
Data Persistence in Sensor Networks: Towards
Optimal Encoding for Data Recovery in Partial

Network Failures
Abhinav Kamra, Jon Feldman, Vishal Misra and Dan Rubenstein

Email: {kamra, jonfeld, misra, danr }@cs.columbia.edu

1 Introduction and Related Work

Sensors networks are capable of collecting an enormous amount of data over space and time. Often, the ultimate
objective is to “sample, store and forward”, that is to sense the data, store it locally and ultimately forward it to a
central host (or “master node”) where data from other sensor nodes is also collected and analyzed. A useful example
is a traffic sensing network, there being traffic sensors at each intersection that estimate the traffic and relay it to a
central processing station.

Typical sensor nodes are wireless nodes with limited storage and computational power. Furthermore, they are
prone to “failure”, by going out of wireless range, interference, running out of battery etc. When a sensor node fails,
the data it was storing is lost. In a cooperative sensor network, it is a good idea to have nodes’ data duplicated and
spread around the network so it can be recovered from other nodes in case of failure. In particular, every node can
store some of its own data as well as data from other nodes up to its storage capacity.

It has been shown [1, 2] that in a distributed network where the sensor nodes don’t exactly know the data other
nodes currently possess, it is beneficial to store encoded symbols of data units instead of the original data. The work of
Yeung et. al. [3] also gives the idea that with limited storage, the coding may be required to maximize the information
content. They further show [4] that Linear Coding suffices. That is, it is sufficient to store linear combinations of the
data as the encoded symbols.

The benefits of storing combinations of data instead of original data has been studied in various works [5, 6].
Traditional error-correcting erasure codes can also be used to achieve the goal of encoding data such that if some of
the encoding symbols are lost, data can still be recovered. Reed-Solomon codes [7] are block erasure codes that have
been traditionally used for error correction. Tornado codes [8] and more recently LT codes [9] are erasure codes that
require slightly more encoded symbols to recover the data but have much faster encoding/decoding. These codes focus
on the problem of choosing an encoding such that all the data can be recovered using a minimum number of encoded
symbols.

If part of the sensor network fails, the data stored in the failed sensor nodes is lost. The only data which remain is
the data remaining at the surviving nodes. The surviving nodes have symbols encoded from the data produced by all
the sensor nodes, so there is still a chance of recovering data produced by failed nodes using the surviving encoding
symbols. We focus on the problem of choosing an encoding to maximize the data that can be recovered from the
surviving encoded symbols as opposed to finding the minimum encoding symbols required to recover “all” data as
studied in Tornado and LT codes.

2 Problem Formulation

Our network model consists of a sensor network withN nodes, each having a limited storage capacity. Each node
has some dataxi that it has generated (or sensed). We call thexi’s data units. Since every node wants to spread its
data throughout the network and since storing encoded symbols is better than storing unencoded data, there is a data
mixing protocol according to which the sensor nodes form encoded symbols, exchange them with other nodes and
store them.

As in the case of LT codes, we assume that encoded symbols are XOR-encodings. That is each symbol is formed
by taking the bitwise XOR of a subset of data unitsx̄. The number of data units XOR-ed to form a symbol is called the
degree of the symbol. Typically, encoded symbols are produced according to a probability distributionπ̄ such that an
encoded symbol is degreei with probabilityπi. Thei data units that form the symbol are chosen uniformly randomly.



In practice, the content and spread of encoded symbols will of course depend on the particular data mixing protocol
between the nodes and the topology of the network so that the actual encoded symbols of a particular degree may not
be uniformly chosen from the set of all symbols of that degree. But for the purpose of analysis, we assume that the
encoded symbols have been mixed together and that they are generated according to some degree distributionπ̄ with
symbols of a particular degree chosen uniformly randomly. Using these abstractions and assumptions, we state the
following computational problem as follows:

Definition 2.1. Given a setS of data units and an encoded symbols of degreed, the distance ofs from setS,
dist(s, S), is the number of data units that form the symbols and are not present inS.

It is easy to see that ifS is the set of recovered data units, then a symbols recovers a new data unit if and only if
dist(s, S) is 1.

Definition 2.2. The iterative decoderD works as follows.

1. Decode all degree1 symbols and add them to setS. So, initiallyS is the set of distinct data units contained in
all degree1 symbols.

2. From the remaining symbols, choose a symbols such thatdist(s, S) is the minimum.

3. If dist(s, S) = 0, throw away this symbol as a redundant or duplicate symbol.

4. If dist(s, S) = 1, decode a new data unit and add it toS. Goto Step 2.

5. If dist(s, S) > 1, stop. The remaining symbols have distance greater than1 fromS and are useless.

This is the decoder used by Tornado and LT codes. It may not decode all possible data units from the given encoded
symbols. We can recover more using a Gaussian elimination method. But we will use this decoder since its much
faster compared to Gaussian elimination.

Consider another decoderD’ which given a fixed sequence of encoded symbolss′1, s
′
2, . . . , s

′
k, works as follows.

Initially the setS′ is empty.

1. At the ith step, choose symbolsi. If it has a distance1 from current setS′, then decode a new data unit and add
to setS′.

2. If si has distance0 or more than1, throw it away.

The following result holds:

Lemma 2.3. Given a sequence of symbolss1, s2, . . . , sk, the number of data units decoderD can recover from this
set of symbols is at least as much as that recovered by decoderD’ given any fixed sequences′1, s

′
2, . . . , s

′
k which is a

permutation of the symbolss1, s2, . . . , sk.

The proof is omitted due to space constraints.

Problem 2.4. There areN data unitsx̄. Givenk encoded symbols are recovered, what is the degree distribution
π̄ employed for encoding so that the expected number ofxi’s that can be decoded from thek encoded symbols is
maximized if we use the iterative decoder D described above.

Definition 2.5. If k encoded symbols are generated such that their degrees are chosen according to a probability
distribution π̄ and symbols of a particular degree are chosen uniformly randomly, thenπ̄∗ is optimal fork if the
expected number of data units recovered by decoderD is at least as much if thek symbols had been generated
according to some other probability distribution

3 Designing Optimal Degree Distributions for Iterative Decoding

3.1 Main Results

Let

k1 =

N
2 −1∑

i=0

N

N − i
, ri =

iN

i + 1
∀i∈[1,N−1] (1)

If s1, s2, . . . , sk is a set ofk encoded symbols, then letf(s1, . . . , sk) be the number of data units that can be
recovered from these symbols using decoderD.

2



Let C(i, j) be the expected number of data units that can be recovered from a set ofi + j encoded symbols,i
of which are of degree1 and the rest of degrees2 or more. Specifically, ifa1, . . . , ai are i degree1 symbols and
b1, . . . , bj arej symbols of degree2 or more, thenC(i, j) = f(a1, . . . , ai, b1, . . . , bj).

Lemma 3.1. Givenk = i+ j encoded symbols of whichi symbolsa1, . . . , ai are of degree1 andj symbolsb1, . . . , bj

are of degree2 or more, then∀j>0C(k − j, j) ≤ C(k, 0) if C(k − j, j) ≤ N
2 (= r1)

The proof is omitted due to space constraints.

Theorem 3.2. To recoverr data units, such thatr ≤ r1 =
N

2
, the optimal degree distribution has only degree1

symbols

Proof. We will prove this by contradiction. Suppose there is an optimal degree distributionπ̄opt such thatπopt
1 < 1.

Consider a set ofk encoded symbols according to this degree distribution such that there arek − j degree1 symbols
andj symbols of degree2 or more. The expected number of data units recovered isr = C(k − j, j) ≤ N

2 .
Using Lemma 3.1, we haveC(k, 0) ≥ C(k − j, j) and hencēπopt is not optimal for the givenk according to

Definition 2.5.
Hence, the optimal degree distribution is given byπ̄ : π1 = 1, ∀i>1πi = 0.

Theorem 3.3. To recoverr1 =
N

2
symbols, the expected number of encoded symbols required isE[k1] =

N
2 −1∑

i=0

N

N − i

which approaches
3N

4
from below asN goes to infinity

Proof. From Theorem 3.2, the optimal degree distribution will contain only degree1 symbols to recover the firstN2
data units. Since all the encoded symbols have to be degree1, this is the well studiedCoupon Collector’s Problem

where to get the firstr distinct coupons, one needs to collect
r−1∑

i=0

N

N − i
coupons.

We omit the second part of the proof due to space constraints.

Theorems 3.2 and 3.3 show that if most of the network nodes fail and less than three-fourth of the data survives,
then not using any coding is the best way to recover maximum number of symbols.

Theorem 3.4. To recoverr data units such thatr ≤ rj =
jN

j + 1
, the optimal degree distribution has symbols of

degreej or less only

The proof is along the same lines as that for Theorem 3.2 and we omit it due to space constraints.

Theorem 3.5.To recoverrj =
jN

j + 1
symbols, the expected number of encoded symbols required is at mostE[kj+1] ≤

E[kj ] +
rj+1−1∑

i=rj

N j+1

(j + 1)ij(N − i)

The proof is along the same lines as that for Theorem 3.3 and we omit it due to space constraints.

3.2 A Close to Optimal Degree Distribution

According to the analysis in section 3.1, it is best to use only degree1 symbols to recover the firstr1 data units, only
degree2 symbols to recover the nextr2 − r1 data units and so on. This defines a natural probability distribution on
the degrees of the encoded symbols. In particular, if we have a total ofk encoded symbols, we should havek1 degree
1 symbols,k2 − k1 degree2 symbols and so on as long as some ofk symbols are remaining. The degree distribution
can thus be defined as

π̄∗ : π∗i = max(0,min(
ki − ki−1

k
,
k − ki−1

k
)) (2)

Note that the values ofE[k1] in Theorem 3.3 is exact whereas those ofE[ki:i>1] are only upper bounds. Hence
the degree distribution̄π∗ is an approximation to the optimal distribution.

3



Figure 1: Comparing the performance of various degree distributions. N is chosen to be 128

4 Simulations

We compare the performance of the degree distribution given by Equation 2 to some well know distributions used in
related works using simulations.

Soliton-α is defined as̄πS−α : πS−α
1 = 1

α , πS−α
i∈[2,α] = 1

i(i−1) . This distribution and a slightly modified form called
the Robust Soliton-α are discussed in [9].

Figure 1 shows the average number of data units recovered using decoderD for varying k values and different
degree distributions.N is chosen as128. For nearly all values ofk, π̄∗ performs very well especially for low values
of k which means that it is a good distribution to use if the network failures tend to be large.

References

[1] S. Acedanski, S. Deb, M. Medard and R. Koetter, “How Good is Random Linear Coding Based Distributed
Networked Storage,” inWorkshop on Network Coding, Theory and Applications, 2005.

[2] A. G. Dimakis, V. Prabhakaran and K. Ramchandran, “Ubiquitous Acess to Distributed Data in Large-Scale
Sensor Networks through Decentralized Erasure Codes,” inSymposium on Information Processing in Sensor
Networks, 2005.

[3] R. Ahlswede, N. Cai, S. Y. R. Li and R. W. Yeung, “Network Information Flow,” inIEEE Transactions on
Information Theory, 2000, vol. 46, pp. 1004–1016.

[4] N. Cai, S. Y. R. Li and R. W. Yeung, “Linear Network Coding,” inIEEE Transactions on Information Theory,
2003, vol. 49, pp. 371–381.

[5] R. Koetter and M. Medard, “An Algebraic Approach to Network Coding,” inACM/IEEE Transactions on Net-
working, 2003, vol. 11, pp. 782–795.

[6] C. Gkantsidis and P. Rodriguez, “Network Coding for Large Scale Content Distribution,” inProceedings of
INFOCOM, 2005.

[7] Lin and Costello,Error Control Coding: Fundamentals and Applications, 1983.

[8] M. Luby, M. Mitzenmacher, M. A. Shokrollahi and D. Spielman, “Efficient Erasure Correcting Codes,” inIEEE
Transactions on Information Theory, 2001, vol. 47, pp. 569–584.

[9] M. Luby, “LT Codes,” inSymposium on Foundations of Computer Science, 2002.

4


