Optimal State-Free, Size-aware Dispatching for Heterogeneous M/G -type systems

Hanhua Feng¹, Vishal Misra^{1,2} and Dan Rubenstein^{2,1} Columbia University

¹Department of Computer Science

²Department of Electrical Engineering Columbia University in the City of New York

7th October 2005

イロメ イ団メ イヨメ イヨメー

唾

Outline

The [model](#page-2-0)

[Dispatching](#page-2-0) model Static [Strategies](#page-3-0) [Analysis](#page-5-0) model

Optimal static [strategies](#page-7-0)

[Homogeneous](#page-7-0) servers [Heterogeneous](#page-8-0) Servers [Sketch](#page-9-0) of the proofs

[Mappings](#page-15-0) of queues

[Conclusion](#page-18-0)

K 御 ▶ K 唐 ▶ K 唐 ▶

4 D F

重

[Dispatching](#page-2-0) model Static [Strategies](#page-3-0) [Analysis](#page-5-0) model

Dispatching model

- \triangleright One dispatcher, followed by multiple queues
- \blacktriangleright Heterogeneous: different server speeds
- \blacktriangleright FCFS policy for each queue
- \triangleright Static dispatching strategy

ミドメ 重す

 $2Q$

唾

[Dispatching](#page-2-0) model Static [Strategies](#page-3-0) [Analysis](#page-5-0) model

Static strategies

- \triangleright (Scheduling) Policies: algorithms used by each queue
- \triangleright (Dispatching) Strategies: algorithms used by dispatcher

A class of static dispatching strategies

- \triangleright Static: dispatcher is state-free
- \triangleright Size-aware: dispatcher knows the job size on arrival
- \triangleright Stochastic: dispatcher may randomly assign jobs

Why static?

- \blacktriangleright Easy to be implemented
- \triangleright When collecting dynamic data is hard
- \blacktriangleright For the baseline of dynamic strategies

[Dispatching](#page-2-0) model Static [Strategies](#page-3-0) [Analysis](#page-5-0) model

Static strategies

Examples of static strategies

 \blacktriangleright Random

▶ Size Interval (SI) [Harchol-Balter 1999]

\triangleright Nested Size Interval (NSI) (more generalized than SI)

(Queue 3 is nested in Queue 1)

イロメ イ団メ イヨメ イヨメー

画

[Dispatching](#page-2-0) model Static [Strategies](#page-3-0) [Analysis](#page-5-0) model

Analysis with *M/G/* – model

Analysis Assumptions

- \blacktriangleright Poisson arrival with rate λ
- General known job-size distribution with PDF $f(x)$

Implications

- $\rightarrow \lambda f(x)$ is the arrival rate density function (ARDF)
- Each queue is an $M/G/1$ whose ARDF is $\lambda_i f_i(x)$
- \blacktriangleright We have $\lambda f(x) = \sum_{i=1}^n \lambda_i f_i(x)$.
- \blacktriangleright The optimal static strategy means the optimal partitioning of function $\lambda f(x)$ to $\lambda_i f_i(x)$ such that the overall mean waiting time is minimized. イロメ イ団メ イヨメ イヨメー 注

[Dispatching](#page-2-0) model Static [Strategies](#page-3-0) [Analysis](#page-5-0) model

Analysis with M/G – model: example of three queues

 \blacktriangleright To find $\lambda_1 f_1(x)$, $\lambda_2 f_2(x)$, and $\lambda_3 f_3(x)$ such that $\lambda f(x) = \sum_{i=1}^3 \lambda_i f_i(x)$ and the mean waiting time is minimized. **K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁**

 \equiv

[Homogeneous](#page-7-0) servers [Heterogeneous](#page-8-0) Servers [Sketch](#page-9-0) of the proofs

Optimal static strategy in homogeneous case

Assume:

- \triangleright Static strategy: state free, size-aware
- \blacktriangleright Homogeneous: all servers have the same speed
- \blacktriangleright $M/G/1$ -FCFS queues
- \triangleright Objective measure: overall per-job mean waiting/response time

Result:

The optimal static strategy is a Size-Interval (SI) strategy.

イロメ イ団 メイモメイモメー

唾

[Homogeneous](#page-7-0) servers [Heterogeneous](#page-8-0) Servers [Sketch](#page-9-0) of the proofs

Optimal static strategy in heterogeneous case

Assume:

- \triangleright Static strategy: state free, size-aware
- \blacktriangleright Heterogeneous: servers have different speeds
- \blacktriangleright $M/G/1$ -FCFS queues
- \triangleright Objective measure: overall per-job mean waiting time

Results:

- \blacktriangleright The optimal strategy may be a non-SI strategy. (counter-example)
- It is a Nested Size-Interval (NSI) strategy.
- \triangleright \triangleright \triangleright Slower q[u](#page-9-0)[e](#page-7-0)[ue](#page-8-0) can be nested in a faster queue[.](#page-9-0)

個 ▶ < 君 > < 君 >

唾

[Homogeneous](#page-7-0) servers [Heterogeneous](#page-8-0) Servers [Sketch](#page-9-0) of the proofs

Mean waiting time under static strategies

The per-job mean waiting time:

$$
E[W] = \frac{1}{2\lambda}\sum_{i=1}^n \left[\frac{\lambda_i\omega_i}{c_i(c_i-\rho_i)}\right],
$$

where

- \blacktriangleright λ_i is arrival rate of queue *i*,
- \blacktriangleright ρ_i is the (first-order) load of queue *i*,

 $\blacktriangleright \omega_i = \lambda \int_0^\infty t^2 f_i(t) dt$ is called "second-order load" of queue i,

 \blacktriangleright c_i is the capacity (processing speed) of queue *i*.

イロメ イ団メ イヨメ イヨメー

唾

[Homogeneous](#page-7-0) servers [Heterogeneous](#page-8-0) Servers [Sketch](#page-9-0) of the proofs

Mean waiting time under static strategies (cont'd)

Mean waiting time

$$
E[W] = \frac{1}{2\lambda} \sum_{i=1}^{n} \left[\frac{\lambda_i \omega_i}{c_i(c_i - \rho_i)} \right]
$$

Objective: minimizing E[W]

- Recall that: partitioning $\lambda f(\cdot)$ to a sum of $\lambda_i f_i(\cdot)$'s
- \blacktriangleright Objective $E[W]$ depends on λ_i , ρ_i and ω_i .
- \blacktriangleright λ_i , ρ_i and ω_i are respectively zeroth-, first-, and second-order moments of $\lambda_i f_i(\cdot)$.

イロメ イ団メ イヨメ イヨメー

唾

[Homogeneous](#page-7-0) servers [Heterogeneous](#page-8-0) Servers [Sketch](#page-9-0) of the proofs

Proof for homogeneous case $(c_1 = c_2 = \cdots)$

First prove for two queues, then extend to multiple queues. For two queues: two cases

 \triangleright Case 1: their loads are severely unbalanced: either of

$$
\rightarrow \frac{\frac{\lambda_1}{c_1(c_1-\rho_1)} > \frac{\lambda_2}{c_2(c_2-\rho_2)}}{\frac{\lambda_1}{c_1(c_1-\rho_1)} < \frac{\lambda_2}{c_2(c_2-\rho_2)}} \text{ and } \frac{\frac{\omega_1}{c_1(c_1-\rho_1)} > \frac{\omega_2}{c_2(c_2-\rho_2)}}{\frac{\omega_2}{c_2(c_2-\rho_2)}} \le \frac{\frac{\omega_2}{c_2(c_2-\rho_2)}}{\frac{\omega_2}{c_2(c_2-\rho_2)}}
$$

 \blacktriangleright Case 2: otherwise.

Case 1: Severely unbalanced

- \triangleright Transfer some jobs (of any size) from the high-loaded queue to the other.
- \blacktriangleright $E[W]$ is lower.
- \blacktriangleright Repeat doing so until Case 2.

す 御 メ マ ヨ メ マ ヨ メー

画

[Homogeneous](#page-7-0) servers [Heterogeneous](#page-8-0) Servers [Sketch](#page-9-0) of the proofs

Proof for homogeneous case (cont'd)

Case 2: not severely unbalanced

- Find a threshold such that shaded areas have same ρ .
- \triangleright Swapping shaded areas yields an SI strategy.
- \blacktriangleright We show that $E[W]$ is lower.

[Homogeneous](#page-7-0) servers [Heterogeneous](#page-8-0) Servers [Sketch](#page-9-0) of the proofs

Proof for heterogeneous case $(c_1 < c_2 < \cdots)$

For two queues: $c_1 < c_2$

 \triangleright Case 1: their loads are severely unbalanced: either of

► Case 1a:
$$
\frac{\lambda_1}{c_1(c_1 - \rho_1)} > \frac{\lambda_2}{c_2(c_2 - \rho_2)}
$$
 and $\frac{\omega_1}{c_1(c_1 - \rho_1)} > \frac{\omega_2}{c_2(c_2 - \rho_2)}$
\n▶ Case 1b: $\frac{\lambda_1}{c_1(c_1 - \rho_1)} < \frac{\lambda_2}{c_2(c_2 - \rho_2)}$ and $\frac{\omega_1}{c_1(c_1 - \rho_1)} < \frac{\omega_2}{c_2(c_2 - \rho_2)}$

 \blacktriangleright Case 2: otherwise.

Cases 1b and Case 2

 \triangleright Use the same arguments as in a homogeneous system.

Case 1a

 \blacktriangleright Previous argument fails.

イロメ イ団メ イヨメ イヨメー

重

 299

[Homogeneous](#page-7-0) servers [Heterogeneous](#page-8-0) Servers [Sketch](#page-9-0) of the proofs

Proof for heterogeneous case (cont'd)

Case 1a (Slower queue has severely higher load)

- ighthroarpoontal find two thresholds: shaded areas have same λ 's and ρ 's.
- \triangleright Swapping shaded areas yields an NSI strategy
- \triangleright We show that $E[W]$ gets lower.

Remaining issues for finding an optimal static strategy

Homogeneous case

- \triangleright To find the optimal thresholds of size intervals.
- \triangleright Mapping (which queue gets which interval) is irrelevant.

Heterogeneous case

- \triangleright Nested size intervals are more complicated.
- \triangleright Mappings between queues and intervals matter.

What is the best mapping in heterogeneous case?

- \triangleright No fixed rules (e.g. slower queue gets the interval of shorter jobs)
- Depending on job size distributions

Feng, Misra, Rubenstein Optimal static [dispatching](#page-0-0)

Mapping of intervals to queues: examples

- I Only SI strategy (more simpler than NSI) and two queues
- Compare two mappings (ascending and descending) with corresponding optimal thresholds

 \equiv

∢ 重→

Mapping of intervals to queues: examples (cont'd)

- \blacktriangleright Two queues, SI strategy
- \triangleright Only two mappings
	- \triangleright Ascending mapping: faster server gets interval of long jobs
	- \triangleright Descending mapping: faster server gets interval of short jobs
- \triangleright For each mapping, an optimal threshold (or load partitioning) can be found.
- \blacktriangleright Log-normal distribution is mapping-invariant here (two mappings obtains the same optimal) response time.
- \blacktriangleright All distributions such that

$$
m(x) = E[X]-m\left(\frac{\psi}{x}\right)
$$
, where $m(x) = \int_0^x t dF(t), \psi$:constant

 Ω

is mapping-invariant (for two queues a[nd](#page-16-0) [S](#page-18-0)[I](#page-16-0) [st](#page-17-0)[r](#page-18-0)[at](#page-14-0)[e](#page-15-0)[g](#page-18-0)[y\)](#page-14-0)[.](#page-15-0)

- \triangleright For FCFS, optimal static strategy is an NSI.
- \triangleright For FCFS homogeneous queues, optimal static strategy is an SI.
- \triangleright Other scheduling policies can be used on each queue.
- \triangleright For PS, size information is useless (w.r.t. mean response time).
- \triangleright Dynamic case is more complicated. [Whitt 1984]
- \blacktriangleright It is difficult to find the best mapping.

メタメ メミメ メミメー

造