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Model Dispatching model

Static Strategies
Analysis model

Dispatching model

» One dispatcher, followed by multiple queues
» Heterogeneous: different server speeds

» FCFS policy for each queue

» Static dispatching strategy

Dispatcher MG
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Model Dispatching model

Static Strategies
Analysis model

Static strategies

» (Scheduling) Policies: algorithms used by each queue
» (Dispatching) Strategies: algorithms used by dispatcher

A class of static dispatching strategies

» Static: dispatcher is state-free
» Size-aware: dispatcher knows the job size on arrival
» Stochastic: dispatcher may randomly assign jobs

Why static?

» Easy to be implemented
» When collecting dynamic data is hard
» For the baseline of dynamic strategies
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Static Strategies
Analysis model

Static strategies

Examples of static strategies

» Random
» Size Interval (Sl) [Harchol-Balter 1999]
0 5K M (job size)

To queue 1 To queue 3

» Nested Size Interval (NSI) (more generalized than Sl)
0 1K IM M (job size)

Toqueue 1 | To queue 3 To queue 1

(Queue 3 is nested in Queue 1)
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Analysis model

Analysis with M/G/— model

Analysis Assumptions

» Poisson arrival with rate A
» General known job-size distribution with PDF f(x)

Implications

» Af(x) is the arrival rate density function (ARDF)

» Each queue is an M/G/1 whose ARDF is \;fi(x)

» We have Mf(x) = Y7, Aifi(x).

» The optimal static strategy means the optimal partitioning

of function Af(x) to \;f;(x) such that the overall mean
waiting time is minimized.
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Static Strategies
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Analysis with M/G/— model: example of three queues

Af
M) =1 F () +A, fx) +A f(x)
= "o’ “~~
‘7 Pad S
s l' ‘\
o .
g CAf 0 AL K
£ ;o ALf(x) Y
= 4 ~ *
Z K *
=
< l’ “
. “
l' \‘
’ ~
. ~§
D S
X (job size)

» To find A\ fy (X), )\gfg(X), and )\3f3(X) such that
M(x) = 2?21 Aifi(x) and the mean waiting time is
minimized.
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Optimal static strategies

Optimal static strategy in homogeneous case

Assume:

» Static strategy: state free, size-aware
» Homogeneous: all servers have the same speed
» M/G/1-FCFS queues

» Objective measure: overall per-job mean waiting/response
time

Result:
The optimal static strategy is a Size-Interval (Sl) strategy.

Feng, Misra, Rubenstein Optimal static dispatching



Homogeneous servers
Heterogeneous Servers
Sketch of the proofs

Optimal static strategies

Optimal static strategy in heterogeneous case

Assume:

» Static strategy: state free, size-aware

» Heterogeneous: servers have different speeds

» M/G/1-FCFS queues

» Objective measure: overall per-job mean waiting time

Results:
» The optimal strategy may be a non-Sl strategy.
(counter-example)
» It is a Nested Size-Interval (NSI) strategy.
» Slower queue can be nested in a faster queue.
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Homogeneous servers
Heterogeneous Servers
Sketch of the proofs

Optimal static strategies

Mean waiting time under static strategies

The per-job mean waiting time:

where
» ) is arrival rate of queue J,
» pjis the (first-order) load of queue /,
> W = )\fOOO t2f,(t)dt is called “second-order load” of queue i,
» ¢;is the capacity (processing speed) of queue /.
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Homogeneous servers
Heterogeneous Servers
Sketch of the proofs

Optimal static strategies

Mean waiting time under static strategies (cont’d)

Mean waiting time
1 < Ajwj
EIW — #]
Wl = 2X z; [C/( pi)

Objective: minimizing E[W]

» Recall that: partitioning Af(-) to a sum of \;fi(-)’s
» Objective E[W] depends on ), p; and w;.

» \;, pi and w; are respectively zeroth-, first-, and
second-order moments of \;fi(-).

Feng, Misra, Rubenstein Optimal static dispatching



Homogeneous servers
Heterogeneous Servers
Sketch of the proofs

Optimal static strategies

Proof for homogeneous case (¢ =¢co = - --

First prove for two queues, then extend to multiple queues.
For two queues: two cases

» Case 1: their Ioads are severely unbalanced: either of
y an nd

and

wp
C1(C1 1) - c2(C2—p2)
) <

> A
C1(C1—p1) 02(02 p2)

> 1 wp
ci(c *m) 02(02*/)2 Ci (C1 *p1 ca(C2—p2)

» Case 2: otherwise.

Case 1: Severely unbalanced

» Transfer some jobs (of any size) from the high-loaded
queue to the other.

» E[W] is lower.
» Repeat doing so until Case 2.
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Homogeneous servers
Heterogeneous Servers
Sketch of the proofs

Optimal static strategies

Proof for homogeneous case (cont'd)

Case 2: not severely unbalanced

» Find a threshold such that shaded areas have same p.
» Swapping shaded areas yields an Sl strategy.
» We show that E[W] is lower.

Density of arrival rate

p;\

13 X (job size)
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Homogeneous servers
Heterogeneous Servers
Sketch of the proofs

Optimal static strategies

Proof for heterogeneous case (¢1 < ¢ < - - -

For two queues: ¢; < ¢

» Case 1: their loads are severely unbalanced: either of

. DY A2 wq w2
> Case 1a: C1(C1 p1) > C2(C2—p2) and ci(c1—p1) - C2(Co—p2)
» Case 1b: o 01 vy

< and -4 < -2
» Case 2: otherwise.

2
C2(C2—p2) ci(ci—p1) C2(C2—p2)

Cases 1b and Case 2

» Use the same arguments as in a homogeneous system.

Case 1a

» Previous argument fails.
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Optimal static strategies

Homogeneous servers
Heterogeneous Servers
Sketch of the proofs

Proof for heterogeneous case (cont’d)

Case 1a (Slower queue has severely higher load)

» find two thresholds: shaded areas have same \'s and p’s.
» Swapping shaded areas yields an NSl strategy
» We show that E[W] gets lower.

Density of arrival rate

LEX) -

00}

Feng, Misra, Rubenstein

a S

x(job size)

Optimal static dispatching



Mappings of queues

Remaining issues for finding an optimal static strategy

Homogeneous case

» To find the optimal thresholds of size intervals.

» Mapping (which queue gets which interval) is irrelevant.
Heterogeneous case

» Nested size intervals are more complicated.

» Mappings between queues and intervals matter.
What is the best mapping in heterogeneous case?

> No fixed rules(e.g. slower queue gets the interval of shorter jobs)

» Depending on job size distributions
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Mappings of queues

Mapping of intervals to queues: examples

» Only Sl strategy (more simpler than NSI) and two queues
» Compare two mappings (ascending and descending) with
corresponding optimal thresholds

1
0.9
08
o7
%
g 0.6
o5
1
204

T
0.3

0.2 Jo=1.

0.1

Best: faster server gets short jobs

(c)

Tod0 T T T T T L =
2\ Bounded Pareto, p=0.8, p=1, q/K:\q{ PRE y

as2s

! !
0 005 01 015 02 025 03 035 04 045 05
4

Bounded Pareto

EWS RS

o » > o

LI e S B e e
Weibull, p=0.8, p=1
4=0.4 a=0.3 o a=0.2 -

1 10510 1

L L e
005 01 015 02 025 03 035 04 045 05
]

Weibull

Best: faster server gets long jobs

(Y-axis: ratio between optimal mean response times of ascending and descending

mapping. X-axis: speed fraction of the slower queue
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Mappings of queues

Mapping of intervals to queues: examples (cont'd)

» Two queues, Sl strategy
» Only two mappings
» Ascending mapping: faster server gets interval of long jobs
» Descending mapping: faster server gets interval of short
jobs
» For each mapping, an optimal threshold (or load
partitioning) can be found.
» Log-normal distribution is mapping-invariant here (two
mappings obtains the same optimal) response time.
» All distributions such that
X
m(x) = E[X]-m (%) . where m(x) = / tdF (t), :constant
0

is mapping-invariant (for two queues and Sl strategy).
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Conclusion

Conclusion

» For FCFS, optimal static strategy is an NSI.

» For FCFS homogeneous queues, optimal static strategy is
an Sl.

» Other scheduling policies can be used on each queue.

» For PS, size information is useless (w.r.t. mean response
time).

» Dynamic case is more complicated. [Whitt 1984]

» |t is difficult to find the best mapping.
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