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1 Introduction and Related Work

Sensors networks are capable of collecting an enormous amount of data over space and time. Often, the ultimate
objective is to “sample, store and forward”, that is to sense the data, store it locally and ultimately forward it to a
central host (or “master node”) where data from other sensor nodes is also collected and analyzed. A useful example
is a traffic sensing network, there being traffic sensors at each intersection that estimate the traffic and relay it to a
central processing station.

Typical sensor nodes are wireless nodes with limited storage and computational power. Furthermore, they are
prone to “failure”, by going out of wireless range, interference, running out of battery etc. When a sensor node fails,
the data it was storing is lost. In a cooperative sensor network, it is a good idea to have nodes’ data duplicated and
spread around the network so it can be recovered from other nodes in case of failure. In particular, every node can
store some of its own data as well as data from other nodes up to its storage capacity.

It has been shown [1, 2] that in a distributed network where the sensor nodes don't exactly know the data other
nodes currently possess, it is beneficial to store encoded symbols of data units instead of the original data. The work of
Yeung et. al. [3] also gives the idea that with limited storage, the coding may be required to maximize the information
content. They further show [4] that Linear Coding suffices. That is, it is sufficient to store linear combinations of the
data as the encoded symbols.

The benefits of storing combinations of data instead of original data has been studied in various works [5, 6].
Traditional error-correcting erasure codes can also be used to achieve the goal of encoding data such that if some of
the encoding symbols are lost, data can still be recovered. Reed-Solomon codes [7] are block erasure codes that have
been traditionally used for error correction. Tornado codes [8] and more recently LT codes [9] are erasure codes that
require slightly more encoded symbols to recover the data but have much faster encoding/decoding. These codes focus
on the problem of choosing an encoding such that all the data can be recovered using a minimum number of encoded
symbols.

If part of the sensor network fails, the data stored in the failed sensor nodes is lost. The only data which remain is
the data remaining at the surviving nodes. The surviving nodes have symbols encoded from the data produced by all
the sensor nodes, so there is still a chance of recovering data produced by failed nodes using the surviving encoding
symbols. We focus on the problem of choosing an encoding to maximize the data that can be recovered from the
surviving encoded symbols as opposed to finding the minimum encoding symbols required to recover “all” data as
studied in Tornado and LT codes.

2 Problem Formulation

Our network model consists of a sensor network witmodes, each having a limited storage capacity. Each node

has some data; that it has generated (or sensed). We call:itHig data units. Since every node wants to spread its

data throughout the network and since storing encoded symbols is better than storing unencoded data, there is a data
mixing protocol according to which the sensor nodes form encoded symbols, exchange them with other nodes and
store them.

As in the case of LT codes, we assume that encoded symbols are XOR-encodings. That is each symbol is formed
by taking the bitwise XOR of a subset of data umitsThe number of data units XOR-ed to form a symbol is called the
degree of the symbol. Typically, encoded symbols are produced according to a probability distribsticimthat an
encoded symbol is degreéevith probability ;. Thei data units that form the symbol are chosen uniformly randomly.



In practice, the content and spread of encoded symbols will of course depend on the particular data mixing protocol
between the nodes and the topology of the network so that the actual encoded symbols of a particular degree may not
be uniformly chosen from the set of all symbols of that degree. But for the purpose of analysis, we assume that the
encoded symbols have been mixed together and that they are generated according to some degree distrithution
symbols of a particular degree chosen uniformly randomly. Using these abstractions and assumptions, we state the
following computational problem as follows:

Definition 2.1. Given a setS of data units and an encoded symiobf degreed, the distance ot from setS,
dist(s, S), is the number of data units that form the symbahd are not present if.

It is easy to see that i§ is the set of recovered data units, then a symlrelcovers a new data unit if and only if
dist(s,S)is 1.

Definition 2.2. The iterative decoddd works as follows.

1. Decode all degreé symbols and add them to s&t So, initially S is the set of distinct data units contained in
all degreel symbols.

2. From the remaining symbols, choose a symimlich thatdist(s, S) is the minimum.

3. If dist(s, S) = 0, throw away this symbol as a redundant or duplicate symbol.

4. If dist(s, S) = 1, decode a new data unit and add it$o Goto Step 2.

5. If dist(s, S) > 1, stop. The remaining symbols have distance greater thiaom S and are useless.

This is the decoder used by Tornado and LT codes. It may not decode all possible data units from the given encoded
symbols. We can recover more using a Gaussian elimination method. But we will use this decoder since its much
faster compared to Gaussian elimination.

Consider another decodBf which given a fixed sequence of encoded symbglss;, . . ., s, works as follows.

Initially the setS’ is empty.

1. Attheit" step, choose symbe). If it has a distancé from current sefs’, then decode a new data unit and add
to setS’.

2. If s; has distancé or more thar, throw it away.

The following result holds:

Lemma 2.3. Given a sequence of symbaels s», . . ., sg, the number of data units decodercan recover from this
set of symbols is at least as much as that recovered by de@dgven any fixed sequeneg, s, ..., s, whichis a
permutation of the symbols, so, .. ., sk.

The proof is omitted due to space constraints.

Problem 2.4. There areN data unitsz. Givenk encoded symbols are recovered, what is the degree distribution
7 employed for encoding so that the expected numbet;’sfthat can be decoded from tikeencoded symbols is
maximized if we use the iterative decoder D described above.

Definition 2.5. If £ encoded symbols are generated such that their degrees are chosen according to a probability
distribution # and symbols of a particular degree are chosen uniformly randomly, tteis optimal for & if the
expected number of data units recovered by dec@lés at least as much if thé symbols had been generated
according to some other probability distribution

3 Designing Optimal Degree Distributions for Iterative Decoding
3.1 Main Results
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If s1,s09,...,s, IS a set ofk encoded symbols, then I¢{sq,..., s;) be the number of data units that can be

recovered from these symbols using decdder



Let C(i, j) be the expected number of data units that can be recovered from aiset oéncoded symbols,
of which are of degreé and the rest of degre&sor more. Specifically, ifuq, ..., a; arei degreel symbols and
bi,...,b; arej symbols of degree or more, therC(i, j) = f(ai1,...,a;,b1,...,b;).

Lemma 3.1. Givenk = i+ j encoded symbols of whi¢lsymbolsyy, . . ., a; are of degred andj symbols., ..., b,
are of degree or more, therv;~oC(k — j,j) < C(k,0) if C(k —j,j) < F(=r1)

The proof is omitted due to space constraints.

. N . e
Theorem 3.2. To recoverr data units, such that < r; = 5 the optimal degree distribution has only degree
symbols

Proof. We will prove this by contradiction. Suppose there is an optimal degree distribttirsuch thatr{”* < 1.

Consider a set of encoded symbols according to this degree distribution such that theke-ajedegreel symbols
and; symbols of degre@ or more. The expected number of data units recoveredHsC'(k — j,j) < %
Using Lemma 3.1, we hav€(k,0) > C(k — j,7) and hencer?® is not optimal for the giverk according to
Definition 2.5.
Hence, the optimal degree distribution is givenbyr; = 1,V;~1m; = 0.
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Proof. From Theorem 3.2, the optimal degree distribution will contain only degr®enbols to recover the firs%’

data units. Since all the encoded symbols have to be dégibés is the well studied€Coupon Collector’'s Problem
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where to get the first distinct coupons, one needs to collg N coupons.
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We omit the second part of the proof due to space constraints. O

Theorems 3.2 and 3.3 show that if most of the network nodes fail and less than three-fourth of the data survives,
then not using any coding is the best way to recover maximum number of symbols.

. N . o
Theorem 3.4. To recoverr data units such that < r; = % the optimal degree distribution has symbols of
J

degreej or less only

The proof is along the same lines as that for Theorem 3.2 and we omit it due to space constraints.

Theorem 3.5. To recover; = _]N symbols, the expected number of encoded symbols required is @ fhpst] <
J
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The proof is along the same lines as that for Theorem 3.3 and we omit it due to space constraints.

3.2 A Close to Optimal Degree Distribution

According to the analysis in section 3.1, it is best to use only degssyenbols to recover the first data units, only
degree2 symbols to recover the next — r; data units and so on. This defines a natural probability distribution on
the degrees of the encoded symbols. In particular, if we have a tatadieEoded symbols, we should havedegree
1 symbols,k, — k1 degree2 symbols and so on as long as somé &fymbols are remaining. The degree distribution
can thus be defined as P ek
i -1 - Pg—1
2
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Note that the values dE'[k;] in Theorem 3.3 is exact whereas thoseFdk;.;~1] are only upper bounds. Hence
the degree distributio* is an approximation to the optimal distribution.

7wl = max(0, min(
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Figure 1: Comparing the performance of various degree distributions. N is chosen to be 128

4 Simulations

We compare the performance of the degree distribution given by Equation 2 to some well know distributions used in
related works using simulations.

Soliton is defined ag = : 77 ~* = L, wfe‘[ga] = ﬁ This distribution and a slightly modified form called
the Robust Solitonr are discussed in [9].

Figure 1 shows the average number of data units recovered using dé&xdaievarying k& values and different
degree distributionsN is chosen a$28. For nearly all values of, 7* performs very well especially for low values

of £ which means that it is a good distribution to use if the network failures tend to be large.
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