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ABSTRACT. We consider increase-decrease congestion controls, a formulation
that accommodates many known congestion controls. There have been many
works that aim to obtain relation between the loss event rate p and time-
average window w for some known particular instances of increase-decrease
controls. In contrast, in this note, we study the inverse problem where one
is given a target response function z — f(x) and the design problem is to
construct an increase-decrease control such that, ideally, @ = f(p), or at least
w < f(p). One common method for solving this is to design a control that
satisfies the requirements in a reference system, and then try to evaluate the
behavior in a general system. In this note, we consider that the reference is
for deterministic constant inter-loss times. Our findings are as follows. We
show that for AIMD, in the long-run, determinism minimizes time-average
window over the entire set of sequences of inter-loss times with an arbitrary
fixed mean. For a broader subset of increase-decrease controls, we identify
conditions under which if @’ > f(p’) in the reference system (i.e. the control
may be non conservative), then for any independent identically distributed
(ii.d.) random inter-loss times, we have w > ﬁf(ﬁp), for some £ > 0
specified in this note. In other words, moving from the reference system to the
more general case of i.i.d. losses will not eliminate any non conservativeness.
We apply our results to a stochastic fluid version of HighSpeed TCP [6]. We
show that for this idealized HighSpeed TCP our result applies with € not larger
than 0.0012. This implies that for idealized HighSpeed TCP w is almost lower
bounded by f(p) under the hypotheses above. Our general analysis result
rises the issue whether it is a good practice to design congestion controls by
taking deterministic constant inter-loss times as a reference system, given that
we demonstrate that this reference system is, in some sense explained in the
paper, in fact a worst-case, rather than a best-case, as would be more desirable.

1. INTRODUCTION

We study the steady-state, in particular the time-average window, of window
congestion controls that we call increase-decrease controls. We say a control is
increase-decrease if it operates as follows. In absence of loss events, an increase-
decrease window control increases the window with the rate that is a function of the
current window, else, if a loss event happen, the window is decreased to a function
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of the window just before the loss event. We claim that this is a formulation that
would encompass many known congestion controls. Some particular instances of
increase-decrease controls are well-known additive-increase multiplicative-decrease
(AIMD) [4], congestion avoidance of TCP [10], and HighSpeed TCP [6], which is
taken as a case study in this note.

In this note, we study a stochastic fluid increase-decrease control that is defined
in a compact way as: given an initial window W (0) > 0, the window evolves as

1) W) =w0)+ /O a(W(s))ds — /0 W (s—) — b(W(s—))]N(ds), ¢ > 0.

Where N (t) is number of the loss events observed by the sender in the time interval
(0,t], t € Ry, a: Ry — (0,00) is an increase function, b: Ry — R4, 0 < b(w) < w,
all w > 0, is a decrease function.! In particular, for an AIMD control with some
fixed parameters @ > 0 and 0 < 8 < 1, a(w) := a and b(w) := fw, w > 0.

We consider p and w defined as

N(t
p= lim — ®) ,
t=oe [ W (s)ds
and
t
w= lim — [ W(s)ds
t—oo t 0

The quantity p is the long-run loss event ratio, w is the time-average window. We
also consider an event-average window wy, the event-average of the window sampled
just, after the window reduction instants,
1 [t
W = lim = [ W(s)N(ds).
t—oo t Jg
An implicit assumption in the above limits is that the limits exist. This is an issue
in its own right. One would need to prove that the system defined by (1) is stable,
that is that exists unique stationary ergodic limit, see [3] for a textbook account of
this matter. This is out of the scope of this note, we take the stability as a premise.

Many works have studied the relation p — w of the loss event rate p and time-
average window w for some particular instants of increase-decrease controls; mostly
AIMD, e.g. [1, 5, 12, 13, 14]. In this context, the control is known, that is the
functions w — a(w) and w — b(w) are known, and the goal is to obtain p — @w. We
call this the direct problem. Our results are related to an inverse problem?. We are
given the target response function p — f(p) and aim to design an increase-decrease
control, that is to identify the functions w — a(w) and w — b(w), such that, ideally,
w = f(p).

The design goal w = f(p) may be feasible to achieve for a given loss event pro-
cess, but it would not be possible to fix some w — a(w) and w — b(w) such that
w = f(p) for allloss event processes. A design method is to solve the inverse prob-
lem for a reference system of loss events. Often, the reference system is taken to
be a deterministic system with inter-loss times fixed to a constant; we call it deter-
ministic constant inter-loss times. This reference system is simple to study, which

1Technicality note, it is implicit above that ¢ — W (t) is right-continuous with left-hand limits,
and for any t € Ry, N(dt) € {0,1}, that is the point process of loss events is simple.

2Two problems are said to be inverses of one another if the formulation of each involves all or
part of the solution of the other [11].
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may have been the primary reason of its appearance in many other works. The
generic design method can be summarized as follows: one first chooses a reference
system of loss events, and then, for a given function p — f(p), finds w — a(w) and
w — b(w) such that @ = f(p’), where @’ and p’ are, respectively, the time-average
window and loss event rate attained under the reference system.

In reality, the inter-loss times are never fixed, but variable. By common sense,
one would like that the time-average window of a control does not excessively
deviate from its original target response function. If we know that w' < f(p’)
for a reference system, then there is no reason to expect that the same inequality
would be preserved for an arbitrary system, that is, that it would follow @w < f(p).
We would like to understand are there conditions under which if @’ < f(p’) (resp.
w’ > f(p')), then we can conclude that @ < f(p) (resp. @ > f(p)). In other words,
we aim to understand the way the stochastic bias would act.

Summary of our Results. We show that for an AIMD control, in the long-
run, the minimum time-average window over the entire set of inter-loss times with
an arbitrary fixed mean 1/), is attained with the inter-loss times fixed to 1/\.
The result establishes an extremal® property of the deterministic constant inter-
loss times. The extremal property is in the sense that the time-average window
is minimized; we call it the worst-case. The result is established in a sample-path
framework, for any sequence of inter-loss times with an arbitrary fixed mean 1/\.

The last result is confined to AIMD controls, but under a mild assumption on
the process of loss events. We show a result that holds for a broader set of increase-
decrease controls, but a smaller set of loss event processes. We identify conditions on
the increase and decrease functions, and a condition on the target response function,
under which, if @ > f(p’) in the reference system, then for any independent and
identically distributed (i.i.d.) random inter-loss times, @ > 11? f (1—_}_Ep), for some
e > 0 that depends on a functional of w — a(w). If ¢ = 0, then the result tells
us that for any i.i.d. random inter-loss times, the time-average window w is lower-
bounded by f(p). If, in contrast, ¢ is strictly positive, but small, then we expect @
would be almost lower bounded by f(p). The last result is obtained as a conjunction
of two results discussed next.

Under the aforementioned conditions on the increase and decrease functions,
for an increase-decrease control, the time-average window w attained for any i.i.d.
random inter-loss event times with mean 1/X\ and the time-average window w’
attained under the reference system are related as w > ﬁﬁ)’ . For all increase-
decrease controls for which € = 0, the last result establishes that the deterministic
constant inter-loss times are extremal, more specifically, the worst-case, over the
set of i.i.d. random inter-loss times. If ¢ > 0, but small, than the deterministic
constant inter-loss times are almost the worst-case.

If the control is designed such that it verifies @ > f(p’) under the reference
system, and under the additional condition on the target response function referred

to earlier, from the last above result, we can conclude w > l—is f( lJlrE D).

3An extremal problem (see [15], Sec. 2.3) in our context can be thought as a variational
problem, where given the time-average window @w(F') attained by i.i.d. random inter-loss times
with distribution F, for any fixed 0 < A < oo, we solve inf pep W(F') over the set D of distributions
on Ry such that [°(1 — F(z))de = 1/A. The result in this note tells us that the infimum is
attained for F(x) = 1,51/, that is for the reference system with inter-loss times fixed to 1/A.
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As a by-product of our analysis, under the present assumptions on the increase
1

and decrease functions, we show that wy > mwé, for some ¢ > 0 defined earlier,
over the entire set of stationary random inter-loss times.

We can rephrase our finding as follows. Assume ¢ = 0. If one observes the
time-average window w of an increase-decrease control, which verifies conditions
identified in this note, and it is driven by any i.i.d. random inter-loss times with
mean 1/X, then we can conclude that @ > @', where @’ is the time-average window
that would be attained by the same control if we fix the inter-loss times to the
mean 1/X. This is an effect of the stochastic bias. Now, in turn, given that we
designed our control at the first place such that @ = f(p’) (or it turns out to
hold, @' > f(p’)), and given that it happens that the target response function f is
such that  — z f(z) is non-decreasing, then we can conclude that w > f(p). The

observation that we make here rises an issue:

Is it in general a good practice to design increase-decrease controls
by taking as a reference system the one with deterministic con-
stant inter-loss times, given that we demonstrate that there exist
elements under which this reference is a worst-case?

We apply our analysis results to HighSpeed TCP proposed in [6]; see also some
complementary discussions in [7]. HighSpeed TCP can be taught of as a special
instant of increase-decrease controls. Moreover, the design problem found in [6] can
be seen as an instance of the generic design method posed in this note. We study
HighSpeed TCP by instancing the functions w — a(w) and w — b(w) in (1) to
those defined in [6]. We refer to this system as idealized HighSpeed TCP.

Our results are as follows. We show that for idealized HighSpeed TCP our
main analysis result discussed above holds for some £ € (0,0.0012). In fact, an
implication is that for idealized HighSpeed TCP and any i.i.d. random inter-loss
times, it always holds w > (1 — €”)f(p), for some ¢” € (0,0.0023). Hence, w
is almost lower bounded by f(p). As an aside result, we show that for idealized
HighSpeed TCP and any fixed inter-loss times, it holds f(p') <@ < (1+¢&)f(p),
for some &’ € (0,0.06). The maximum deviation happens to be at the knee point
of HighSpeed TCP response function. It remains open to evaluate how much the
time-average window @ of HighSpeed TCP would deviate from its target f(p). We
conjecture that the stochastic bias would tend to make this deviation larger.

The remainder of the note is organized as follows. In Section 2, we give some
further preliminaries. Our main results are shown in Section 3. In Section 4 we
display some concluding remarks. Most of the proofs are deferred to Appendix.

2. ADDITIONAL NOTATIONS AND ASSUMPTIONS

We first assume a bit more about IV, the counting process of loss events. Assume
N to be with non-null finite intensity A, that is for any ¢ > 0, E[N(¢)] = At. Let
To <0< Ty <Th < --- beasequence of loss event instants. Define S,, = T}, 11 —T,,
n = 0,1,2,... to be sequence of inter-loss times. We will find handy to use this
additional notation, W,, = W(T},), n = 0,1,2,..., which is a sequence of windows
embedded at the loss events.

It is readily checked from (1) that for any n =0,1,2,...,

W(t) = ¢~ S(Wn) +1), t € [Tn, Tnta),
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where ¢ is a primitive of 1/a, that is

dx
—— =¢(x)+C
[ it =@+
for an arbitrary constant C' € R, and ¢! is the inverse of ¢. The formula above,
given the embedded windows, defines window dynamics in-between successive loss
events. Now, it is an easy step to note that for any n =0,1,2,...,

(2) Wn+l = b((bil(d)(Wn) + Sn))

The last formula is a stochastic recursive sequence? that defines the governing
dynamics of the windows embedded at the loss events.

We now formulate the direct and inverse problem for the reference system of
deterministic constant inter-loss times to which we alluded insofar in the text at
many instances.

Direct Problem: given a(-) and b(+), find p and @ that solve:

5 @o = b(¢ 1 (¢(wo) +1/N)
L= )6 (6(wo) + s)ds.

p
We have 2 equations and 3 unknowns wg, A, and p. We can always take A as a
parameter, solve for p and wg. It is only left to observe that @ = A/p, hence, we
obtain a parametric solution for any fixed parameter .

Inverse Problem: given f(-), find a(-), b(-), @wg, A, and p that solve:

o = b6 H(§(wo) +1/N)
(4) Po- o 67 (¢(wo) + 5)ds
p = f(p).

The system is under-dimensioned, we have 3 equations, 5 unknowns A, p, wo, a(-),
and b(-). With 2 left degrees of freedom, for a fixed X, one may fix w — a(w) (resp.
w — b(w)), and then, at least in principle, solve w — a(w) (resp. w — b(w)).

The design problem in HighSpeed TCP context [6] can be seen as solving the
inverse problem above. There, for a fixed A > 0 and w — b(w), one is left with 3
equations and 3 unknowns, a well-posed problem. A difficulty arises with solving
the inverse problem because it requires to solve a functional with respect to ¢ ().
Knowing ¢~1(-) is in principle equivalent to knowing a(-) up to an additive constant.

In the remainder of this section, we introduce some aspects of HighSpeed TCP
that are of interest within the scope of this note. The construction of the control
found in the context of HighSpeed TCP can be seen as applying the generic design
method that we defined earlier, but solving the inverse problem approximately, as
we outline next. In [6], the author imposes the target response function

_ K@)
f(p) - p,y(p) 9
where K(p) = 1/3/2, v(p) = 1/2, for p > p., ps = 3/2/w?, w. = 38, else

K(p) = K and '\/(p) =7 (Kl ~0.12, vy ~ 1/1.2).

Ut is a special stochastic recursive sequence known as generalized autoregression [3]. In this
note, we do not further exploit this observation, but display it here for a mathematically inclined
reader.
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FIGURE 1. (Top) Function a, (Middle) ¢ (primitive of 1/a), and
(Bottom) ¢ (primitive of ¢) for HighSpeed TCP.

The decrease function in [6] is fixed to, b(w) = w/2, w < w., else,
b(w) = (1 - p(w)w, Bw) :=clnw+d, w > w,,

where ¢ and d are some constants specified in [6] (¢ ~ —0.052, d ~ 0.689).
Then, by some arguments found in [6], the increase function is derived to be,
a(w) =1, w < w,, else

26(w)

_ g/, 2-1/m
a(w) = K;" "w 276(10),10210*.

The argument used in [6] to derive w — a(w) for the fixed w — b(w) and p — f(p)
can be seen as approximately solving the inverse problem posed above by assuming
that a(w) and B(w) are almost constants, that is, that the control is almost an
AIMD. The argument in [6] would yield an exact solution if a(-) and £(-) would be
functions of the time-average window, hence, constants, for a given steady-state.
If w — a(w) and w — B(w) are slowly-varying, that is almost constants on the
time-scale of the control, then, accuracy of the approximation would be good. We
make no attempt to solve the inverse problem. Rather, we take a(-) and b(-) as
defined in [6] and solve the direct problem, that is compute p’ — @w’. We then
compare w’ with the original target response function f(p’). If @ would be an exact
solution then ideally we would find a match between @’ and f. We show later that
this is not the case.

In Figure 1 we show plots of w — a(w), w — ¢(w) and w — Y(w), the last
function is a primitive of w — ¢(w). We show analytical expressions for the last
two functions in Appendix E.
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FIGURE 2. (Left) The solid line is the minimum time-average win-
dow obtained by numerically solving the problem (P, » o) for fixed
A = 1. The dotted line is the time-average window attained for
the deterministic constant inter-loss times with A = 1. (Right)
The same data as on the left-side, but plotted as the relative dif-
ference of the minimum time-average window and the reference
time-average window of the deterministic constant inter-loss times.

3. MAIN RESULTS

An Extremal Property of AIMD. We show an extremal property that holds for
AIMD under very mild assumptions. Consider an AIMD control with parameters
a > 0and 0 < 8 < 1. Locally to this section, we work in a sample-path framework.
Let, for some fixed m, (sg, $1, 82, - .-, Sm—1) be a sequence of non-negative inter-loss
times subject to the only constraint that % Z:?;ol Sn=1/A A >0. Let wy > 0 be
initial window. We define

)\w a m—1 m—1n—1

Awg 2

Boxwe (815825 -+« s Sm—1) Z 6" s, 5 Z sa 4+ Z ; K sksn.
One can readily check that Ay y,(s1,52,...,8m—1) is the time-average window at-

tained by the AIMD control with initial window wg and the sequence of inter-loss
times S1,892,-.-,Sm_1-

Now, imagine an adversarial whose goal is to beat down the time-average window
of our AIMD source by choosing freely any sequence of the inter-loss times subject
to the only constraint that the sequence has arithmetic mean 1/X. The adversary
would solve the quadratic constrained optimization problem, for some fixed m,
A>0, wg > 0:

Pm,A,w():
minimize B wo (505 815+ y Sm—1)
(5) subject to 50>0,851>0,...,8,,_1>0
1 m—1 _ 1
7 2n—0 Sn = -
We define Hp"o = hy (85,55, --,85_1), where s§,s3,...,85,_; is a solution of

the problem (P, x w,)-
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Now, let us redefine the goal of our adversary, and consider that we would like
to obtain a lower bound on H;y"° under the constraints in (P, x .,). An elegant
way to obtain the lower bound is to consider the special case (Pm, A,o)- In other
words, we consider (P, xu,) for the zero initial window. Note that, for any A > 0,
wg > 0, it indeed holds

Hﬁ;wo > Hf,‘;o, any m=1,2,....

In general, the problem (P, x .,) can be solved by the method of Lagrange multi-
pliers. For (P, x,0), it amounts to solving the system of linear equations

n—1 m—1
(6) S s st Y =T n =01 m -1,
(0%
k=0 k=n-+1

where 7 is the Lagrange multiplier. Now, one can readily note that the matrix of
the system (6), for 0 < 8 < 1, has rank m, the augmented matrix has the same
rank, thus there exists unique solution that is displayed next

1 m
T X2 (=B (m—2)
The solution is clearly non-negative, hence, the simple method of Lagrange multi-
pliers provides the solution. By plugging this result into 2:°(-), we obtain
(7) ro_a (A+Bm
m 272684+ (1 — B)m

We in fact have shown the following result:

S0 = s = (1= p)so, else.

Lemma 1. H)Y defined by (7) is a lower bound on the objective function in
(Prmrwe)s for any m, X > 0 and wy > 0.

In other words, the time-average window attained by an AIMD source, with an
arbitrary fixed initial window wg > 0, and any non-negative sequence of inter-loss
times with mean 1/, cannot be smaller than H)°.

Now, let us define s, := (1/\, 1/, ..., 1/A) of length m, which corresponds to
the deterministic constant inter-loss times. We obtain

Ay al+p _ap 1—pm
h)\7w0(sm) - 221 — ﬂ + (U)o )\(1 B)) (1 76)77’7,

From the above computations, we directly obtain the following result.

Theorem 1. For an AIMD control with any fired A > 0 and wy € [0, 00), it holds

h>‘7w0 (Si\n)

11, as m — oo.
H)°

In other words, the lower bound H, f;;o is asymptotically tight; it is asymptotically
attained by the sequence of inter-loss times fixed to 1/\.

The theorem tells us that, in the long-run, the sequence of deterministic constant
inter-loss times is extremal. In fact, it is a worst-case, that is, in the long-run, it at-
tains the minimum possible time-average window over the entire set of non-negative
sequences of inter-loss times with arithmetic mean 1/X. We show a pictorial illus-
tration of the theorem in Figure 2.
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FIGURE 3. The curve is the time-average window attained for
period-two loss events with the mean 1/, which is divided by the
reference time-average window of deterministic constant inter-loss
times fixed to 1/\, versus the parameter 7).

Remark 1. The above result may perhaps appear to be suggestive from the exact
time-average send rate obtained in an enlightening work [1], Proposition 2 therein.
The results in this reference are obtained in a stationary and ergodic framework. It
indeed follows from the result in [1] that the deterministic constant inter-loss times
is the worst-case over the set of i.i.d. random inter-loss times. However, for more
general, stationary ergodic inter-loss times, the conclusion of the above theorem
does not seem to directly follow from [1].

We demonstrate our result with an example, period-two loss events, which, apart
from the deterministic constant inter-loss times, may be the simplest deterministic
case to consider.

Example 1 (period-two loss events). Consider the sequence of inter-loss times
defined as, for some fired 0 < n <1, and an even m,
2
Sp = X(n + (1 - 277)1{71 not even})7 n = 07 1a ey — 1.
In perhaps simpler terms, an equivalent description is
shT = (2n/X\,2(1 —n)/X\, 2/, ...) of length m.
It requires a little effort to compute

(1482 —2(1—B(2—B)m(1—n)].

«
h M = ——
Ava( 00 ) )\(1 —,82)
It is readily seen that hyuw,(s57) > haw,(sh), where recall s, is the infinite
sequence of inter-loss times fized to 1/X. Moreover, the equality is attained for
n=1/2, at which sX" degenerates to ).
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FIGURE 4. (Left) The window evolution of the period-two example
with wy = 0. (Right) the time-average window evaluated at the
loss events; the solid lines are asymptotic values obtained by anal-
ysis. The curves are, from the top to bottom, for n = 1/8,1/4,1/2.
The numerical example confirms the extremal property of the de-
terministic constant inter-loss times.

In Figure 8 we show a plot of the ratio between the time-average window for
period-two inter-loss times with the mean 1/\ and the time-average window attained
for the inter-loss times fized to 1/X. The result nicely illustrates that, n = 1/2,
that is the deterministic inter-loss times, is the worst-case. The maximum possible

overshoot is
g 15
(1+p)?
which for B =1/2 amounts to 10/9 = 1.111, hence not more than 12%. We give a

further numerical example in Figure 4.

Related Results for More General Increase-Decrease Controls. We con-
sider a subset of increase-decrease controls that verify the following assumptions.
(A1): 2 — ¢(b(¢~1(x))) is increasing convex.
(A2): There exists a convex function z — ¢(z) such that, for some € > 0,
(@) < 671(2) < (1 +)p(a), all 2 > 0,
(A83): z — xf(x) is non-decreasing.
The assumptions (Al) and (A2) define a continuous subset of increase-decrease
controls. We show next our main analysis result.

Theorem 2. Consider any increase-decrease control that obeys to (A1) and (A2).
If the control is designed such that for deterministic constant inter-loss times the
time-average window @' and loss event rate p’ are related as @' > f(p'), and if z —

f(z) obeys to (A3), then for any i.i.d. random inter-loss times w > ﬁf(ﬁp)

Remark 2. An obvious implication from the statement of the theorem is

) 1. flg=2)
wZ(mwé%fum fp)-
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The theorem follows as a conjunction of two lemmas that we show next.

Lemma 2. Consider any increase-decrease control that obeys to (A1) and (A2).
For any 0 < \ < oo, the time-average window w attained by the control with any
i.i.d. random inter-loss times with mean 1/X, and the time-average window w’
attained by the control with inter-loss times fived to 1/X, are related as w > 1—_}_611)' .

The result implies that, if we know that @’ > f(p’), then we know that under
the assumptions of Lemma 2, we have w > ﬁ f (). It still remains to show when

the last implies @ > 3= f(15=p)-

Lemma 3. If w > 1;@’, w > f(p'), and v — xf(x) is non-decreasing, then
- 1 1
w > 1+5f(1+5p)'

Remark 3. The hypothesis x — xf(x) non-decreasing is verified for many known
loss-throughput functions f, but not all. It is indeed verified by f(p) = K/p",
K > 0, for any v < 1, which encompasses the square-root function with v = 1/2.
However, one may check that the hypothesis is not verified by a loss-throughput
formula in [13].

We next consider another assumption,
(A2%): z — a(x) is non-decreasing.
Note that (A2) is weaker than (A2"). To see this note that 2 — ¢~1(z) is convex

iff x — a(z) is non-decreasing. Hence, if (A2’) holds, then (A2) indeed holds with
€ = 0. Hence, we have the following corollary from Theorem 2.

Corollary 1. Replace (A2) in Theorem 2 with (A2’), then with all the rest remain-
ing unchanged, the statement of the theorem reads as w > f(p).

Note that under (A2’) one can analogously adapt Lemma 2 and Lemma 3.

From the proof of Theorem 2 we obtain almost for free the following result,
which may have an interest in its own right. Note that the next theorem applies
for any stationary random inter-loss times, hence, for a weaker hypothesis than in
Theorem 2.

Theorem 3. Consider any increase-decrease control that obeys to (A1) and (A2).
Then, the window event-average wg attained by the control with any stationary
random inter-loss times with mean 1/\, and the window event-average W), attained
by the control with inter-loss times fized to 1/\ are related as wy > %ﬁﬁ){)

Corollary 2. Replace (A2) in Theorem 3 with (A2’), then the statement of the
theorem would read as wy > w,.

Application to HighSpeed TCP. We show in Appendix D that idealized High-
Speed TCP verifies the hypotheses of Theorem 2. Given that the verification is
done by numerical computations, we pose the result as a claim.

Claim 1. For idealized HighSpeed TCP, the statement of Theorem 2 is true for
some ¢ € (0,0.0012). Moreover, for any i.i.d. random inter-loss times, it holds
w > (1—¢")f(p), for some e” € (0,0.0023).

The above result is based on the following fact concluded by numerical compu-
tations.
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FIGURE 5. (Top) p’ — @’ for HighSpeed TCP, the dotted line is
the target response function f, (Bottom) relative difference of @’
from the target f, that is (@’ — f)/f; we observe that @’ is never
smaller than f, and never larger than f by the factor 1.006.

Claim 2. The time-average window w' and loss event rate p’' attained by idealized
HighSpeed TCP with fized inter-loss times, are related as f(p') < @' < (1+€')f(p'),
for some &’ € (0,0.06). See Fig. 5.

4. CONCLUDING REMARKS

The extremal property of the deterministic reference system pointed out in this
note may not come as a surprise to many, in particular, to those familiar with a
folk theorem of queueing theory that says that under some conditions determinism
minimizes waiting time in queues, e.g. see [9], [2] (Chapter 4).

We showed in this note that, in the long-run, determinism minimizes time-
average window of AIMD controls over the entire set of non-negative sequences
of inter-loss times with an arbitrary fixed mean. We identified a broader subset
of increase-decrease controls for which determinism minimizes or almost minimizes
the time-average window over a set of i.i.d. random inter-loss times.

We next point to some further examples in the context of network congestion
controls, where determinism is an extremal. Thus far in this note, we assumed that
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the point process of loss events is simple, that is at any instant of time there exists
at most one loss event. Consider, now, an AIMD control with parameters o and
(3, but with loss events that may arrive in batches. Let ..., Z, 1, Z,, Zn11,... be
a stationary sequence of batch sizes. It is a straightforward exercise to extend the
result in [1] to the system with batch loss events

1 oo
w=a\ | SE[S§]+ Y E[pZrTEat g5 ]
2 k=1
Now, if we assume that the sequence of batch sizes ..., 72, 1,Z,, Zpi1,... is in-
dependent of the point process of batch arrivals, then by convexity of x — (%, it
follows

_ 1 -
w > a\ 5E[Sg] + ;; BFEIZ0E[Sy S ]

In other words, under the present assumptions, the worst-case is deterministic with
batch sizes fixed to the mean value. A related result was obtained in [g].

In [16, 17], the authors identify conditions under which a model of equation-
based rate control formulated in [16, 17] is resulting in Z < f(p), where Z is the
time-average send rate. If the function p — f(p) is such that in the reference
system of deterministic constant inter-loss times, Z’ = f(p’), then, it follows that
for any stationary random loss process with the loss event rate p’, and under the
conditions in [16], it holds Z < Z'. Note that, if the last holds, then determinism
is an extremal, but in contrast to the results established for the increase-decrease
controls in this note, it is a best-case.
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APPENDIX A. PROOF OF LEMMA 2

The proof is based on standard tools of stochastic orderings for stochastic re-
cursive sequences, see for instance [2], Chapter 4. Let <;., be binary relation of
increasing convex ordering; for any two cumulative distribution functions F' and G
on R, it is defined as

FSiCIG@/JRf(:v) (dx) /f ), for any f € L,

where L is the set of all increasing convex functions. An ordering for sequences
holds, if it holds component-wise.

Let {Wy, Wy, Ws,...} be a sequence of embedded windows that obey to the
recurrence (2) with driving sequence of inter-loss times {Sp, S1, 52 ..}, E[Sn] = 1/A,
all n = 0,1,2,.... Similarly, let {W],W{,Wj,...} be a sequence of embedded
windows that obey to (2), but with inter-loss times {1/, 1/\,1/A,...}. Assume
also Yy <o Yo (say, Yy = Y0).

We use a convenient transformation Y,, = ¢(W,,), n =0,1,2,.... It indeed holds

{Yr(]lv 1/>\7 1/>‘7 1/>\a .- } <icz {}/05 SOasla S27 .- }

Under (A1), it follows from a known result of stochastic orderings for stochastic
recursive sequences (see Section 2.2, Chapter 4, [2]) that if the the last ordering
holds, then

(8) {Y],Y3,Y3, ...} <iew {¥1,Y2,Y3,...}.
Note that by Palm inversion formula, we have
9) E[W (00)] = AE[2(Yoc, Soo)],
where, by definition,
2y, s) = @y +5) — 2(y),
and x — ®(z) is a primitive of ¢~!. W (c0) is a random variable with distribution
of the steady-state window. Yo, := ¢(W), where W, is a random variable with

distribution equal to the Palm distribution with respect to the point process of loss

events.
Hence, it is readily seen that E[W (oco0)] > E[W’(oc)] is equivalent to

(10) E[2(Yos, So0)] = E[2(YZ, 1/A)] = (Y, /).
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We first note, for any fixed n =0,1,2,...,

E[Z(Ynasn)] E[ (Y +Sn) _(I)(Yn)]
[2(Yy + Sp)|Ya] — @(Ya)]

= E[E

(11) = E[@(Y, + E[Sp]Yy]) — (Yy,)]
= E[®Y,+1/\) - 2(Y,)] (independence)
= E[z(Yn, 1/N)].

The inequality above follows from the following property,
(P1): oz — ®(x) is convex iff z — ¢!(z) is non-decreasing,
and the fact that by hypothesis a(-) is positive-valued, hence, z — ¢(z) is non-

decreasing, and thus @ — ¢~ !(z) is non-decreasing as well.
By (A2), we have

(12) Z(y,8) < 2(y,8) < (14+)2"(y, 9),

where, by definition,
y+s
S = [ ela)da
Yy

Note that for hy(y) := z*(y, s), any fixed s > 0, h(y) = ¢'(y + s) — ¢’ (y). Hence,
for any fixed s > 0, y — z*(y, s) is convex iff x — ¢’(z) is non-decreasing. The last
property is implied by @ — ¢(z) convex.

From the inequalities in (12), the property that for any fixed s > 0, y — 2*(y, s)
is convex, and the increasing convex order (8), it follows

Bl (Vo 1/A)] 2 E[2* (Va, 1/A)) 2 EL" (V2 1/0)] 2 [V, 1/0)

Lastly, recall from (10) that E[2(Yeo, Soc)] = E[2(Yoo, 1/A)]. Combining the last
with the above display, we have E[z(Yx, Soo)] > E[2(YZ,1/A)], which we already
noted is equivalent to E[W(c0)] > E[W/'(o0)].

APPENDIX B. PROOF OF LEMMA 3

Firstly, from the hypothesis @’ > f(p’) and the inversion formula @' = \/p’, we
conclude A > p/ f(p’). Hence,

A / /
(13) o= s 2@
p p
Secondly, from the inversion formulas @w = \/p and @’ = \/p’, and the hypothesis
w > Fw we conclude
1 <o
1+l =P

Lastly, by a hypothesis,  — z f(x) is non-decreasing, and hence, we have ) >
=pf(11zp)- From the last inequality, and (13), we conclude that w > = f(13zp)-

APPENDIX C. PROOF OF THEOREM 3

By a hypothesis, 1/a is strictly-positive, and thus @ — ¢(x) is non-decreasing.
Hence, # — ¢ !(x) is non-decreasing as well. From the last property and the
ordering (8), it follows

(14) EIWL] = ¢ (EIYL]) < 67 (EY]) = ¢~ (E[p(Was)]).
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Ficure 6. (Top) @ — g(z) for HighSpeed TCP, g(z) :=
#(b(¢p~1(x))), (Bottom) # — g¢’(x). The graphs demonstrate
x — g(x) is convex.

Now recall the inequality in (A2) that reads as ¢(z) < ¢~ 1(z) < (1 + )p(x), all
x > 0. From the former inequality we can conclude ¢ < ¢!, Hence,

(15) ¢ E[p(Wn)]) < (1 +e)p(p™ (E[WL])) = E[W.].
Conjunction of (14) and (15) completes the proof.

APPENDIX D. ANALYTICAL AND NUMERICAL ARGUMENTS
THAT CONFIRM CLAIM 1

We only have to verify that (A1), (A2) with € € (0.0012), (A3), and @’ > f(p),
are true, then the first assertion of the claim follows from Theorem 2. The second
assertion follows by carrying on the step in Remark 2.

Step 1: (A1) is true, that is x — g(x) is conver. Here, by definition, g(z) =
é(b(¢1(x))). We do not give a rigorous proof here, but rely on a direct numerical
computation. For z < w., ¢'(z) = 1/2, else

oy V@ (o @)
a(b(¢~*(2)))
x — ¢'(x) is non-decreasing as shown in Fig. 6. Combining this with the fact that

x — g(x) is continuous, any chord on g(-) lies above g(-), hence, x — g(x) is convex.
Step 2: (A2) is true for some e € (0,0.0012). Let & be such that

kr < qb*l(:t), all z > 0.

We take

(16) k = inf M

x>0 x
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¢~ (2)

W

F1GURE 7. An exaggerated illustration to show how for HighSpeed
TCP z — ¢~ !(z) deviate from its convex closure.

Let z. > 0 be such that kz. = ¢~ '(z*). Define

- KX, T < Ty,
w(r) = o~ (x), else.

The function z — ¢(z) is the convex closure of ¢~1(z), see Fig. 7 for a pictorial
illustration. Next, consider

L )
¢ (w)écp(w)ztzug o)

Now, note, in our particular instance (see Fig. 7),

¢y _ ¢ (ws) _ 1

sup = =

y=0 ¢(y) KW K
From (16), and the substitution z = ¢(y),

1 x ¢(y)

R0 @) 20y

By direct numerical computation we obtain 1/k < 1+ &, where 0 < ¢ < 0.0012.

Step 3: (A3) is true. For HighSpeed TCP, pf(p) = /3/2p'/2, for p < 0.001,
else, pf(p) = Kip' /", Given the values of K; and v, p — pf(p) is indeed
non-decreasing on [0,0.001] and [0.001,1]. Given also that the values of K; and ~;
are set in [6] such that p — f(p) is continuous, p — pf(p) is continuous as well.
Hence, p — pf(p) is non-decreasing on the entire domain [0, 1].

Step 4: w' > f(p'). See Appendix E.

Step 5: Second assertion holds. Recall Remark 2. It is readily seen

[z
zel0,1]  f(x)

=(14¢)" Y/,

Hence, we have
@ > (1+¢)" /M f(p).
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By numerical computation for v; = 1/1.2, (1 4+ ¢)~ (/") > 1 — ¢”, for some
e’ € (0,0.0023), and the assertion follows.

APPENDIX E. NUMERICAL COMPUTATION THAT CONFIRMS CLAIM 2

We solve the direct problem (3). Define ¢ as a primitive of ¢. Note that for
w € [0,w.], a(w) = 1 and b(w) = w/2. Hence, ¢p(w) = w, and (w) = w?/2, for
w € [0, w.].
We have
P(w) = go(w) + wi — go(ws), W > W,
where ¢¢(z) is the primitive of 1/a with the integration constant C € R. A bit of
elementary integral calculus, reveals

1 a1m 1—m

do(w) = K, [Ee P

Where, we define

d " 1
lhw+-)) — ————wn
TR ey

=z 0o _1)
e(x) :/%dlenx—i—z (TL:L' a™.
n=1 :

Further, we calculate w — 1 (w), as

() = () + (. — do(wa))(w — w) + gu? —o(w,), w > w,

where, ©¢ is the primitive of ¢ with the integration constant C' € R . A bit more
of elementary integral calculus yields

_ 1
Po(w) = K™ {%67% [e%wln(“{l (Inw + %))—
1 2 1

el ) - s nw + )] - gptiu),

where - —
— (D" (1-m\" 71

S(I) - nz::l n - n| T en(l -m .T),

and e, (z) := [2"e *dz. In numerical solving, we use the elementary recursion

en(z) = —az"e 4+ n-ep_1(z), n > 0.

By above calculations, we have w — ¢(w) and w — (w). Now solving the
direct problem (3) corresponds to, for any fixed parameter A, solve w, and p that
obey to

) wo = b(¢™" (¢(wo) +1/X))
b [6(wo) +1/N¢™" (¢(wo) + 1/X) — wob(wo) — 1(¢~ " (é(wo) + 1/A)) + ().

Then, by observing w = %, we obtain p — w, for any fixed parameter \. We show
a numerical result in Fig. 5, which confirms Claim 2.



