
# On the Optimality of Greedy Garbage Collection for SSDs

Yudong Yang, Vishal Misra, Dan Rubenstein Columbia University

## **SSD** Introduction

- Block
- Page



write 16 pages for 8 write requests
→ write-amplification = 2

#### System Model

- N blocks, B pages in each block
- write-amplification:  $\frac{\text{overhead} + \text{data}}{\text{data}}$ , or  $\lim_{M \to \infty} \frac{MB}{\sum_{j=1}^{M} i_j}$ *M* : number of cleans
  - $i_j$  : number of invalid pages on the j-th clean

smaller write-amplification→better performance

Goal: Minimize write-amplification

#### **Related works**

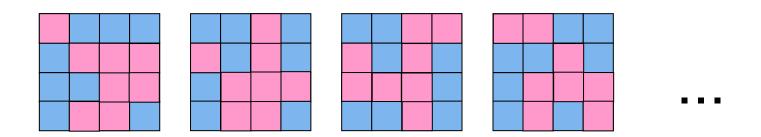
- Greedy algorithm Hu 2006, Bux 2010, Desnoyers 2012 – The performance of greedy algorithm is analyzed
- Dual-greedy
  - A heuristic algorithm optimized for traced data
- D-choice
  - D-choice algorithm is proposed and analyzed
- Optimality of greedy

Hass 2010

Van 2013, Li 2013

Lin 2012

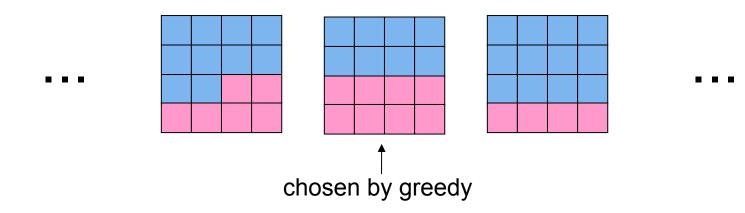
A sketch proof of optimality of greedy on random write workload.


#### Contribution

First formal proof of the optimality of greedy algorithm on memoryless workloads.

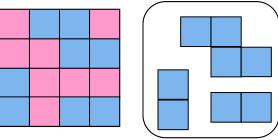
#### Memoryless workloads

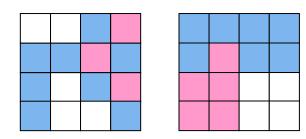
All valid pages have equal probability of becoming the next invalid page.


– Page lifetimes: independent, exponential with identical rate  $\boldsymbol{\mu}$ 



# Greedy GC Algorithm

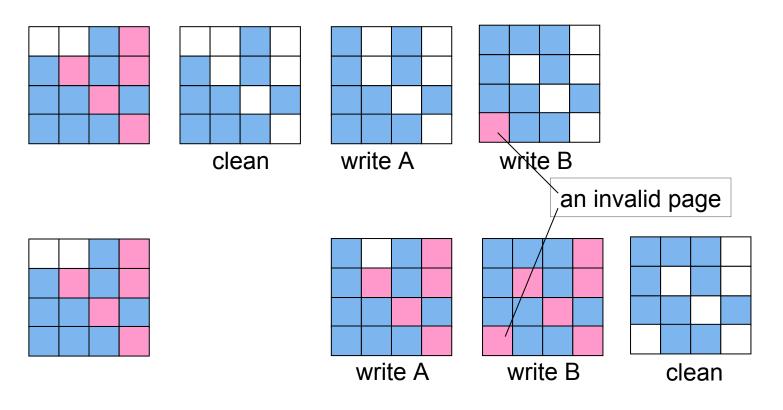

The Greedy GC algorithm:


- waits until the SSD is filled.
- cleans a block with maximal number of invalids.
- ties are broken arbitrarily.



#### Clean-and-move system

allows the valid pages to write on other blocks.

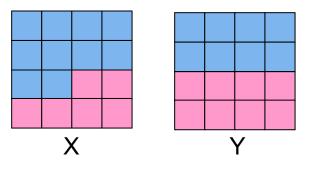


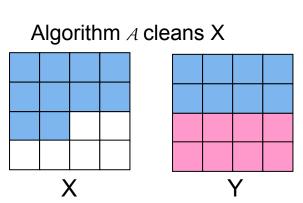



# Optimality of Greedy

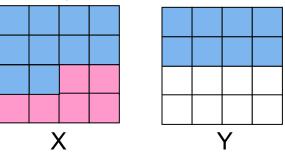
- Lemma 1. A block should only be cleaned when it is full (of valid and invalid pages).
- Proof:

Cleaning can always be delayed while the block containing empties.





# **Optimality of Greedy**

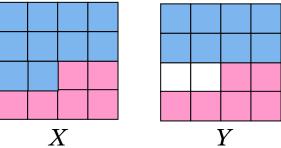
Theorem 1. In clean-and-move systems with memoryless workloads, Greedy is optimal.


Proof: X: the block choose by another algorithm

Y: the block choose by greedy



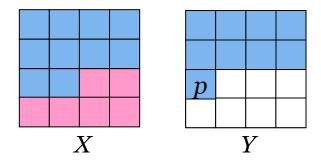



Greedy cleans Y, and moves



# **Optimal of Greedy**

Theorem 2. For memoryless workloads, there is no advantage to moving active pages between blocks.

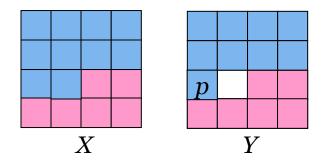

Proof: Suppose we are moving n pages from X to Y upon an write request p



Y must has exact n empty pages, otherwise we can delay move.

If p is placed on Y: move  $\rightarrow$  clean  $Y \rightarrow$  write p

The move operation can be delayed, so the sequence become clean  $Y \rightarrow$  write  $p \rightarrow$  move(upon next request)




## **Optimal of Greedy**

*X* must has exact no empty pages, otherwise we can delay move If *p* is placed on *X*: move *n* pages from *X* to  $Y \rightarrow$  clean  $X \rightarrow$  write *p* in *X* delay the move by a stachastic equivalence:

delay the move by a stochastic equivalence:

write p in  $Y \rightarrow move n-1$  pages from X to Y (upon later arrival)



### **Discussion & Future work**

D-choice variants: choosing a block from a randomly selected set of size D

Greedy still be the optimal on D-choice variants.

- more general workloads
  - not optimal for Rosenblum workloads and long-tailed workloads.
    Lin 2012, Van 2013
  - conjecture: still optimal for short-tailed workloads.
- Heuristics for general workload