Optimal State-Free, Size-aware Dispatching for Heterogeneous M/G/-type systems

Hanhua Feng¹, Vishal Misra^{1,2} and Dan Rubenstein^{2,1} Columbia University

¹Department of Computer Science

²Department of Electrical Engineering Columbia University in the City of New York

7th October 2005

Outline

The model

Dispatching model Static Strategies Analysis model

Optimal static strategies

Homogeneous servers Heterogeneous Servers Sketch of the proofs

Mappings of queues

Conclusion

Dispatching model

- ▶ One dispatcher, followed by multiple queues
- ▶ Heterogeneous: different server speeds
- FCFS policy for each queue
- Static dispatching strategy

Static strategies

- (Scheduling) Policies: algorithms used by each queue
- (Dispatching) Strategies: algorithms used by dispatcher

A class of static dispatching strategies

- Static: dispatcher is state-free
- Size-aware: dispatcher knows the job size on arrival
- Stochastic: dispatcher may randomly assign jobs

Why static?

- Easy to be implemented
- When collecting dynamic data is hard
- ► For the baseline of dynamic strategies

Static strategies

Examples of static strategies

- Random
- Size Interval (SI) [Harchol-Balter 1999]

Nested Size Interval (NSI) (more generalized than SI)

(Queue 3 is nested in Queue 1)

Analysis with M/G/- model

Analysis Assumptions

- Poisson arrival with rate λ
- ▶ General known job-size distribution with PDF f(x)

Implications

- $\rightarrow \lambda f(x)$ is the arrival rate density function (ARDF)
- ▶ Each queue is an M/G/1 whose ARDF is $\lambda_i f_i(x)$
- ▶ We have $\lambda f(x) = \sum_{i=1}^{n} \lambda_i f_i(x)$.
- ▶ The optimal static strategy means the optimal partitioning of function $\lambda f(x)$ to $\lambda_i f_i(x)$ such that the overall mean waiting time is minimized.

Analysis with M/G/- model: example of three queues

▶ To find $\lambda_1 f_1(x)$, $\lambda_2 f_2(x)$, and $\lambda_3 f_3(x)$ such that $\lambda f(x) = \sum_{i=1}^3 \lambda_i f_i(x)$ and the mean waiting time is minimized.

Optimal static strategy in homogeneous case

Assume:

- Static strategy: state free, size-aware
- Homogeneous: all servers have the same speed
- ► M/G/1-FCFS queues
- Objective measure: overall per-job mean waiting/response time

Result:

The optimal static strategy is a Size-Interval (SI) strategy.

Optimal static strategy in heterogeneous case

Assume:

- Static strategy: state free, size-aware
- Heterogeneous: servers have different speeds
- ► M/G/1-FCFS queues
- Objective measure: overall per-job mean waiting time

Results:

- The optimal strategy may be a non-SI strategy. (counter-example)
- It is a Nested Size-Interval (NSI) strategy.
- Slower queue can be nested in a faster queue.

Mean waiting time under static strategies

The per-job mean waiting time:

$$E[W] = \frac{1}{2\lambda} \sum_{i=1}^{n} \left[\frac{\lambda_i \omega_i}{c_i(c_i - \rho_i)} \right],$$

where

- $\triangleright \lambda_i$ is arrival rate of queue *i*,
- \triangleright ρ_i is the (first-order) load of queue i,
- $\omega_i = \lambda \int_0^\infty t^2 f_i(t) dt$ is called "second-order load" of queue *i*,
- $ightharpoonup c_i$ is the capacity (processing speed) of queue i.

Mean waiting time under static strategies (cont'd)

Mean waiting time

$$E[W] = \frac{1}{2\lambda} \sum_{i=1}^{n} \left[\frac{\lambda_i \omega_i}{c_i (c_i - \rho_i)} \right]$$

Objective: minimizing E[W]

- ▶ Recall that: partitioning $\lambda f(\cdot)$ to a sum of $\lambda_i f_i(\cdot)$'s
- ▶ Objective E[W] depends on λ_i , ρ_i and ω_i .
- λ_i , ρ_i and ω_i are respectively zeroth-, first-, and second-order moments of $\lambda_i f_i(\cdot)$.

Proof for homogeneous case ($c_1 = c_2 = \cdots$)

First prove for two queues, then extend to multiple queues.

For two queues: two cases

- Case 1: their loads are severely unbalanced: either of
 - $\frac{\lambda_1}{c_1(c_1-\rho_1)} > \frac{\lambda_2}{c_2(c_2-\rho_2)}$ and $\frac{\omega_1}{c_1(c_1-\rho_1)} > \frac{\omega_2}{c_2(c_2-\rho_2)}$
 - $\qquad \quad \frac{\lambda_1}{c_1(c_1-\rho_1)} < \frac{\lambda_2}{c_2(c_2-\rho_2)} \text{ and } \frac{\omega_1}{c_1(c_1-\rho_1)} < \frac{\omega_2}{c_2(c_2-\rho_2)}$
- Case 2: otherwise.

Case 1: Severely unbalanced

- Transfer some jobs (of any size) from the high-loaded queue to the other.
- ► E[W] is lower.
- Repeat doing so until Case 2.

Proof for homogeneous case (cont'd)

Case 2: not severely unbalanced

- ▶ Find a threshold such that shaded areas have same ρ .
- Swapping shaded areas yields an SI strategy.
- ▶ We show that *E*[*W*] is lower.

Proof for heterogeneous case ($c_1 < c_2 < \cdots$)

For two queues: $c_1 < c_2$

- Case 1: their loads are severely unbalanced: either of
 - ▶ Case 1a: $\frac{\lambda_1}{c_1(c_1-\rho_1)} > \frac{\lambda_2}{c_2(c_2-\rho_2)}$ and $\frac{\omega_1}{c_1(c_1-\rho_1)} > \frac{\omega_2}{c_2(c_2-\rho_2)}$
 - ► Case 1b: $\frac{\lambda_1}{c_1(c_1-\rho_1)} < \frac{\lambda_2}{c_2(c_2-\rho_2)}$ and $\frac{\omega_1}{c_1(c_1-\rho_1)} < \frac{\omega_2}{c_2(c_2-\rho_2)}$
- Case 2: otherwise.

Cases 1b and Case 2

▶ Use the same arguments as in a homogeneous system.

Case 1a

Previous argument fails.

Proof for heterogeneous case (cont'd)

Case 1a (Slower queue has severely higher load)

- ▶ find two thresholds: shaded areas have same λ 's and ρ 's.
- Swapping shaded areas yields an NSI strategy
- ▶ We show that E[W] gets lower.

Remaining issues for finding an optimal static strategy

Homogeneous case

- To find the optimal thresholds of size intervals.
- Mapping (which queue gets which interval) is irrelevant.

Heterogeneous case

- Nested size intervals are more complicated.
- Mappings between queues and intervals matter.

What is the best mapping in heterogeneous case?

- ► No fixed rules(e.g. slower queue gets the interval of shorter jobs)
- ► Depending on job size distributions

Mapping of intervals to queues: examples

- Only SI strategy (more simpler than NSI) and two queues
- Compare two mappings (ascending and descending) with corresponding optimal thresholds

Bounded Pareto

Weibull

Best: faster server gets short jobs Best: faster server gets long jobs (Y-axis: ratio between optimal mean response times of ascending and descending

mapping. X-axis: speed fraction of the slower queue) Feng, Misra, Rubenstein

Mapping of intervals to queues: examples (cont'd)

- Two queues, SI strategy
- Only two mappings
 - Ascending mapping: faster server gets interval of long jobs
 - Descending mapping: faster server gets interval of short jobs
- For each mapping, an optimal threshold (or load partitioning) can be found.
- ► Log-normal distribution is mapping-invariant here (two mappings obtains the same optimal) response time.
- All distributions such that

$$m(x) = E[X] - m\left(\frac{\psi}{x}\right)$$
, where $m(x) = \int_0^x t dF(t)$, ψ :constant

is mapping-invariant (for two queues and SI strategy).

Conclusion

- For FCFS, optimal static strategy is an NSI.
- For FCFS homogeneous queues, optimal static strategy is an SI.
- Other scheduling policies can be used on each queue.
- For PS, size information is useless (w.r.t. mean response time).
- Dynamic case is more complicated. [Whitt 1984]
- It is difficult to find the best mapping.

