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Abstract—Aloha and its slotted variation are commonly de-
ployed Medium Access Control (MAC) protocols in environments
where multiple transmitting devices compete for a medium, yet
may have difficulty sensing each other’s presence (the ‘‘hidden
terminal problem’’). Competing 802.11 gateways, as well as most
modern digital cellular systems, like GSM, are examples. This
paper models and evaluates the throughput that can be achieved in
a system where nodes compete for bandwidth using a generalized
version of slotted-Aloha protocols. The protocol is implemented
as a two-state system, where the probability that a node transmits
in a given slot depends on whether the node’s prior transmission
attempt was successful. Using Markov Models, we evaluate the
channel utilization and fairness of this class of protocols for
a variety of node objectives, including maximizing aggregate
throughput of the channel, each node selfishly maximizing its own
throughput, and attacker nodes attempting to jam the channel. If
all nodes are selfish and strategically attempt to maximize their
own throughput, a situation similar to the traditional Prisoner’s
Dilemma arises. OQur results reveal that under heavy loads, a
greedy strategy reduces the utilization, and that attackers cannot
do much better than attacking during randomly selected slots.

Index Terms—MAC protocols, Markovian decision, Prisoner’s
Dilemma, short-term fairness, slotted-Aloha, Stackelberg Game.

I. INTRODUCTION

N MANY communication networks, the communication

medium is often shared by multiple users who must com-
pete for access. In Ethernet [1], nodes use CSMA/CD [2], [3] as
a MAC protocol. In order to reduce the probability of collisions,
each node implements CSMA/CD, sensing the medium to en-
sure the medium is available prior to transmitting. However, for
wireless ad hoc networks or sensor networks, carrier sensing
may not be effective. This is because nodes may not be able to
sense one another’s presence, yet their transmissions may still
interfere. Ad hoc networks, sensor networks, and competing
“hotspot” 802.11 gateways are examples where this so-called
“hidden terminal problem” occurs.

The Aloha protocol [4] is a fully decentralized medium access
control protocol that does not perform carrier sensing. The sub-
sequent slotted-Aloha protocol [5] was introduced to improve
the utilization of the shared medium by synchronizing the trans-
mission of devices within time-slots. Today, various forms of
slotted-Aloha protocols are widely used in most of the current
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digital cellular networks, such as the Global System for Mobile
communications (GSM).!

In this work, we consider a generalization of the
slotted-Aloha protocol. Like slotted-Aloha, the decision to
transmit within a slot has a random component. However, in
traditional slotted-Aloha, the user continues transmission in
subsequent slots until a collision occurs. In our generalized
version, the user may cease transmitting with some fixed
(non-zero) probability. We model a system of N users im-
plementing this generalized protocol with tunable parameters
via Markov Models that allow us to measure the rate at which
nodes attempt to transmit packets (cost), and their rates of suc-
cess (throughput). In parts, we impose budget constraints that
restrict the nodes’ costs, such that the fraction of slots within
which a node attempts transmissions is bounded. In practice,
these additional constraints may be due to energy constraints,
or bandwidth limitations.

This generalized version of slotted-Aloha is worth studying
for several reasons. First, it is derived from a protocol that is
commonly used today. Second, introducing additional states to
capture backlog or number of successive collisions more closely
emulates binary exponential backoff protocols, e.g., the 802.11
family of MAC protocols; however, this generalized version of
slotted-Aloha retains the simplicity and elegance of the original
Aloha approach. Third, we will show that the generalized ver-
sions can outperform the original version, both in terms of ag-
gregate throughput, as well as the ability to cope with malicious
users. Fourth, by using this generalized slotted-Aloha protocol,
we provide a framework to study the user behaviors in cooper-
ative, competitive and adversarial environments.

We begin by exploring an environment where /N users co-
operate and set the protocol parameters to maximize the total
system throughput while sharing the bandwidth evenly. We find
that the throughput is bounded by N/(2N — 1) and that to
achieve this utilization, users who gain access to the channel
must transmit over a large number of consecutive slots. We then
explore how throughput decreases as “short-term fairness” is
more strictly enforced, reducing the expected number of con-
secutive slots.

Next, we consider selfish users who wish to maximize their
own throughput, perhaps at the expense of the nodes against
whom they compete for medium access. We fist identify a Nash
equilibrium for short-sighted selfish users where the aggregate
throughput is zero. We then formulate a Stackelberg game,
where a leader node strategically chooses its parameters and a
follower node subsequently modifies its parameters in response
to short-sightedly maximize its own throughput. Under this
model, we find that performance of the protocol depends on
nodes’ budgets, and takes on three distinct types of behavior.
When nodes’ budgets are low, the aggressive strategy is op-
timal. When nodes’ budgets fall within a medium range, all

ITn the GSM network, the control channels of the TDM channels use slotted-
Aloha.
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nodes achieve the same throughput in a unique equilibrium,
but the throughput is less than what would be obtained in a co-
operative setting. When nodes’ budgets fall within the highest
range, the leader node obtains much higher throughput than
the follower node. We further model two strategic selfish nodes
using a simultaneous move game, where multiple equilibria
exhibit that the Prisoner’s Dilemma can occur. We develop an
additional enhancement to the protocol that can be implemented
by cooperative nodes which will encourage selfish users to tune
their protocol parameters to match those of a cooperative node,
maximizing the aggregate throughput.

Last, we consider an attacking node that, with a limited
budget, seeks to minimize the throughput of the other nodes in
the system. We show that when the attacker’s budget is small,
selecting random slots (i.e., via a Bernoulli process) is optimal.
When the budget is large, the optimal strategy is to mimic a
greedy user. Our analysis provides insights on the limits of
success a jammer can have in disrupting a slotted-Aloha like
network.

We summarize the main contributions of this paper as
follows.

1) We formulate different user behaviors under a generalized
slotted-Aloha protocol where users make transmission de-
cisions using a two-state system.

2) We identify throughput bounds for a system of cooperative
users and explore the trade-off between user throughput
and short-term fairness.

3) Under selfish behavior of the users, we identify a Prisoner’s
Dilemma phenomenon and propose methods to detect and
prevent nodes from acting selfishly without regard for other
nodes’ throughput.

4) Under adversarial behavior of one user, we measure the
maximum possible deterioration of the system and try to
understand the behavior of an attacker.

We organize our paper as follows. In Section II, we review
related work. In Section III, we motivate the protocol and con-
struct a Markov Model for the generalized slotted-Aloha pro-
tocol. In Section IV, we measure the system throughput in a co-
operative environment where users want to maximize the total
throughput of the system. In Sections V and VI, we evaluate
both the aggregate and individual user throughput where selfish
users exist in the system. We formulate a Stackelberg game [6]
and identify a Prisoner’s Dilemma situation in Section V, and in
Section VI present strategies that cooperative nodes can imple-
ment to detect and prevent selfish user behaviors. In Section VII,
we explore a system in which an attacker tries to minimize the
throughput of the remaining nodes. Section VIII concludes.

II. RELATED WORK

The Aloha protocol and its slotted version have been studied
for decades. Because slotted-Aloha exhibits an instability as the
number of transmitting nodes increases [7]-[12], early research
focused on stabilization [12], [13]. For instance, Rivest [13] pro-
posed a pseudo-Bayesian algorithm, which utilizes feedback to
estimate the number of current backlogged nodes in the system.
Subsequent studies utilized dynamic controls [9], [14] to sta-
bilize the systems. However, today’s networks avoid stabiliza-
tion challenges by implementing an admission control proce-
dure that limits the number of simultaneous users in the system.

937

In this work, we focus on the performance of stable slotted-
Aloha type systems, where only a finite number of users will ac-
cess the shared medium simultaneously. Early work on slotted
Aloha with finite number of users can be found in [7]. Not
only does our work evaluate the throughput bounds for a finite
slotted-Aloha type system, but it also considers the performance
of individual users under different types of user behavior. Many
prior works [15], [16] show that users always have incentive not
to follow the designed protocol (i.e., not backoff) in order to
achieve higher throughput. Consequently, game-theoretic anal-
ysis can be applied [6], [17].

Recent work using Game Theory to analyze user behavior in
MAC protocols and wireless ad hoc networks can be found in
[18]-[21]. More specifically, game-theoretical analysis of the
Aloha protocols can be found in [22]-[27].

MakKenzie and Wicker’s work [24], [25] discussed the sta-
bility of slotted-Aloha with selfish user behavior and perfect in-
formation. Our work is different in three ways. First, we focus
on performance (attainable throughput) instead of stability. In
terms of data backlog at the users, we consider scenarios of
elastic transfers, where users always have data to send and uti-
lize whatever bandwidth is available, and hence classical sta-
bility results do not apply to our analysis. Second, we assume
that nodes do not know the number of transmitting nodes a par-
ticular slot a priori, and know only whether or not their trans-
mission succeeded after the fact. Third, we consider cooperative
and attacking strategies in addition to selfish strategies.

Jin and Kesidis’s work [26] discusses the equilibria of a non-
cooperative game for Aloha protocols. In their non-cooperative
game formulation, each user only uses one transmitting proba-
bility (i.e., always in a backlogged state). Moreover, utility func-
tions and payments are specified for each user. Our work, on
the other hand, formulates generalized slotted-Aloha protocol
that considers the Markovian decisions depending on whether
the most recent transmission is a success (in a Free State) or a
failure (in a Backlogged State). Also, we do not impose pay-
ments.

Altman et al. [27] analyze slotted-Aloha systems as both co-
operative and non-cooperative games with partial information.
Their work assumes that there are a finite number of buffer-
less sources. The arrival of packets to each source follows a
Bernoulli process. As in typical slotted-Aloha, users only con-
trol the backlog probability in both systems. In our work, we as-
sume saturated arrivals (elastic transfer) where each user always
has packets to transmit. Our users’ strategies are more broad,
because users are permitted to choose a non-zero probability to
back off even their previous transmissions are successful. In ad-
dition, we analyze an adversarial game where an attacker wants
to minimize other users’ throughput.

III. PROTOCOL DESCRIPTION AND MODEL

In this section, we describe a generalized slotted-Aloha
MAC protocol and construct a Markov Model from which its
throughput can be analyzed. We first overview the original
slotted-Aloha protocol:

1) Time is divided into slots, and each node can attempt to

send one packet in each time-slot.
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2) If anode has a new packet to send, it attempts transmission
during the next time-slot.

3) If a node successfully transmits one packet, it can transmit
a new packet in the next time-slot.

4) If a node detects a collision, it retransmits the old packet
in each subsequent time-slot with a pre-determined prob-
ability, p, until the packet is successfully transmitted. Re-
turning to step 3 after a successful transmission.

The slotted-Aloha protocol described above can be imple-
mented as a two-state system, where the state maintains the
outcome of the previously attempted transmission. A node is
in its Free State if the most recent transmission from that node
is a success; otherwise, the node is in its Backlogged State.
In the Free State, a node transmits during the next slot with
probability 1, and in the Backlogged State, it transmits during
the next slot with probability p. Our generalization of the above
protocol is to allow a node to vary the probability with which a
node transmits a packet when it resides within the Free State.
Later, we will see that this generalization enables us to model
selfish as well as malicious behaviors of users.

Our evaluation will consider a network of N contentious
nodes, which always have a backlog of data packets to transfer.
We assume that data packets are fragmented into lengths which
can be transmitted within a time-slot, and that nodes are able to
coordinate slot transmission times and can estimate the number
of nodes N with which they compete for bandwidth. How-
ever, because nodes’ transmissions may interfere but cannot
be recovered, methods to prevent slot contention that require
explicit communication and coordination among the competing
members (e.g., TDMA, RTS-CTS) cannot be used. In practice,
many real systems implement admission control mechanisms
which constraint the number of users in the system. In practice,
a system can often rely on a centralized authority to broadcast
the number of competing users (e.g., this information can be
embedded in beacon messages).

Each node x can tune its protocol using two parameters: p{,
the transmitting probability in the Free State, and p3, the trans-
mitting probability in the Backlogged State. Given N and the
transmitting probabilities for each of the nodes in each of the
states, we can compute the following performance metrics:

e T, the throughput of node x, which is the fraction of slots
within which z successfully completes a transmission and
is the only device to attempt transmission.

e (), the cost for node x, which is the fraction of slots within
which x attempts transmission (regardless of whether the
transmission fails or succeeds).

Each node’s decision to transmit within a particular slot de-
pends only on the outcome of its previous attempt (success or
failure), and does not depend on the state of other nodes. Hence,
this protocol can be easily implemented in a distributed manner.
Moreover, each node’s decision is Markovian, as it depends only
on its previous attempt’s outcome.

Fig. 1 shows the state transition diagram for a two-node
system with node x and y. F, and G, represent that node
x is in a Free State and a Backlogged State, respectively. A
system for N nodes is easily modeled by as a Markov Model
where the chain would consist of 2V states. By numbering the
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Fig. 1. Two-node Markov chain.

states (Fy, F), (Fy, Gy), (Fy, Gy), (Gz, Gy) to be 1,2,3,4, the

?

transition matrix for a two-node Markov Model is

1 - pip{ 0 0 iDL

po | A=pD)ps  1-pj 0 pipy;
(1-pi)ps 0 L—p5  pips;

0 p5s(1—=p3) p3(1—p3) pas

where pag = pp3 + (1 = p5)(1 — pj).
If p¥, p¥, p3, py > 0, the Markov Model is positive-recurrent.
The steady state distribution is the following:

1 k‘l
7?: T _ 1 k2
T3 ki +ko+ks+ky | k3
T4 ka4

where
psps [(1—pT)ps (1 — pé’Q) + (1= p3)py (1= pi)]
pip] (p5)” (1

. - p3)
- z, Y (Y2 z
pip1 (Pz? ’(17_ p3)
PIPIP3D;
ey
The corresponding throughput and cost of node z are
T, =m1 (p7) (1 = p{) +m2 (p7) (1 — p3)
+m3(p3) (L—pf) +ma(p3)(1—p3). (2
Cp =m1 (p) + m2 (p1) + 73 (p3) + 74 (p3) . ()

Nodes may have physical limitations (e.g. power consump-
tion constraints or application throughput constraints) that may
bound its cost function. We bound allowed cost by a budget, B,.,
such that a node’s parameters must produce a cost C, < B,.

When we consider cooperative nodes that seek to maximize
throughput, we are also interested in system fairness: all nodes
should get an equal share of the aggregate throughput. In ad-
dition, we assume that it is undesirable for any one node to
“capture” the medium for an extended number of slots—a long-
term capture can be thought of as unfair over a short duration.
Koksal’s work [28] gives an analysis of the short-term fairness
of MAC protocols. It provides some insight into why MAC pro-
tocols exhibit bad short-term fairness using two different fair-
ness indexes. In this paper, we measure short-term fairness via
a more fundamental quantity defined as the following.

Definition 1: Let D, be the number of consecutive slots fol-
lowing an initially successful transmission over which node x
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successfully transmits packets (i.e., if there are & successful con-
secutive transmissions, then D, = k — 1). The system is said
to be M-short-term fair to all nodes if E[D,] < M for all
nodes . [ |

Remark: By definition, if a system is M -short-term fair, it is
also N-short-term fair for any N > M. If short-term fairness
is enforced, then a node cannot “capture” the channel for an
excessive amount of time, i.e., that the medium is shared more
evenly on smaller time scales.

IV. COOPERATIVE PERFORMANCE ANALYSIS

In this section, we assume that nodes cooperate to fairly (i.e.,
equally) share the available bandwidth and to maximize the ag-
gregate system throughput. By doing so, each node achieves the
maximum throughput possible in a fair allocation when limited
to protocols that cannot sense the wireless medium. Clearly, if it
were permissible to bias the allocation toward one of the nodes,
the system could achieve full utilization by allowing only one
node to always transmit. If a centralized scheduler or carrier
sensing mechanism were permitted, we could also make fair
share of the medium with almost 100% utilization. Here, we
seek an unbiased and distributed solution for all nodes such that
nodes will achieve the same average throughputs.
Our goal in this section is to answer the following questions:
1) What are the values of p] and p3 for each node = that
maximize the total throughput of the system?

2) What is this maximum achievable throughput of the
system?

3) What is the short-term fairness of the optimal allocation,
and how can that short-term fairness be improved?

Theorem 1: For two homogeneous nodes with p} = p¥ = p;
and p3 = py = po, sup{T, + Ty} = 2/3.

Proof: Substitute all the transmitting probabilities with p;
and p- into (1) and (2), we have

2p2(1 = p2)(1 —p1)

. (1= p2)p}
(1 —pz)p%
Pt
and
T, =mip1(1 —p1) + map1(1 — p2) + m3p2(l — p1)
+ mapa2(1 — p2)
=Bp1 (7 — ap1 + @) / (P} — aBpr + af)
where

a=2py, B=(1-p2)/(3—2p2).

Whenpy = 1,1, = 8= (1 - p2)/(3 - 2p2) and § — 1/3
as po — 0. By symmetry, T, + T,, — 2/3 as p; — 0.

Next, we want to show T, < 1/3 for all p1,ps € (0,1]. It is
equivalent to show the following:

Bp1 (p7 — ap1 + a) / (p? — aBpr + aB) < 1/3

< 30p1 (p] — ap1 + @) < pi — afp1 + af
=  308p3 — (3B +1)p? + 4afp, — B < 0.

939

Idle or

p, C Busy State

Collision

1- D,

Fig. 2. N-node Markov Chain with {p; = 1, p> — 0}.

We define f(p1) = 36p — (3af + 1)pT + 4afp: — af.
Two boundary conditions are f(0) = —af < 0 and f(1) =
38 —1 < 0. Since f(p1) is a cubic function of py, it is sufficient
to show that the local maximum is less than zero, so as to prove
that for any p; € (0,1], f(p1) < 0. At the local maximum,

1 (07) = 98 (0})* — 2(3aB + L)p} + 48 = 0.
Using the above condition, it is equivalent to show
f(07) = =(1/3)BaB + 1) (p)* + (8/3)afp} — aff < 0.
The maximum of the above function is
[(4/3)(308 + DB = (8/3)aB)*| / [=(4/3)(308 + 1] .

The denominator is negative, while the numerator is positive
because

(4/3)(308 + 1B — ((8/3)aB)” > 0

= (4/3)(3aB + 1) — (64/9)aB > 0
= af < 3/7

= 2p2(1 = p2)/(3 = 2p2) < 3/7
= 14p2 — 20ps +9 > 0.

Finally, because the local maximum f(pj) < 0, we conclude
that f(p1) < O forall p; € [0, 1). ]

Theorem 1 upper-bounds the maximum fair throughput at
2/3, which is achieved in the limit as both nodes choose {p; = 1,
p2 — 0}. This solution is intuitive: collisions are less likely to
occur in a carrier-sense free environment when nodes are very
unlikely to start transmitting, but hold the medium until a sub-
sequent collision.

Theorem 2: For N homogeneous nodes withp; = 1,py — 0,
the total throughput approaches N/(2N — 1).

Proof: Consider in each time-slot, the whole system is in
certain state. We aggregate all the system states into the fol-
lowing two states. One state is the “Busy” state where only one
of the nodes is transmitting in the time-slot. The other state is the
“Idle or Collision” state where no node or more than one node
are transmitting in the time-slot. The state transition diagram is
shown in Fig. 2.

We define the transition probabilities as p, = (1 — pa
and p, = Np2(1 —p2)N 1. py indicates the probability that all
of the N — 1 backlogged nodes do not transmit. p, indicates the

)N—l
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Fig. 3. Aggregate throughput for fixed p-.

probability that only one of the N nodes transmits. The system
utilization becomes

P =Tbusy :pa/(l_pb +pa)
_ Npa(1—p2)V
1—(1—p2) V=14 Npa(1—po)N -1
1 1—(1—po)N-t
(LI
p2 (1—p2)

B I+ (1=p2)+(1—p2)?+...+(1—p2)N 2
_N/( [ p) ¥ +N>.

Therefore, p — N/(2N — 1) as po — 0. |

Intuitively, when the number of nodes increases in the system,
with higher probability, the channel is jammed with more than
one node transmitting at the same time. Consequently, the
aggregate system throughput decreases. However, Theorem 2
shows that the throughput does not drop to zero: even when the
number of nodes tends to infinity, the aggregate throughput re-
mains larger than one half. Note that this result differs from the
traditional performance bound (1/e) of slotted-Aloha because
our generalized model permits the capture of the resource. This
allows a node to use the channel for very long but bounded
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intervals (given a fixed and non-zero value of p») of slots while
all other nodes back off. An alternative analysis of this capture
phenomenon can be found in [7].

Both Theorem 1 and Theorem 2 focus on the class of solu-
tions where p; = 1 and po — 0. For N = 2, we proved in The-
orem 1 that the optimal throughput is achieved at {p; = 1,ps —
0}. Nevertheless, the maximum throughput is also achieved at
{p1 = 1,p2 — 0} for N > 2. The formal proof can be found in
our technical report [29]. Here, we present some evidence which
shows the optimality of {p; = 1,ps — 0}. We start with the
following observation.

Theorem 3: For N homogeneous nodes, the solutions
{p1 = p2 = 1/N} and {p; = 1,p2 = 1/N} both achieve the
throughput (1 — 1/N)N -1,

Proof: When {p1 = p2 1/N}, each node tries to
transmit at each time-slot independently with probability 1/N.
Therefore, the throughput is just the probability that if and only
if one of the N nodes transmits:

p= (1) m - ym ¥t = - yny

When p; = 1 and p» = 1/N, we can adopt the Markov
Chain in Fig. 2. We have the transition probabilities p, = (1 —
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p2)V1 = (1 — 1/N)N=1 and p,
(1 — 1/N)N=1. The throughput is

Npa(1 — po)N=1 =

P = Tbusy = pa/(l — Db +pll) = Pa = (1 - 1/N)N_

|
Theorem 3 provides a reference point to divide the solution
space into groups. Fig. 3 plots the throughput for systems of
N = 2,5,10 and 20. In each subplot, p; varies along the z-axis,
and different curves plot different values for p,. For any N, we
use the curve po = 1/N (from Theorem 3, we know the exact
value when p1 = 1 or p; = 1/N) as a reference to divide
solutions into two groups: po < 1/N and p2 > 1/N. We plot
the curve p» 1/N in solid lines. We compare the solution
within each group and across groups, and make the following
observations:

* When the value of p» increases from 1/N, the throughput
decreases. The curve of po = 1/N is above all curves of
p2 > 1/N.

* When the value of py decreases from 1/N, the throughput
curve becomes lower in the region p; € (0,1/N), but
the maximum of each curve is at p; = 1. This maximum
increases when po decreases.

In Fig. 4, we plot the surface of throughput for systems with

various number of nodes. In each subplot, p; varies along the

941
0.6~
L 04
a
2
£
(=2}
b |
] S
£ 02 e L
,,///////[/ I/// i i % \‘\\\\\\\ \\ ‘\
//////”7”” ////////;//I;/l ”;;/[Z;/””'I;’I;”II' "":"'3::‘::‘3“‘3\““‘3“‘\‘\‘:““\“\t\‘\\“‘
/////////////////////'/’/'/’,’/’f// I/f/,,,;;/l"/:,li":«‘ ““\{3\\\\\\\\“ L
it it
il \\\\\\\ :
m‘ \\\\\ g
1.0
0 0
0.6~
0.54-
_ 044
- }
2
5 0.3+
<)
3 3 . e u%” m/l/
£ 024~ : e i \\\\\\\ /I/llllIII”IIIIIIIII%II%I”;”%I!lel/%%”
: : ull /I o s
or o Al jilless =
| I/ \\\mﬂ"””’95‘1,"‘9""’44944,4332’1,’;;/,,44" 7
| ‘lf'l'uluul/”,’,i’ﬁﬂ/f /
1.0 ‘w , o
\ 1.0

x-axis (on the right); p, varies along the y-axis (on the left).
By increasing of the number of nodes NV in system, the surfaces
bend down dramatically in the region of small p; and large p»
(left corner). The high throughput is reached in the region of
large p; and small p5 (right corner). In particular, the maximum
is achieved at p; = 1,p2 — 0.

Although the solution {p; = 1,p2 — 0} might maximize
throughput, it is not short-term fair, in which a single transmitter
gains exclusive access of the medium for a long time. As p, —
0, we have E[D,] — oo. We now consider how to enforce
short-term fairness.

Theorem 4: For N homogeneous nodes with p; = 1 and
pe > 1— ¥/1—1/M, the system is M-short-term fair2 to
all nodes.

Proof: Because D, is a geometric random variable with
parameter 1 — p;, we have

1

R AL

Since p» > 1 — “}/1—1/M, we have E[D,] < M. By
definition, the system is M -short-term fair to all nodes. [ |

2See Definition 1.
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Fig. 5. Throughput under different fairness conditions.

Theorem 4 quantifies how to select ps to achieve a certain
short-term fairness. In particular, in order to achieve M-short-
term fairness, we can choose the following value of ps:

pp=1— "/1-1/M. 4)

The total throughput becomes a function of M:

Npo(1 — po)N—1

PTTE e D @
~ N(M -1)
TPENM o —— ©

Fig. 5 plots the total throughput under different short-term
fairness constraints (M) as the number of nodes, N, varies
along the x-axis. This figure shows the tradeoff between
short-term fairness and throughput. However, without sac-
rificing much throughput, the system achieves desirable
short-term fairness. For example, if we want the system to
be 8-short-term fair, which means each node can successfully
transmit no more than 8 consecutive slots on average when
it captures the channel, we can achieve a total throughput
close to 1/2 even for large N. In fact, when N — o0, the
total throughput does not collapse to zero. We will discuss the
throughput limits in the next theorem.

Lemma 1: For any constant M > 0, if p» = 1 —
N/1—1/M, then Np, is monotonically decreasing with
N.

Proof: Leta =1 —1/M and 3 = o/ (N =1 We have

pp=1-"Y1I-1/M=1-—av1=1-4.

First, po is strictly decreasing in N, because dpy/dN =
Ina(B/(N — 1)%) < 0. We define f(N) = (N — 1)p,.

df(N)/dN = (N — 1) [lnaﬁ} +1-p
=((N-1D)"lna-1)B+1
=(lng-1)pB+1
=flmpB-pf+1<Inf-p+1<0.
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The last inequality holds because of the following. We define
g(B) = In —LB+1. g(p) is a strictly concave function, because
g(B) = 1/8—1Land g"(B) = —1/p2 Since g(1) = 0, /(1) =
0and ¢’ (1) = —1 < 0, we see g(/3) attains its maximum value
Oat 8 = 1. 8 < 1 holds under our context; therefore, the last
inequality holds.

Finally, Npo = (N — 1)ps + p2, and consequently,
dNps/dN = df(N)/dN + dp2/dN < 0. ]

Theorem 5: Under any short-term fairness condition
E[D,] = M, the total throughput, p, is lower-bounded by
~(M — 1) In(1 = (1/M))/(1 = (M — 1) In(1 - (1/M))).

Proof: We choose the value of ps in (4) to satisfy the short-

term fairness condition. Accordingly, from (6), we have

1_N—1/1_%
;L: 1_N—11_i N:—M_
M-11_1 V M +
p

The right-hand side is of the form 0/0 as N — oo. By L’hos-
pital’s rule

hﬂl—%)”QﬁtggN—lf2:_m<l_i>
M

_N-2

lim
N—oo

o 1 1 w11
. l1m = —1n -
Nooo M —11—1 M

= lim p=
N—>oop

On the other hand,

11 . 1
M—1l_1:(1_ : Vll_M>N:Np2'

p

Thus, by Lemma 1, p is monotonically decreasing in IV (as well
as in Np,). Therefore, p is lower-bounded by—(M — 1) In(1 —
(1/M))/(1 = (M = 1) In(1 = (1/M))). .

Theorem 5 provides the lower bounds for the curves in Fig. 5.
We draw the limits of the throughput in dotted lines under each
throughput curve. We see, for M to be reasonably large (e.g.
M = 8), the throughput lower limit is close to 1/2. Indeed, when
M tends to infinity, this limit also tends to 1/2. In practice, a
fairness requirement M can be achieved by choosing a suitable
po for all users. Like the information of the number of users (N),
we suggest that the po value can be broadcasted in the beacon
messages by the system infrastructure.

V. COMPETITIVE PERFORMANCE ANALYSIS

In the previous section, we identified the lower bounds of the
obtainable throughput among cooperative nodes, additionally
considering short-term fairness constraints. In this section, we
assume that each node is autonomous and sets its protocol
parameters to maximize its own throughput. We start from
a short-sighted selfish strategy that maximizes one’s own
throughput given any fixed parameters of other nodes. We show
that this strategy induces a zero-throughput Nash equilibrium
in the system. After that, we construct a Stackelberg game [6]
by formulating a constrained optimization problem for each
node. In particular, the leader player in the Stackelberg game
strategically sets the parameters by taking the other node’s
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reaction into account. Last, we form a simultaneous move game
where nodes all strategically set parameters, and reveal that a
Prisoner’s Dilemma [6] phenomenon can occur.

A. Short-Sighted Selfish Behavior

Suppose N nodes are originally cooperative and use p; = 1
andps = 1— ¥{/1 — 1/M to achieve the maximum M -short-
term fair aggregate throughput. In this system, each node x ob-
tains throughput

Ty = p/N = (M = 1)/ [N(M — 1) +1/pa].

If one node deviates from this cooperative solution and sets ps =
1 instead, its throughput increases to

Ty=py=(1-p)" ' =1-1/M.

Its throughput now equals the probability that no other node is
transmitting in each time-slot. Comparing the above two equal-
ities, we have

1 — Npy
T, M )

Mps

Hence, by unilaterally changing ps to be 1, a selfish node can
usually increase its throughput at least N times (if Nps < 1).
This selfish behavior sacrifices the throughput of all other nodes,
because they can no longer obtain any throughput. In fact, given
all other nodes’ parameters fixed, to set p; = p» = 1 is always
the best strategy to maximize one’s own throughput. However,
unfortunately, this implies a Nash equilibrium of the system
with zero aggregate throughput.

B. Stackelberg Game

As shown above, multiple short-sighted selfish users can
drive the system throughput to zero. Here, we extend this
selfish behavior into a more sophisticated strategy which takes
other nodes’ short-sighted selfish behavior into account. We
formulate a Stackelberg game [6], which enables one of the
nodes (the leader) to anticipate the short-sighted selfish be-
havior of the other node (the follower) and to choose its optimal
parameters. Stackelberg games have been applied to different
areas of networking protocols (e.g. routing strategies [30], [31])
in order to achieve efficient equilibria.

In this Stackelberg game, we consider a network that con-
sists only of two selfish nodes x and y, each of which wants
to maximize its own throughput. In addition, we assume that
each has budget constraints C;, < B, and Cy < B,, respec-
tively. C, and (), are the costs of both nodes as defined in (3).
B,, By € (0, 1] are two budget constants that physically restrict
the average number of packets the node can transmit in each
time-slot. We impose these budget constraints in order to model
the nodes in a wireless ad hoc network or a sensor network. Be-
cause nodes in these networks are very sensitive to power con-
sumption, and transmitting packets consumes a lot of battery
power. Consequently, the behavior of nodes may largely depend
on their budget constraints.

We formally describe the Stackelberg game as follows.

Players: The leader node z and the follower node y.
Strategy: S* = {p{,p5} for z; S¥ = {p{,p3} fory.
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Payoff: T, and T, for x and y, respectively.
Game rule: Given any z’s strategy {p7, p%}, y chooses the
best response {p¥,py} accordingly.

Follower’s Problem: In the Stackelberg competition, the fol-
lower y is modeled as a short-sighted selfish node that always
tunes its parameters, responding to the other node’s parameters,
to maximize its own throughput. Formally, for any given S%, the
follower node y solves

5Y(5*) = argmaxTy(gz,gy)
Subject to: Cy(‘/S'\;?.S?y) < B,.

Leader’s Problem: In the Stackelberg competition, the leader
x applies the strategy that takes the follower’s behavior into
account. It maximizes its own throughput by anticipating the
short-sighted strategy of the follower. Formally, the leader node
x solves

S* = argmax T}, (gf,gy(gx))
Subject to: C, (§z7§y(§z)) < B,.

In practice, users might not know one anothers’ strategies.
The Stackelberg game assumes that the follower will adjust its
parameters to maximize its throughput given any fixed param-
eters of the leader, x, and will maintain fixed parameters so
long as = does as well. Both the leader and the follower are not
necessarily very different; however, the leader is more strategi-
cally sophisticated and the follower is simply a throughput max-
imizer.

To solve this Stackelberg game mathematically, we first solve
the follower’s problem for every possible strategy taken by node
z. Thus, we obtain the best response strategy of ¥ as a function
of node x’s strategy. After that, the leader decides its optimal
strategy according to node y’s best response strategy. This pro-
cedure is often referred to as backwards induction3 [17]. The
corresponding game solution is often referred to as a Stackel-
berg equilibrium. We derive numerical results based on (2) and

3.

C. Three Stackelberg Equilibrium Regions

We solve the above Stackelberg game for nodes who have the
same budget constraints, i.e., B, = B,.

Fig. 6 and Fig. 7 show the throughput and costs of both
players in the Stackelberg equilibrium. The x-axis represents
the budget constraint for both players. The change in the
throughput as a function of the budget behaves differently in
three different solution regions:

1) When the budget is less than 1/3, both players achieve
the same throughput, and they both use up their budgets.
Within this region, an increase of budget improves the
achieved throughput. The throughput is mainly limited by
the budget constraints rather than the competition between
these two players.

2) When the budget is between 1/3 and 2/3, both players
again achieve similar throughput and use up their budgets.

3Backward induction is actually a more general procedure to identify the Sub-
game Perfect Nash Equilibria in any finite dynamic game with perfect informa-
tion.
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However, an increase of budget deteriorates each player’s
throughput. In this region, competition between these two
players further reduces the throughput as well.

3) When the budget is more than 2/3, the leader can select pa-
rameters that give it a larger fraction of the throughput. As
the budget increases, this unfair allocation of throughput
exacerbates and the follower, still wishing to maximize its
own throughput, actually becomes less aggressive and uses
a partial budget. In this region, the Stackelberg game bene-
fits the leader by sacrificing the throughput of the follower.

Fig. 8 plots values of p; and po, revealing the strategies of
both players in Stackelberg equilibrium. In the first two solution
regions, both players use similar strategies. As a result, it does
not matter (to a node) whether it is the leader or the follower,
because both players achieve similar throughput. In particular,
when the budgets are close to 1/3, the strategies selected by the
players are similar to what would be selected by cooperative
players, and the aggregate throughput approaches 2/3. As the
budgets are further increased, the nodes’ additional contention
on the medium and the rate of interference become significant.

When the budgets exceed 2/3, the leader’s strategy changes
dramatically. Instead of setting p; = 1, it sets po = 1. This
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Fig. 8. Strategies in Stackelberg equilibrium. (a) Leader’s strategy. (b) Fol-
lower’s strategy.

implies that if a transmission fails in a slot, it will attempt to
retransmit during the next slot. This makes sense intuitively be-
cause the follower, attempting to maximize its own throughput
with its confined budget, must back off with high probability
after a collision, and the "safest" time for the follower to transmit
will be following a previous successful transmission. Because
the leader uses po = 1, the follower can only successfully
transmit when the leader is in the Free State. Therefore, the fol-
lower must not fully use its budget, since it has to reduce the
collision probability that leads the leader to a Backlogged State.

Note that at around a budget of 0.55, where the leader starts to
set po = 1, the follower’s strategy begins to mimic the leader’s
strategy to maximize its own throughput. When the budget in
further increased, the follower cannot use the same aggressive
strategy to maximize its own throughput.

D. Simultaneous Move Game and Prisoner’s Dilemma

The Stackelberg game assumes that the leader is strategically
more sophisticated that the follower. To relax this bias, we now
assume that both nodes, not being able to anticipate the other
party’s strategy, will decide their strategies simultaneously. This
models situations in wireless network where users do not know
other users’ backoff rates, which can be any strategy of p; and
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p2, in advance. We focus on three representative budget sce-
narios and the corresponding strategies (from Fig. 8) that would
be played in the Stackelberg game:

* Low budget region: B, = B, = 0.34. Strategy Sc =
S* = SY = {p; = 0.98,py = 0.02}.

* Medium budget region: B, = B, = 0.5. Strategy Sy =
ST =8Y = {pl = 17p2 = 028}

* Highbudgetregion: B, = B, = 0.8. Strategy S;, = S* =
{p1 = 0.64,p = 1}, and Sp = S = {p1 = L,p2 =
0.5}.

Strategy S¢ in the lower budget region is similar to the strategy
played by the nodes in a cooperative environment. Strategy Sy,
more aggressive than S¢, is played by both the leader and the
follower in the medium budget region. Finally, S;, and Sp are
the strategies of the leader and the follower in the high budget
region.

We consider two simultaneous move games, where two
nodes must choose their parameters to maximize their in-
dividual throughput without knowing what their opponent
chooses to do. Each game models a budget scenario where
nodes are confined to use some of representative strategies
above.

To be “Cooperative” or to be “Greedy”?: First, we consider
a game in which two nodes, each with a budget of 0.5, must de-
cide whether they will perform a cooperative-type of strategy or
behave in a greedy manner (i.e., should the node set its param-
eters according to S or Sy, ?) We evaluate (2) for both nodes,
and list the throughput in the following table:

Sc
Sc | (0.3246,0.3246)
Su | (0.9288,0.0034)

S
(0.0034, 0.9288)
(0.2951,0.2951)

Here, we see a typical Prisoner’s Dilemma [6]. Although
from a global perspective, both players know the best solution
is (Sc¢,S¢), from any hypothetical local point, strategy Sas
should always be played. This is because, for any fixed strategy
by the opponent, choosing Sy, is always better than choosing
Sc. Strategy Sy is called the dominating strategy [6] for both
players and the solution (Sys, Sas) is the unique Nash equilib-
rium [6] solution of this game.

To be “Aggressive” or to be “Mild”?: In the second game,
we assume that nodes have budgets in the third region. As in the
Stackelberg game, the leader player is better off by playing an
aggressive strategy; however, now the nodes must also decide
whether to choose the leader-type of strategy or the follower-
type of strategy, without knowing the other player’s response
in advance. Notice that there is no actual leader or follower in
the simultaneous move game. Here, nodes are restricted to the
strategies S, and S used by the leader and the follower in the
Stackelberg game.

SF SL
Sp (0.25,0.25) (0.1233,0.3595)
Sr | (0.3595,0.1233) (0,0)

Here, a node’s best strategy is not clear. A node is always better
off choosing the opposing strategy of its competitor. Choosing
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the follower strategy is more conservative. A throughput of at
least 0.1233 is ensured, but the throughput can be at most 0.25.
If the leader strategy is chosen, throughput of 0.3595 is possible,
but throughput of 0 is also a possible outcome. Interestingly,
this game has two symmetric Nash equilibrium solutions, i.e.,
(SF, SL) and (SL, SF)

From the results of the above two simultaneous move games,
we can further explain the three solution regions of the Stack-
elberg game in Fig. 6. When the budget is between 1/3 and 2/3,
both nodes are afford to use classes of cooperative (e.g. S¢) or
competitive (e.g. Spyy) strategies. The uniqueness of the Nash
equilibrium solution implies that nodes would similar strate-
gies regardless it is the leader player or the follow player. As
the budget increases, it is affordable for the nodes to use any
strategy. From the symmetric Nash equilibria in the simulta-
neous move game, the leader player can always take advantage
to choose a favorable equilibrium in the Stackelberg game.

VI. SELFISH BEHAVIOR DETECTION AND PREVENTION

In the previous section, we used non-cooperative games of
two nodes to show that selfish behavior of nodes deteriorates the
overall throughput obtained across the transmission medium, as
well as that of the individual nodes. In this section, we discuss
how cooperative nodes can identify and prevent selfish behavior
in a general N-node system.

A. Transmitting is a Dominating Strategy

Consider any node ¢ at any time-slot ¢. If it attempts to
transmit, the probability of success is

(1 —p)

where p’ is the probability (p{ or pg depending on j’s state)
that node j transmits in that time-slot. Without any budget con-
straint, node ¢ can achieve the highest throughput by transmit-
ting a packet during every time-slot. However, if node ¢ trans-
mits a packet in every time-slot, other nodes transmission at-
tempts will always fail. Over time, this phenomenon can be
easily observed. Here, we consider how cooperative nodes can
alter their parameters if their perceived success rates are too
small in such a way that selfish nodes become “encouraged” to
set their parameters to mimic the behavior of cooperative nodes.

B. Selfish Behavior Detection

Theorem 6: For an M-short-term fair cooperative en-
vironment, where each node uses p; = 1 and po = 1 —
N=y/1 — 1/M, the success rate defined by T} /C,, for any node
x is lower-bounded by (M —1)(M —2)/((M —1)(M —2)+1).

Proof:

T, NT, p

c., _ NC, NC,

where NC, is equal to the total average cost for all nodes.
Suppose all N nodes are in backlogged state. Let () be the
number of nodes that decide to transmit in a time-slot. Then
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Pr{Q =i} = q = (Y)pb(1 — p2)N~, where Q is a binomial
random variable with parameters p, and N.

N
NC, =p+(1— p)quj/(l —q)

=p+(1=p)(EQ]—aq1) /(1 - q)
=p+ (L —=p)(Np2—q1)/(1 — q1).

Since g1 = Npa(1—p2)¥ =" = Npa(1—(1/M)) and (1/p) —
1=(1/(M —1))(1/Np2), we obtain

T,/Ce=p/ [p+(1=p)(Np2—q1)/(1—q1)]

1= (5-1) (- a)/1-a)
= chz_ :Ml—1N1p2
(i) fo
= e =w () /0w
<

st st (1) (o (-3)

By Lemma 1, Np, is monotonically decreasing in N. When
N =2, Npy = 2/M is the maximum for N > 1. Substituting
Npy with 2/M, we have

e =it (ar) / (- (1-57))
= <= () / (-3 (-37)
= o/ (2 ()

T

= T:/Ce>[(M-1)(M=2)]/[(M-1)(M-2)+1].

|
Theorem 6 provides a guideline for how cooperative nodes
can, in a distributed fashion, detect the existence of any selfish
node. A fraction of at least (M — 1)(M — 2)/((M — 1)(M —
2) 4+ 1) of a cooperative node’s transmissions should be suc-
cessful. For instance, when M equals 8, this average success
rate lower-bound is 42/43. When M is larger, the success rate
is even higher. Notice that this success rate is different from the
throughput that a node achieves. With the increase of the number
of nodes, each node’s throughput decreases however the success
rate lower-bound remains the same. In practice, each node can
measure this quantity to infer if there is any selfish node in the
system.
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C. Selfish Behavior Prevention

In order to prevent selfish behavior in the system, each co-
operative node can implement a new strategy when they de-
tect selfish nodes. The new strategy uses a ph(> po) that re-
duces the throughput of the selfish node to a level below what it
would have achieved if p» were used by all cooperative nodes.
Knowing that such a reduction will occur, selfish nodes have the
necessary incentive to remain cooperative.

Suppose after all cooperative nodes activate the new strategy
ph, the selfish node obtains throughput 77... T has to be less than
p/N, which is the fair share throughput gained in a cooperative
environment:

)M

T. = (1—py)" " < p/N

1—py < " V/p/N
— ph>1— "/p/N.

From Theorem 2, we know that p is lower-bounded by 1/2.
Hence, we can substitute in 1/2 for p when calculating the lower-
bound of p} as an approximation.

Fig. 9 shows the cooperative strategy po and the selfish pre-
vention strategy p5. We see 1 — “/1/2N is a good approxi-
mation for the lower-bound for p5.

<~

VII. ADVERSARIAL MODEL ANALYSIS

All previous scenarios assume that each node, whether
cooperative or selfish, is interested in maximizing its own
throughput. In this section, we consider an attacking node
whose goal is to use its restricted budget to minimize the
throughput of the other nodes in the system, i.e., to cause as
many of its packets to collide with what would otherwise be
successful transmissions. We first discuss how much damage an
adversary node can inflict if it uses a random (stateless) attack.
Next, we formulate this attack model as another Stackelberg
game.

A. Pure Random (Stateless) Attack

If an attacking node is able to transmit a packet in every time-
slot, it can clearly jam all transmissions. We assume that the
adversary node has a budget B € (0, 1], allowing it to transmit
in at most a fraction B of the slots. This budget represents as the

Authorized licensed use limited to: Columbia University. Downloaded on August 19, 2009 at 14:35 from IEEE Xplore. Restrictions apply.



MA et al.: AN ANALYSIS OF GENERALIZED SLOTTED-ALOHA PROTOCOLS

highest frequency of transmission under which an attack cannot
be detected.

Definition 2: An adversary node is said to use a p-pure
random attack if it transmits a packet in each time-slot inde-
pendently with probability p. [ |

By Definition 2, an adversary node with a budget B can use
a p-pure random attack for any p < B. We can imagine that a
p-pure random attack for a communication channel is identical
to a lossy channel where a packet is lost with probability p.

Theorem 7: Suppose there are two nodes x and y in the
system. If node « is an adversary node that uses a p-pure random
attack, then regardless of the strategy of player y, y’s throughput
T, is equal to (1 — p)C,,.

Proof: Substitute p7 and p3 with p in the corresponding
throughput for y as in (2). We have

pi (1—p7)
_ , pi (1 —p3)
Ty - (7r177r377r277r4) p% (1 _p‘f)
Py (1 —p3)

P

Py

:(1 —p)(7r1,7r3,7r2,7r4) Yy

V)

Yy

V2)

Since the corresponding cost function for y as in (3), we have

P
»
Cy = (7{'1771'377['2,7!'4) Yy
V2
2
Therefore, T, = (1 — p)C,,. ]

Theorem 7 formalizes the intuitive result that a p-pure random
attack reduces the capacity to be 1 — p of the original capacity.
Interestingly and counter-intuitively, if we have more than one
cooperative node, the damage caused by a p-pure random attack
is often larger than a factor of 1 — p.

Theorem 8: Suppose originally there are N homogeneous
nodes that use p; = 1 and p, < 1/N in the system. They
achieve an aggregate throughput p. If an adversary node joins
the system and uses p-pure random attack, then the aggregate
throughput of the N cooperative node is less than (1 — p)p.

Proof: Before the adversary node comes into the system,
we can model the system as in Fig. 2. The transition probabili-
ties are p, = (1 — po)V =1 and p, = Np2(1 — p2)N =1, After
the adversary node comes, we define the corresponding transi-
tion probabilities to be pj and p,. Because a successful packet
from a normal node happens only if the adversary node does not
transmit, we have p;, = (1 — p)p, and p), = (1 — p)p,. From
(5), we obtain

_ Npa(1 —pp)N -1
1+ (Npy —1)(1 —po)N-1°

p

The new throughput p’ is

b Pa _ Npa(1 —po)V !
L=py+p, 155+ Np2—1)(1 = p2)V~!

p
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Therefore,
J_ W=
P+ (Np2 = 1)(1 = pp) N1
The last inequality holds if po < 1/N. [

An explanation of this result is that as more nodes participate
in the cooperative process, the expected number of slots between
transmissions in the Backlogged State grows at a faster rate than
the expected number of slots between transmissions in the Free
State. A random seeding of losses forces more nodes to spend
increased time in the Backlogged State, and as a result, each
node attempts fewer transmissions over time, yet still loses a
fraction p of the attempts to the random loss process.

B. Adversary Stackelberg Game

Now, we compute the reduction in throughput caused by an
adversary node when it maximizes its attack power under a
two-state system. As in Section V-B, we model this system as a
Stackelberg game. The difference between the previous model
and this model is that we assume the leader node x is the at-
tacker and its sole objective is to minimize the throughput of
node y. Because the leader has an advantage over the follower,
making the adversary node the leader maximizes its potential
for damage. We still assume that node x and y have budget con-
straints: C;, < B, and C, < B,, respectively. The adversary
Stackelberg game can be formally described as follows.

Player: The leader node x and the follower node y.
Strategy: S* = {p{,p5} for z; S¥ = {p{,p3} for y.
Payoff: —1, and T} for z and y, respectively.

Game rule: Given any «z’s strategy {p7, p%}, y chooses the
best response {p¥,py} accordingly.

Follower’s Problem:

For any given S, the follower node ¥ solves:

S¢y(§;) = argmaXTy(S’E,gy)
Subject to: Cy(§5,§y) < B,.

Leader’s Problem:
The leader node z solves:

Sr = arg min T}, (gm,gy(gx))
Subject to: C, (§z7§y(§z)) <B,.

C. Two Stackelberg Equilibrium Regions

By backward induction, we solve the above adversary Stack-
elberg game for nodes who have the same budget constraints,
ie., B, = B,.

Fig. 10 plots the throughput of the follower (non-attacking)
node y when z chooses the optimal attacking strategy of the
Stackelberg game. It also plots the curve B, (1 — B, ), which
gives the throughput of node y when the attacker uses a p-pure
random attack with p = B,.. Fig. 11 shows the costs incurred by
both players. We identify two regions in the Stackelberg equi-
librium solutions:

1) When the budget is less than 2/3, both players use up their
budgets. Player y achieves identical throughput when at-
tacked by the adversarial leader player and by a p-pure
random attacker.
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2) When the budget is larger than 2/3, player y achieves
slightly but observably lower throughput when attacked
by the adversarial leader player than attacked by the p-pure
attacker.

Intuitively, the attacking node will always use up its budget to
attack. But surprisingly, a strategic, two-state attack cannot do
better than pure random attack if the adversary node does not
have a budget larger than 2/3. When the budget is larger than
2/3, the two-state attack is only slightly more effective.

D. Random Attack Versus Strategic Attack

We show the strategy solutions of both players in Fig. 12. We
find that the strategies played in the two budget regions are quite
different.

Not surprisingly, when the budget is less than 2/3, the at-
tacking node uses the pure random strategy p7 = p5 = B,.
Theorem explains why the throughput 7}, is so close to curve
B, (1 — B,) in the lower budget region. It turns out that player
y has multiple strategies to maximize its throughput, but all of
these strategies use up the budget B,. Therefore, although the
strategies played by node y seem to be irregular, node y al-
ways gains a throughput that is close to B, (1 — B,). Notice
that when the budget is very small (e.g. N < 0.2), the prob-
ability of a collision is extremely small. Therefore, there are
multiple optimal strategies that can maximize throughput. Of
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Strategy of follower y

course, p7 = p5 = B, should be one of the optimal strategies
that maximizes throughput.

After comparing the strategies played by both nodes in the
larger budget region with those used by two non-cooperative,
non-attacking nodes in Fig. 8, we notice that they are strikingly
similar. This means that an adversary node x chooses a strategy
very similar to what is chosen by a node who wishes to selfishly
maximize its own throughput. Of course, node y would there-
fore use the same response strategy.

In conclusion, if bandwidth requirements/capabilities are low,
an attacker cannot do much better than attacking at random
points in time. If the bandwidth requirements and capabilities
are high, then an attacker behaves similarly to a node seeking to
maximize its own throughput.

VIII. CONCLUSION

In this paper, we generalize the slotted-Aloha protocol to
a two-state protocol and construct its Markov Model. We
find that if all nodes cooperate in an effort to maximize the
aggregate throughput, an aggregate throughput of at least one
half (p > 1/2) can be achieved regardless of the number of
nodes competing for bandwidth. If all nodes are selfish and
attempt to maximize their own individual throughput, both the
aggregate throughput and system fairness will be compromised.
In a Stackelberg game, a leader node can achieve much higher
throughput than a follower node with large budget limits. In
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a simultaneous move game, where nodes both strategically
choose parameters, a situation similar to the traditional Pris-
oner’s Dilemma arises. Finally, we showed that adversary
nodes with limited budgets can do little better than a random
attack, and nodes with large budgets should behave like their
selfish counterparts.

The generalized slotted-Aloha provides a framework to
analyze different behavior of autonomous nodes in system.
Some analytical observations from different behavioral mod-
elings provide guidelines for building robust and efficient
media access protocols, from which systems can obtain higher
aggregate throughput, as well as the ability to cope with selfish
and malicious users.
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