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Dispatching model

I One dispatcher, followed by multiple queues
I Heterogeneous: different server speeds
I FCFS policy for each queue
I Static dispatching strategy
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Static strategies

I (Scheduling) Policies: algorithms used by each queue
I (Dispatching) Strategies: algorithms used by dispatcher

A class of static dispatching strategies

I Static: dispatcher is state-free
I Size-aware: dispatcher knows the job size on arrival
I Stochastic: dispatcher may randomly assign jobs

Why static?

I Easy to be implemented
I When collecting dynamic data is hard
I For the baseline of dynamic strategies
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Static strategies

Examples of static strategies

I Random
I Size Interval (SI) [Harchol-Balter 1999]

To queue 1 To queue 3 To queue 2

5K0 2M (job size)

I Nested Size Interval (NSI) (more generalized than SI)

To queue 2

0

To queue 1

1K

To queue 3 To queue 1

1M 5M

(Queue 3 is nested in Queue 1)

(job size)
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Analysis with M/G/− model

Analysis Assumptions

I Poisson arrival with rate λ
I General known job-size distribution with PDF f (x)

Implications

I λf (x) is the arrival rate density function (ARDF)
I Each queue is an M/G/1 whose ARDF is λi fi(x)

I We have λf (x) =
∑n

i=1 λi fi(x).
I The optimal static strategy means the optimal partitioning

of function λf (x) to λi fi(x) such that the overall mean
waiting time is minimized.
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Analysis with M/G/− model: example of three queues

1   1λ f (x) 2    2λ f (x)
3   3f (x)λ

2    2λ f (x)1   1λ f (x) 3   3f (x)λ

x (job size)

λ f(x)
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= + +

I To find λ1f1(x), λ2f2(x), and λ3f3(x) such that
λf (x) =

∑3
i=1 λi fi(x) and the mean waiting time is

minimized.
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Optimal static strategy in homogeneous case

Assume:
I Static strategy: state free, size-aware
I Homogeneous: all servers have the same speed
I M/G/1-FCFS queues
I Objective measure: overall per-job mean waiting/response

time

Result:
The optimal static strategy is a Size-Interval (SI) strategy.
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Optimal static strategy in heterogeneous case

Assume:
I Static strategy: state free, size-aware
I Heterogeneous: servers have different speeds
I M/G/1-FCFS queues
I Objective measure: overall per-job mean waiting time

Results:
I The optimal strategy may be a non-SI strategy.

(counter-example)

I It is a Nested Size-Interval (NSI) strategy.
I Slower queue can be nested in a faster queue.
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Mean waiting time under static strategies

The per-job mean waiting time:

E [W ] =
1

2λ

n
∑

i=1

[

λiωi

ci(ci − ρi)

]

,

where
I λi is arrival rate of queue i ,
I ρi is the (first-order) load of queue i ,
I ωi = λ

∫

∞

0 t2fi(t)dt is called “second-order load” of queue i ,
I ci is the capacity (processing speed) of queue i .
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Mean waiting time under static strategies (cont’d)

Mean waiting time

E [W ] =
1

2λ

n
∑

i=1

[

λiωi

ci(ci − ρi)

]

Objective: minimizing E [W ]

I Recall that: partitioning λf (·) to a sum of λi fi(·)’s
I Objective E [W ] depends on λi , ρi and ωi .
I λi , ρi and ωi are respectively zeroth-, first-, and

second-order moments of λi fi(·).

Feng, Misra, Rubenstein Optimal static dispatching



Model
Optimal static strategies

Mappings of queues
Conclusion

Homogeneous servers
Heterogeneous Servers
Sketch of the proofs

Proof for homogeneous case (c1 = c2 = · · · )

First prove for two queues, then extend to multiple queues.

For two queues: two cases

I Case 1: their loads are severely unbalanced: either of
I

λ1
c1(c1−ρ1)

> λ2
c2(c2−ρ2)

and ω1
c1(c1−ρ1)

> ω2
c2(c2−ρ2)

I
λ1

c1(c1−ρ1)
< λ2

c2(c2−ρ2)
and ω1

c1(c1−ρ1)
< ω2

c2(c2−ρ2)

I Case 2: otherwise.

Case 1: Severely unbalanced

I Transfer some jobs (of any size) from the high-loaded
queue to the other.

I E [W ] is lower.
I Repeat doing so until Case 2.
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Proof for homogeneous case (cont’d)

Case 2: not severely unbalanced

I Find a threshold such that shaded areas have same ρ.
I Swapping shaded areas yields an SI strategy.
I We show that E [W ] is lower.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

ξ x

λ f (x)1 1

f(x)

2λ

λ

ρ
2

s ρs
1

f (x)2

(job size)

D
en

si
ty

 o
f a

rr
iv

al
 ra

te

Feng, Misra, Rubenstein Optimal static dispatching



Model
Optimal static strategies

Mappings of queues
Conclusion

Homogeneous servers
Heterogeneous Servers
Sketch of the proofs

Proof for heterogeneous case (c1 < c2 < · · · )

For two queues: c1 < c2

I Case 1: their loads are severely unbalanced: either of
I Case 1a: λ1

c1(c1−ρ1)
> λ2

c2(c2−ρ2)
and ω1

c1(c1−ρ1)
> ω2

c2(c2−ρ2)

I Case 1b: λ1
c1(c1−ρ1)

< λ2
c2(c2−ρ2)

and ω1
c1(c1−ρ1)

< ω2
c2(c2−ρ2)

I Case 2: otherwise.

Cases 1b and Case 2
I Use the same arguments as in a homogeneous system.

Case 1a
I Previous argument fails.
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Proof for heterogeneous case (cont’d)

Case 1a (Slower queue has severely higher load)

I find two thresholds: shaded areas have same λ’s and ρ’s.
I Swapping shaded areas yields an NSI strategy
I We show that E [W ] gets lower.
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Remaining issues for finding an optimal static strategy

Homogeneous case

I To find the optimal thresholds of size intervals.
I Mapping (which queue gets which interval) is irrelevant.

Heterogeneous case

I Nested size intervals are more complicated.
I Mappings between queues and intervals matter.

What is the best mapping in heterogeneous case?

I No fixed rules(e.g. slower queue gets the interval of shorter jobs)

I Depending on job size distributions
Feng, Misra, Rubenstein Optimal static dispatching
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Mapping of intervals to queues: examples

I Only SI strategy (more simpler than NSI) and two queues
I Compare two mappings (ascending and descending) with

corresponding optimal thresholds
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mapping. X-axis: speed fraction of the slower queue)
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Mapping of intervals to queues: examples (cont’d)

I Two queues, SI strategy
I Only two mappings

I Ascending mapping: faster server gets interval of long jobs
I Descending mapping: faster server gets interval of short

jobs
I For each mapping, an optimal threshold (or load

partitioning) can be found.
I Log-normal distribution is mapping-invariant here (two

mappings obtains the same optimal) response time.
I All distributions such that

m(x) = E [X ]−m
(

ψ

x

)

, where m(x) =

∫ x

0
tdF (t), ψ:constant

is mapping-invariant (for two queues and SI strategy).
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Conclusion

I For FCFS, optimal static strategy is an NSI.
I For FCFS homogeneous queues, optimal static strategy is

an SI.
I Other scheduling policies can be used on each queue.
I For PS, size information is useless (w.r.t. mean response

time).
I Dynamic case is more complicated. [Whitt 1984]
I It is difficult to find the best mapping.
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