
Understanding the Behavior of TCP for Real-time CBR
Workloads

Salman A. Baset, Eli Brosh, Vishal Misra, Dan Rubenstein, and Henning Schulzrinne
Columbia University

ABSTRACT
In this paper, we examine the feasibility of sending real-time
CBR workloads over TCP. This is motivated by the friendli-
ness of NATs and firewalls towards TCP as opposed to UDP
as well as by recent improvements in Internet’s bandwidth
and loss rates. Traditionally, TCP has been considered un-
desirable for real-time CBR workloads. We evaluate this
assertion by developing a novel analytical tool that yields
TCP’s sender-to-receiver socket delay distribution for CBR
workloads. A key insight gained is that the use of smaller
than MSS-sized packets in CBR workloads can exploit the
TCP’s ACK counting mechanism thereby limiting the delay
impact of congestion window variations. We leverage this
insight to provide a heuristic and system-level guidelines for
reducing TCP transport delays.

1. INTRODUCTION
It is widely accepted that UDP is the preferred transport

layer for delivery of real-time CBR workloads, such as voice
or video. In practice, the presence of NATs and firewalls may
limit UDP connectivity. Skype, a popular VoIP application
bypasses this problem by using TCP transport whenever
UDP connectively is restricted. Furthermore, the recent ad-
vances in Internet bandwidth and loss rates, and recent TCP
loss recovery enhancements, such as SACK [4], may suggest
that TCP based transport of real-time CBR workloads is
not as impractical as is traditionally believed [3]. This mo-
tivated us to evaluate the feasibility of CBR over TCP.

To this end, we develop an analytical tool that yields the
TCP delay distribution, that is, the sender-to-receiver socket
delay distribution for a single CBR workload as a function of
the network loss rate, round-trip time, and workload rate.
Our tool differs from existing analytical models [2, 5], in
that it assumes a rate-limited TCP sender that may send
smaller than MSS-sized packets rather then a saturated TCP
sender that sends full MSS-sized segments. Furthermore,
while previous work has been concerned with characterizing
TCP’s throughput, ours is concerned with characterizing the
end-to-end TCP delay as it determines whether a packet can
satisfy the play out constraint at the receiver.

Although, it is possible to study TCP’s behavior empiri-
cally, an analytical delay prediction tool offers several advan-
tages over such an approach. First, it provides an effective

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’06, Lisbon, Portugal
Copyright 2006 ACM 1-59593-456-1-04/12/06 ...$5.00.

way to derive delay bounds over a wide range of network
and workload parameters which can be used to compare the
protocol delay of TCP to that of UDP. Second, it provides
an application with a method to quickly evaluate the quality
of multiple candidate routes. Finally, the tool can be used
to avoid over provisioning the receiver buffer size for CBR
workloads, such as video.

We use our tool to identify the feasible operational region
for CBR over TCP and demonstrate that in some cases,
such as voice workloads, TCP delivery can satisfy the delay
constraints of a real-time application over a wide-range of
network settings, e.g., the delay of a CBR flow with ’small’
packet sizes (MSS/10) does not exceed a 200ms delay with
probability 0.97 for RTTs below 100 ms and packet loss rates
of at most 1%. The low delay results can be explained by
observing TCP’s congestion control behavior in a delay op-
timized setting, i.e., when no delay socket option and ACK
counting [1] are enabled1. In this setting, TCP adjusts its
congestion window according to the workload’s packet rate
rather than the total byte rate. The use of smaller than
MSS-sized packets for CBR workloads such as voice implic-
itly exploits this behavior thereby limiting the delay impact
of congestion window variations. We use our tool to charac-
terize the tradeoff between packet size and packet rate in a
quantative manner.

2. DELAY PREDICTION TOOL
Our tool captures TCP delay costs due to packet retrans-

mission and congestion control. For a single or multiple
losses within a window, the expected cost of a retransmis-
sion is assumed to be RTT2. TCP uses a congestion window
(CW) to control the allowed transmission rate and thus may
induce sender side delays when the offered load is limited by
the CW size. A key assumption we make is that ACK count-
ing is enabled at the sender, i.e., TCP increments the CW
by a constant amount (MSS) upon the arrival of each ACK.

We capture the TCP delay by keeping track of the win-
dow size and the backlog size (the amount of unsent data in
TCP’s send buffer) evolutions across rounds. A round cor-
responds to the period between CW updates. We assume
that a round duration is RTT during window limited periods
and is the interval between losses during workload limited
periods. Our tool only captures the congestion-avoidance
behavior of TCP and we are currently working towards in-
corporating slow-start and timeout effects. Let wi and bi be
the window size and the backlog size at the beginning of the
ith round. In the absence of a loss indication, the system

1ACK counting is enabled by default in Windows XP and
most Linux distributions.
2This is motivated by the wide-deployment of new TCP
recovery mechanisms, such as SACK and NewReno.

200 400 600
0

0.2

0.4

0.6

0.8

T
C

P
 D

el
ay

Packet Number
200 400 600

0

10

20

30

40

200 400 600 800
0

0.2

0.4

0.6

0.8

Packet Number

Delay
CWND

200 400 600 800
0

10

20

30

40

C
on

ge
st

io
n

W
in

do
w

.

Figure 1: TCP delay for CBR workloads of 10 (left)
and 20 (right) packets per RTT.

evolution can be expressed by

wi+1 =

�
wi + 1 if bi > 0
min(r, wi + 1) if bi = 0

(1)

bi+1 =

�
max {0, bi + rs− wiMSS} if bi > 0
0 if bi = 0

(2)

where r is the workload packet rate per RTT and s is the
workload packet size. The backlog size change is represented
by the newly added data rs minus the transmitted data
which can be at most MSSwi. If a loss indication is received
in the ith round then:

wi+1 =

� bwi/2c if bi > 0
bmin(r, wi)/2c if bi = 0

(3)

bi+1 =

�
max {0, bi + rs− bwi/2cMSS} if bi > 0
max {0, bi + rs− bmin(r, wi)/2cMSS} if bi = 0

(4)

The above equation captures TCP’s window adaptations for
workload-limited flows so that at the end of loss recovery the
CW is decreased to half of the number of packets in flight,
regardless of the window size prior to the loss [1].

The sender side delay of a packet can be approximated
by the backlog size observed just prior to its transmission,
since the packets that a transmitted packet leaves behind
must have arrived during its stay in the system. The sys-
tem evolution equations can be directly translated into a
Markov chain which can be solved numerically3 to yield
the delay distribution. We validated the tool by compar-
ing its cumulative delay distribution to those obtained via
real measurements. Our test bed consists of sender and re-
ceiver Linux machines connected through a router running
NISTnet which emulates a network with a constant RTT
delay and a packet loss distribution. The obtained results
indicate that TCP can satisfy the delay constraints of a real-
time application, as described in the previous section.

3. CBR INTERACTIONS WITH TCP
We give an illustrative example to demonstrate the re-

lationship between CBR workload characteristics and TCP

3This requires delay pattern computations, the details of
which have been omitted.

delays. Consider Figure 1 which plots the sender-to-receiver
TCP delay and window size vs packet number for two CBR
over TCP flows of full (right plot) and half-sized (left plot)
MSS packets in a symmetric network with 100ms RTT.
The total byte rate is the same for both flows but their
packet sending rate is 100 (10) and 200 (20) packets/s (pack-
ets/RTT), respectively. Both flows experience two close-by
losses. The delay spikes shown are caused by receiver-side
buffering due to TCP’s in-order delivery. The spike height is
1.5RTT plus the triple duplicate ACK overhead, e.g., three
packetization intervals.

The quadratic delay curve is caused by sender side buffer-
ing due to congestion window limitation and is captured by
eq. (2). The first flow (left plot) fully utilizes the connec-
tion’s throughput in steady-state and immediately experi-
ences sender side buffering after the first loss due to CW
reduction. The second flow utilizes only half of the available
throughput in steady-state since its packet rate is doubled,
while the byte rate remains the same. The second flow will
experience sender side buffering only after the second loss,
i.e., when the CW is reduced by more than two. Specifi-
cally, the second flow does better than the first flow because
TCP can combine half-MSS sized packets to fully utilize
the throughput. The delay reduction comes at the expense
of increased TCP header overhead due to increased packet
rate. Note that the CW is determined by the packet rate
and that the steady-state CW is higher than the workload
packet rate due to backlog clearing time.

This explains why CBR workloads such as voice may not
be adversely impacted by TCP’s window variations. Our
tool can be used to systematically evaluate tradeoffs between
packet size and rate. Given enough bandwidth, a general
recommendation for MSS to packet size ratio would be to
keep it at least above two to avoid the build up of sender
side backlog.

4. ON GOING WORK
Based on our experiments we recommend TCP parame-

ter settings for optimizing TCP delays. The key points are
that Nagle’s algorithm and delayed ACKs should be disabled
and ACK-counting should be enabled. Detailed results that
quantify the impact of these parameters are omitted due to
space considerations. Currently, we are investigating the ef-
fect of dynamically adjusting packet size on TCP delay and
are running planet-lab delay experiments. We intend to use
real-voice transmission experiments to quantify voice over
TCP delays.

5. REFERENCES
[1] M. Allman et al. TCP Congestion Control . RFC 2581,

1999.

[2] E. Altman et al. A stochastic model of TCP/IP with
stationary random losses. In SIGCOMM, Sept. 2000.

[3] A. Goel et al. Supporting low-latency tcpbased media
streams. In IWQos, May 2002.

[4] M. Mathis et al. TCP Selective Acknowledgement
Options. RFC 2018, Oct. 1996.

[5] J. Padhye et al. Modeling TCP throughput: A simple
model and its empirical validation. In SIGCOMM,
Sept. 1998.

