
Roomba MADNeT:
a Mobile Ad-hoc Delay Tolerant Network Testbed

Joshua Reicha Vishal Misraa Dan Rubensteinb

reich@cs.columbia.edu misra@cs.columbia.edu danr@cs.columbia.edu
aCS / bEE Department, Columbia University, New York, NY, USA

I. Introduction

We have built a mobile, ad-hoc, delay tolerant, net-
work testbed (MADNeT). Our testbed is geared to-
wards enabling the exploration of highly disconnected
networks whose nodes must store and forward infor-
mation (multi-hop paths are very unlikely), while al-
lowing us to explore connected network scenarios as
well. Using our MADNeT, we can emulate a wide
range of mobile networking scenarios and execute
real-world (albeit somewhat simplified) data collec-
tion missions. Our system is built from commercial
off-the-shelf (COTS) hardware running a paired-down
Linux OS, yielding a relatively inexpensive but fairly
flexible mobile network testbed. We have imple-
mented replication-based information diffusion proto-
cols and a distributed opportunistic surveillance appli-
cation on the testbed as proof-of-concept. Currently,
we are refining our software tool-set and instrument-
ing our nodes to test both our protocols and applica-
tion.

II. Testbed Design

As we began to explore various mobile networking
scenarios, it became clear to us that being able to
test our protocols and applications in hardware would
bring significant value to our research. Not only
would implementation in hardware provide strong ev-
idence that our techniques could be applied in real-
world environments, but the process of implementa-
tion and evaluation might also help us refine our as-
sumptions as to what a reasonable semi-autonomous
mobile wireless node could do, along with potentially
highlighting new directions for exploration. MAD-
NeT was motivated by our need for a system whose
nodes could be flexibly reconfigured in both hardware
and software, while allowing (although not enforcing)
the use of standard wireless protocol families such as
802.11 - at a price point that was relatively afford-
able (see Figure 2 for sample list of parts and prices).
Given that the thrust of our research is in networks,
not mobile robotics, vision, or hardware design - we
wanted to build our system out of building blocks,

Figure 1: a single MADNeT node

both hardware and software, that would provide as
much basic functionality as possible. Consequently,
it seemed the most economical way to achieve our
goal would be to use COTS hardware and open-source
software.

Specifically, we needed a mobility platform capable
of robust movement over indoor (e.g., floor, carpet)
and outdoor (e.g., cobblestone, grass) terrain. We also
needed a processing platform capable of allowing us
to program in a high-level language and make use of
already developed libraries for image processing and
the like. An equally important issue was that this unit
could be interfaced with a standardized commercially
available hardware such as wireless radio, web-cam,
GPS, USB memory and Bluetooth adapters.

II.A. Hardware

After examining several potential setups, we deter-
mined that the combination of a iRobot Roomba
Create mobility / sensing platform with a Linksys
WRTSL54GS wireless router running OpenWrt (an
open-source Linux distribution for embedded de-
vices), along the lines outlined in [6], would provide
the ideal balance between capability, cost, and (rel-
ative) ease of development. The iRobot Create pro-
vided us with a fully functioning mobility platform
with the bonus of including on board sensors and ac-
tuators. Access to these was easily available through

the iRobot Open Interface [4]. The WRTSL54GS
router complemented the Create nicely, providing an
integrated unit featuring a Broadcom 4704 proces-
sor running at 266MHz, 8MB flash, 32MB RAM,
an integrated Broadcom wireless 802.11 radio (un-
fortunately, the proprietary Broadcom driver provided
with OpenWrt limits access to much link-layer infor-
mation), BCM5325 switch, and a USB 2.0 port. At
the time of implementation the WRTSL54GS was the
router most fully supported by OpenWrt (support has
declined somewhat in the newer Kamikaze branch of
the distribution) [1].

With minor modification to the 7-pin DIN to 9-
pin Serial cable included with the Create, we were
able to tap directly into the Create’s on-board battery
which provides 2700 mAh at 15V. Consequently we
were able to power the entire system (router, Roomba,
and peripherals) from the Create’s battery. While one
could obtain increased runtime by mounting a sepa-
rate battery to power the router and peripherals, pow-
ering everything off the Create’s battery has the signif-
icant advantage of enabling a more highly-integrated
system. The entire unit can be turned on and off with
the press of a single button and charged with little ef-
fort. In fact the unit can be programmed to automat-
ically find a nearby docking station and charge itself
when low on battery (the Open Interface a command
which will initiate the Create’s built-in find-dock-and-
charge routine). We found that our applications drew
from 1000-2000 mAh on the average, although on
standby the system could run on far less in 300-400
mAh range. On a full charge the entire system ran be-
tween 1 and 2.5 hours, dependent on the application,
and hardware configuration. For those who need more
power, it is possible to custom-build replacement bat-
teries that hold in excess of 3300 mAh [5].

II.B. Software

We are currently using the WhiteRussian 0.9 build of
OpenWrt Linux. Along with the basic functionality
native to the Linux kernel, OpenWrt features a func-
tional web-server, firewall, ssh server/client, and most
of the basic tools one would expect. An extensive and
growing collection of ported packages is easily instal-
lable through the ipkg package management system.
While micro versions of several programming lan-
guages are available, by far the most robust method for
programming is to cross-compile C or C++ programs.
In WhiteRussian this process is somewhat more diffi-
cult than necessary (only certain LINUX/UNIX sys-
tems will be able to execute cross-compilation) and
certain libraries are unavailable, but overall one can

Part Cost*
iRobot Create Programmable Robot* $115!

iRobot APS Battery $40
iRobot APS Charger $40
Linksys WRTSL54GS $100
Creative Labs WebCam Instant*** $23
OEM USB Hub $6
OEM USB Flash Drive $14
Generic USB-to-serial adaptor $12
9V Battery Snap Connector Radio Shack #207-325 $2
Power Plug, standard barrel Radio Shack #274-1569 $1
Double-side Velcro $10
Total $365

* prices reflective of University vendors, all sums in USD

* 7-pin DIN to 9-pin Serial cable & 12AA Battery Case, included
! iRobot offers an educator’s 10-pack for $1000

** for the various compatible web-cam / driver combinations see [3]

Figure 2: part list for MADNeT nodes

write fairly sophisticated applications as we will see
in III.B.

The basic development process consists of imple-
menting the code on a development machine. This
code is then cross-complied and packaged using the
OpenWrt SDK. The complied packages are then
copied to the Linksys unit where they are installed
with the ipkg system [2]. This can result in a some-
what tedious debugging process, prompting us make
liberal use of optionally compiled debug messages.

III. Utilizing the Testbed

To demonstrate the functionality of our testbed, we
have developed a prototype application for distributed
opportunistic surveillance in a mobile Delay Tolerant
Network (DTN) environment. The goal of our appli-
cation is to collect data on subjects of interest through
the use of passively mobile nodes (nodes which while
moving, are not in control of their own movement).
In such a setting, nodes can only communicate with
peers as opportunity allows. As a concrete example:
consider a mobile DTN comprising service robots, ve-
hicles with mounted nodes, and perhaps devices car-
ried by rangers and visitors spread across the expanse
of a national park (we have emulated the key ingre-
dients of this scenario using MADNeT nodes oppor-
tunistically surveilling a red Roomba). Researchers
wishing to collect data on animal populations could
task these nodes to opportunistically record relevant
data and images when recognized (within a sufficient
degree of probability). The question then becomes

Figure 3: virtual tree for a single message

how to pass this data around the network so as to make
it available to the interested parties.

III.A. Balanced Replication

To make this information available, we used a novel
technique for balanced replication using distributed
counter values. This technique for balanced replica-
tion works to spread data produced by nodes evenly
throughout the network. By spreading data evenly,
our system both helps to minimize the average time
a data item takes to reach an information gatherer and
also increase the robustness of the system to failure of
a subset of its nodes.

In our protocol when two nodes meet they exchange
meta-data, comparing their message caches. Each
message in the cache is marked with a counter value.
After deciding which messages should be replicated
(we need to be selective since our nodes only have
limited memory and may be bounded in the time they
have to exchange replicas as well) the nodes repli-
cate each others’ chosen messages and increment the
counter value on both the initial copy of the message
and replica. The counter values possessed by replicas
of a given message can be envisioned as forming the
leaves of a virtual binary tree spread throughout the
network (Figure 3) with one tree per unique message.
By encouraging even growth of the branches through
selective replication of lower counter values, we can
ensure an asymptotic balance in the number of copies
of each message stored throughout the network (under
certain random mobility assumptions). Consequently,
within a moderate number of nodal contacts, an infor-
mation gatherer will be able to draw a large portion of
the relevant data from our mobile DTN.

III.B. Implementation

To implement this application we wrote a robust
multi-threaded, socket-based peer detection and mes-
sage replication engine. This engine worked with data
produced by our image recognition routines. For this
purpose, we developed a fairly basic image processing
engine (detecting our proxy subject, a red Roomba).
We have also adapted code provided through [6] to
perform I/O operations on the Create platform (in
this application used primarily to monitor power read-
ings) and we additionally developed a logging facility
which wrote logs to attached USB memory.

IV. Future Work

We are currently in the process of instrumenting and
extending our software with the goal of collecting data
on the performance of both our counter-based replica-
tion protocol and our opportunistic surveillance appli-
cation, along with potential extensions of our counter
technique to network coding. We also have several
exciting applications we are considering developing
on our testbed, including techniques for maintaining
network connectivity by controlled or partially con-
trolled mobility, and transitioning network topologies
between delay-tolerant / high-disconnected and con-
nected regimes. Finally, we are looking into interfac-
ing additional hardware including GPS, digital com-
pass, and RFID card readers.

V. Acknowledgments

We acknowledge Arpan Saurabh Soparkar for help
with the equipment and Matt Yu-Ming Chang for help
with the image processing code.

References

[1] http://openwrt.org/,September 2007.

[2] http://wiki.openwrt.org/buildroot,October
2007.

[3] http://wiki.openwrt.org/webcam,October
2007.

[4] http://www.irobot.com/sp.cfm?pageid=248,
October 2007.

[5] http://www.roombareview.com/hack/battery.shtml,
October 2007.

[6] T. E. Kurt. Hacking Roomba. Wiley, 2007.

