applications on the internet, IEEE
networks magazine, vol. 13, no. 4, July/August 1999.

(8] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. In Theoretical Comput. Sci. 38,
293-306, 1985.

[9] Half-Life. http://www.planethalflife.com/.

[10] T. Henderson. Observations on game server discovery
mechanisms. In NetGames ’02, April 2002.

[11] J. Kangasharju, J. Roberts, and K. Ross. Object
replication strategies in content distribution networks. In
Proceedings of WCW’01: Web Caching and Content
Distribution Workshop, Berlin, June 2001.

[12] B.-J. Ko and D. Rubenstein. Distributed, self-stabilizing
placement of replicated resources in emerging networks. In
Proceedings of ICNP 2003, November 2003.

[13] B.-J. Ko and D. Rubenstein. Distributed server replication
in large scale networks. Technical report, Columbia
University, March 2004.

[14] Y.-J. Lin and S. P. Katherine Guo. Sync-MS: Synchronized
messaging service for real-time multi-player distributed
games. In Proceedings of ICNP 2002, November 2002.

[15] H. Lu. Peer-to-peer support for massively multiplayer
games. In Proc. of INFOCOM ’04, March 2004.

[16] L. Qiu, V. Padmanabham, and G. Voelker. On the
placement of web server replicas. In Proc. 20th IEEE
INFOCOM 2001, August 2001.

[17] D. B. Shmoys, E. Tardos, and K. Aardal. Approximation
algorithms for facility location problems (extended
abstract). In ACM Symposium on Theory of Computing
(STOC), pages 265-274, El Paso, TX, May 1997.

