The Public Option: A non-regulatory alternative to Network Neutrality

Richard Ma

Advanced Digital Sciences Center, Illinois at Singapore School of Computing, National University of Singapore

Joint work with Vishal Misra (Columbia University)

The Internet Landscape

Internet Service Providers (ISPs)

Internet Content Providers (CPs)

Regulatory Authorities

Users/Consumers

INFOCOMM DEVELOPMENT AUTHORITY OF SINGAPORE

Net Neutrality: Some History

Early 2005, Madison River Communications

- O Block VoIP
- \$15,000 fine

August 2008, Comcast

- Block Bittorrent packets
- The FCC imposed no fine, but required Comcast to end such blocking in the year 2008.
- April 6, 2010, Comcast Vs. FCC
 - U.S. Court of Appeals ruled that the FCC has no powers to regulate any ISP.

Net Neutrality: Our Focus

The content/application side of the twosided market.

• Classic example: night club

Whether a neutral network is beneficial for end-users?

NBC DAY AREA

Netflix May Increase Your Internet Fees

Internet service providers across the country mull charging data hogs more, according to new report.

By Sajid Farooq | Thursday, Dec 1, 2011 | Updated 10:15 AM PDT

Netflix and other streaming services may end up causing Internet fees to rise in the U.S.

http://www.nbcbayarea.com/news/local/Netflix-May-Increase-Your-Internet-Fees-134836978.html

Network Neutrality (NN)

Paid Prioritization (PP)

Highlights

- A more realistic equilibrium model of content traffic, based on
 - User demand for content
 - System protocol/mechanism
- Game theoretic analysis on user utility under different ISP market structures:
 Monopoly, Duopoly & Oligopoly
- Regulatory implications for all scenarios and the notion of a *Public Option*

Three-party model (M, μ, \mathcal{N})

- \square μ : capacity of a single access (eyeball) ISP
- □ M: # of users of the ISP (# of active users)
- $\square \mathcal{N}$: set of all content providers (CPs)
- $\Box \ \lambda_i: \text{throughput rate of } CP \ i \in \mathcal{N}$

User-side: 3 Demand Factors

 \square Unconstrained throughput $\widehat{\theta_i}$

- Upper-bound, achieved under unlimited capacity
 E.g. 5Mbps for Netflix
- Popularity of the content α_i
 Google has a larger user base than other CPs.
- Demand function of the content D_i(θ_i)
 Percentage of users still being active under the achievable throughput $\theta_i \leq \widehat{\theta_i}$

Demand Function $D_i(\theta_i)$

System Side: Rate Allocation

□ Rate allocation mechanism $\Theta(d, \mu)$ maps fixed demands and capacity to throughput

□ Axiom 1 (Throughput upper-bound) $\Theta_i(\boldsymbol{d}, \mu) \leq \hat{\theta}_i$

Axiom 2 (Work-conserving or Pareto Opt.)

$$\lambda_{\mathcal{N}}(\Theta(\boldsymbol{d},\boldsymbol{\mu})) = \sum_{i\in\mathcal{N}}\lambda_{i}(\Theta_{i}(\boldsymbol{d},\boldsymbol{\mu}))$$
$$= \min\left(\boldsymbol{\mu},\sum_{i\in\mathcal{N}}\hat{\lambda}_{i}\right)$$

Rate Allocation $\Theta(d, \mu)$

■ Axiom 3 (Consistency) There exists a family of continuous non-decreasing functions $\widetilde{\Theta}(\gamma) = (\widetilde{\Theta}_i(\gamma): i \in \mathcal{N})$ such that $\widetilde{\Theta}(\gamma_1) \neq \widetilde{\Theta}(\gamma_2), \quad \forall \gamma_1 \neq \gamma_2.$ For any (d, μ) , there exists a γ satisfying

 $\Theta(\boldsymbol{d},\mu) = \widetilde{\Theta}(\gamma)$

Uniqueness of Rate Equilibrium

$$(d^*,\vartheta) \text{ s.t. } \frac{d^* = D(\vartheta)}{\vartheta = \Theta(d^*,\mu)} \iff \vartheta = \Theta(D(\vartheta),\mu)$$

□ Theorem (Uniqueness): A system (M, μ, N) has a unique equilibrium $\{\theta_i : i \in N\}$ (and therefore $\{\lambda_i : i \in N\}$) under Assumption 1 and Axiom 1, 2 and 3.

User demand $D_i: \theta_i \rightarrow d_i$

Rate allocation Θ : $\{d_i : i \in \mathcal{N}\}, \mu \to \{\theta_i : i \in \mathcal{N}\}$

→ Rate equilibrium $\{\vartheta_i, d_i^*: i \in \mathcal{N}\}$

Monopolistic Analysis

 \square Players: monopoly ISP I and the set of CPs $\mathcal N$

□ A Two-stage Game Model (M, μ, \mathcal{N}, I)

- 1^{s†} stage, ISP chooses $s_I = (\kappa, c)$ announces s_I .
- 2nd stage, CPs simultaneously choose service classes reach a joint decision $s_{\mathcal{N}} = (\mathcal{O}, \mathcal{P})$.

Outcome (two subsystems):
 (M, κμ, P): set P (of CPs) share capacity κμ
 (M, (1 - κ)μ, 0): set O share capacity (1 - κ)μ

Utilities (Surplus)

ISP Surplus: $IS = c \sum_{i \in \mathcal{P}} \lambda_i = c \lambda_{\mathcal{P}};$

Consumer Surplus: $CS = \sum_{i \in \mathcal{N}} \phi_i \lambda_i$ ϕ_i : per unit traffic value to the users

□ Content Provider: • v_i : per unit traffic profit of CP *i* • $v_i \lambda_i$ if $i \in O$

$$u_i(\lambda_i) = \begin{cases} v_i \lambda_i & \text{if } i \in \mathcal{O}, \\ (v_i - c)\lambda_i & \text{if } i \in \mathcal{P}. \end{cases}$$

Type of Content \clubsuit Profitability of CP v_i 0 Value to ele ele users ϕ_i

Monopolistic Analysis

 \square Players: monopoly ISP I and the set of CPs $\mathcal N$

- □ A Two-stage Game Model (M, μ, \mathcal{N}, I)
 - 1st stage, ISP chooses $s_I = (\kappa, c)$ announces s_I .
 - 2nd stage, CPs simultaneously choose service classes reach a joint decision $s_{\mathcal{N}} = (\mathcal{O}, \mathcal{P})$.
- * Theorem: Given a fixed charge c, strategy $s_I = (\kappa, c)$ is dominated by $s'_I = (1, c)$.
- The monopoly ISP has incentive to allocate all capacity for the premium service class.

Utility Comparison: Φ vs Ψ

Regulatory Implications

Ordinary service can be made "damaged goods", which hurts the user utility.

- Implication: ISP should not be allowed to use non-work-conserving policies (κ cannot be too large).
- Should we allow the ISP to charge an arbitrarily high price c?

High price c is good when

Oligopolistic Analysis

□ A Two-stage Game Model $(M, \mu, \mathcal{N}, \mathcal{I})$

- 1st stage: for each ISP $I \in \mathcal{I}$ chooses $s_I = (\kappa_I, c_I)$ simultanously.
- 2nd stage: at each ISP $I \in \mathcal{I}$, CPs choose service classes with $s_{\mathcal{N}}^{I} = (\mathcal{O}_{I}, \mathcal{P}_{I})$

Difference with monopolistic scenarios:

- \bigcirc Users move among ISPs until the per user utility Φ_I is the same, which determines the market share of the ISPs
- ISPs try to maximize their market share.

Duopolistic Analysis

Duopolistic Analysis: Results

Theorem: In the duopolistic game, where an ISP J is a Public Option, i.e. $s_J = (0,0)$, if s_I maximizes the non-neutral ISP I's market share, s_I also maximizes user utility.

> Regulatory implication for monopoly cases:

Oligopolistic Analysis: Results

- □ Theorem: Under any strategy profile s_{-I} , if s_I is a best-response to s_{-I} that maximizes market share, then s_I is an ϵ -best-response for the per user utility Φ .
- > The Nash equilibrium of market share is an ϵ -Nash equilibrium of user utility.
- > Oligopolistic scenarios:

