Controlling the Performance of 3-Tiered Web sites:
Modeling, Design and Implementation

[Extended Abstract]

Abhinav Kamra
Dept. of Computer Science
Columbia University
New York, NY

kamra@cs.columbia.edu

Category and Subject Descriptors: C.4 Computer Systems Or-
ganization:Performance of Systems:Design Studies

General Terms. Design, Experimentation, Measurement

Keywords: Control Theory, TPC-W, E-Commerce, Admission Con-
trol

1. INTRODUCTION

E-Commerce is rapidly becoming an everyday activity as con-
sumers gain familiarity with shopping on the Internet. The infras-
tructure behind E-Commerce Web sites is typically composed of a
three-tiered architecture, consisting of a front-end Web server, an
application server and a back-end database.

Two problems are frequently encountered with deploying such
Web sites. First is overload, where the volume of requests for
transactions at a site exceeds the site’s capacity for serving them
and renders the site unusable. Second is responsiveness, where the
lack of adequate response time leads to lowered usage of a site, and
subsequently, reduced revenues.

This paper presents a method for controlling multiple-tiered Web
site performance, both by bounding response times and preventing
overload. Our approach uses a self-tuning proportional integral
(PI) controller for admission control, enabling overload protection
and bounding response time based on an administrator-based pol-
icy (e.g., 90 percent of the requests should see a response time of
less than 100 milliseconds). By using a self-tuning controller, our
system automatically adapts to variation in load and requires only
two parameter settings.

Our method requires no changes to the operating system, Web
server, application server or database. This allows rapid deploy-
ment and use of pre-existing components.

We present an implementation of our controller in a proxy, called
Yaksha'. We evaluate our system with standard software com-
ponents used in multiple-tiered e-Commerce Web sites, namely
Linux, Apache, Tomcat, and MySQL. We drive the system using
the industry-standard TPC-W [2] benchmark, and demonstrate that
Yaksha achieves both stable behavior during overload and bounded
response times. Our results show that a properly designed and im-
plemented controller be used in a complex environment, such as
multi-tiered Web sites.

!Yakshas are the guardians of wealth in the Hindu pantheon.

Copyright is held by the author/owner.
SIGMETRICSYPerformance’ 04 June 12-16, 2004, New York, NY, USA
ACM 1-58113-664-1/04/0006.

Vishal Misra
Dept. of Computer Science
Columbia University
New York, NY

misra@cs.columbia.edu

Erich Nahum
T.J. Watson Research Center
IBM Corporation
Yorktown Heights NY

nahum@watson.ibm.com

- E[X]
A A _
—> Yaksha > Websit: ME [x]
Request Admission Response
Arrivals Control Time

Figure 1: System model for Yaksha and the Web site

2. MODELING AND DESIGN

In this section we present the system model and design proce-
dure for Yaksha. Our abstraction for the E-commerce server is an
M /GI/1 Processor Sharing queue. We denote by T'(x) the mean
response time of a job whose job size (or service time) is z. The
job size inan M/GI/1 is an i.i.d. random variable, denoted by
X, whose probability distribution function is F(z), with a mean
E[X].

It is well known that
Tps(z) = lfp.)
where p is the load of the queue. The mean response time for all
jobs, Trr, is simply

Trr = / Tps(t)dF(t), = m 2)
0 I-p

The task of Yaksha is to control Tr7, by controlling an accep-
tance probability p,, of requests to the system. We model the feed-
back control system using a fluid model.

The system model is depicted in Figure 1. Requests arrive to
Yaksha with a mean rate A(t), and get modulated with an admission
probability p. (), with the Web server observing a mean arrival rate
of pa(t) - A(t). The mean response time is then given by

_ E[X]

1= pa(t)A(t) E[X]

\We assume that there is an operating point po of the system, that
achieves Trr = Ty for a given A, where T,..; is our desired re-
sponse time. We then linearize the response function about the op-
erating point, and work with a small signal model. The linearization
is a simple gain function, which is the derivative of the expression
for the mean response time with respect to p,, evaluated at po.

The linearized closed loop system model is then depicted in Fig-
ure 2. The PI controller has a transfer function in the frequency

Trr(t)

Web Site

OTxr

> VY o

op sK, +K;

S

Pl Controller

Figure2: Small signal model for the feedback loop

domain given by
K;
S
We use the bilinear transform [1] to convert the transfer functions
into digital form.

We assume a nominal g in the design process. However, the
effective arrival rate of jobs that the system observes is p, A, where
p. is the admission probability that the controller computes. Hence,
by observing p,, assuming p, converges, we can estimate the true
arrival rate A and then recalculate the controller parameters, thereby
self-tuning the controller.

[4] gives a more detailed analysis of the model.

PI(s) =K, +

3. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS

We use tinyproxy v1.6.1 [3] and modify it to act as a controller.
All HTTP requests from the client are directed towards this proxy,
which then relays them to the Web and application server after
the control decision. All responses from the Web and application
server to the client also go through the proxy.

Our experimental testbed consists of five machines. Three of
them are used as clients to generate HTTP requests. One machine
is used as the Web and application server and another hosts the
database server. The client machines drive the system with the Java
TPC-W workload generator. We use Jakarta Tomcat v4.1.27 [6] as
the Web and application server and MySQL v4.1.0-max-alpha [5]
as the database server. The controller embedded inside tinyproxy
resides on the machine hosting the Web and application server.

As client load increases, the throughput increases until the load
reaches a threshold after which the throughput drops and response
times grow. We show that the Yaksha controller is able to bound
response times and maintain significant throughput levels even at
excessive load levels.

Figure 3 shows how throughput varies with increasing load for
both controlled and uncontrolled experiments. Note the downward
trend for the uncontrolled case as overload takes its toll. The load
increases from zero to 4500 EBs (Emulated Browsers).

Figure 4 shows the average response times of the servlets for
increasing load for both the “controlled” and “uncontrolled” cases.
As can be observed, Yaksha prevents server overload and so is able
to effectively bound request response times while maintaining high
throughputs. We set the reference value T;.. s to be 150ms for the
experiment, and that is the value Yaksha tries to control the running
average of the response time.

T T T T
Throughput without P controller ——
Throughput with P controller -------

Throughput control with increasing load

o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Load (Number of EBS)

Figure 3: Throughput with increasing load

Controlling Response Time

Without PI Controller

Average Response Time (s) (logscale)

1 1 1 . L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Load (Number of EBS)

Figure 4: Response Time Control: Without the PI controller
the response time can grow unbounded

4. SUMMARY AND CONCLUSIONS

We designed a completely self-tuning admission controller for
3-tiered websites based on classical control theoretic ideas. We im-
plement our controller in the form of a proxy, Yaksha. By perform-
ing extensive experiments we show that Yaksha is able to bound
response times for requests while maintaining a high throughput
under overload. [4] contains a more detailed analysis of the model
and extensive experimental results.

5. REFERENCES

[1] K.J. Astrom and B. Wittenmark. Computer Controlled
Systems: Theory and Design. Prentice-Hall, 1984.

[2] T. Bezenek, T. Cain, R. Dickson, T. Heil, M. Martin,

C. McCurdy, R. Rajwar, E. Weglarz, C. Zilles, and M. Lipasti.
Characterizing a java implementation of tpc-w. In Third
Workshop on Computer Architecture Evaluation Using
Commercial Workloads, Toulouse, France, January 2000.

[3] R.J. Kaes and S. Young. tinyproxy.
http://tinyproxy.sourceforge.net/.

[4] A. Kamra, V. Misra, and E. Nahum. Controlling the
performance of 3-tiered websites: Modeling, design and
implementation, 2004. Technical Report, Department of
Computer Science, Columbia University,
http://lwww.cs.columbia.edu/ kamra/papers/control-3tier.pdf.

[5] MySQL. The MySQL database. http://www.mysgl.com.

[6] The Apache Jakarta Project. Jakarta Tomcat servlet container.
http://jakarta.apache.org/tomcat.

