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Internet Economics: The Use of Shapley Value
for ISP Settlement

Richard T. B. Ma, Dah Ming Chiu, Fellow, IEEE, John C. S. Lui, Fellow, IEEE, Vishal Misra, Member, IEEE, and
Dan Rubenstein, Member, IEEE

Abstract—Within the current Internet, autonomous ISPs imple-
ment bilateral agreements, with each ISP establishing agreements
that suit its own local objective to maximize its profit. Peering
agreements based on local views and bilateral settlements, while
expedient, encourage selfish routing strategies and discriminatory
interconnections. From a more global perspective, such settle-
ments reduce aggregate profits, limit the stability of routes, and
discourage potentially useful peering/connectivity arrangements,
thereby unnecessarily balkanizing the Internet. We show that if
the distribution of profits is enforced at a global level, then there
exist profit-sharing mechanisms derived from the coalition games
concept of Shapley value and its extensions that will encourage
these selfish ISPs who seek to maximize their own profits to
converge to a Nash equilibrium. We show that these profit-sharing
schemes exhibit several fairness properties that support the argu-
ment that this distribution of profits is desirable. In addition, at
the Nash equilibrium point, the routing and connecting/peering
strategies maximize aggregate network profits and encourage ISP
connectivity so as to limit balkanization.

Index Terms—Coalition game, incentives, ISP settlement, Nash
equilibrium, Shapley value.

I. INTRODUCTION

T HE Internet is composed of thousands of connected au-
tonomous systems (ASs). Before transitioning to the pri-

vatesector, theseASs’primaryfocuswas to improveconnectivity
and network performance—who got paid was not the primary
concern. However, in its current form, ISPs, each composed of
one or more ASs, have a primary interest to maximize their own
profit. Connectivity is currently implemented via bilateral con-
tracts that are generally either a peering relationship where ISPs
offer to carry one another’s traffic or a customer–provider rela-
tionship where one ISP pays the other for transit [15].

These local, bilateral agreements may look beneficial from a
local perspective, but from a more global perspective, they are
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very unappealing. ISPs will often resort to selfish routing such
as using the hot-potato algorithm [26]. Furthermore, ISPs will
often refrain from connecting to another ISP when such a con-
nection does not increase its own profit, regardless of the benefit
that the connection might provide the global system. This selfish
behavior can lead to a balkanization of the Internet, with the
global infrastructure dismantling into a set of networks that have
varying degrees of accessibility and reachability, limiting their
usefulness [11]. This balkanization inhibits the Internet’s evo-
lution toward the FCC’s notion of a universal core connecting
service [2] that can implement the mandatory functions imposed
by the FCC on all telephony providers. To summarize, the lack
of a more global view on the design of monetary incentives for
ISPs to peer and route is limiting competition, thereby limiting
technical innovation.

In this paper, we explore how to design a profit-sharing
mechanism that would lead to a better engineered Internet.
In other words, rather than allow ISPs to set their prices and
obtain profits locally, the profit-sharing mechanism should
take the collection of revenue generated by the entire network
and divide this revenue “fairly” among the participating ISPs.
The mechanism we implement is based on the Shapley value
[25], [30]. This mechanism is desirable from both the global
level as well as the local ISP level. From a global perspective,
the same traffic demands can be supported while increasing
the aggregate network profit, and balkanization will reduce as
this novel mechanism will provide more encouragement for
connections. From the local perspective, the Shapley value
exhibits several fairness properties that formally indicate that
an ISP’s profit is proportional to its contribution to the value of
the network. Specifically, our contributions are the following.

• We propose (Section II) a novel multilateral settlement
model, where customers pay for end-to-end services and
ISPs collectively share the revenue for providing services.

• We implement this settlement via a mechanism based on
the Shapley value and show that the following are achieved
(Section III).
— Efficiency: The aggregate revenue delivered to the ISPs

equals the aggregate payments accumulated from the
customers (i.e., all funds are accounted for).

— Fairness: ISPs who make greater contributions to the
profit of the aggregate network receive a greater share
of this profit. This general statement is specified more
formally and precisely as a set of four specific properties
(symmetry, fairness, dummy, and strong monotonicity).

— Optimal Routing: Given any fixed interconnection
topology, by allowing each ISP to select routes that
maximize its individual profit, the global routing
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TABLE I
MAJOR NOTATION USED IN THIS PAPER

topology converges to a Nash equilibrium where the
aggregate profit of the system is also maximized
(Section IV).

— Interconnection Incentives: Each ISP’s selfish objec-
tive will encourage it to connect to other ISPs when such
a connection increases the overall profit of the network,
evolving the network to a better connected, more effi-
cient state (Section V).

• We illustrate examples of profit distribution among ISPs,
including the real AS topology of Columbia University,
New York, NY. We also simulate and compare the profits
under hot-potato routing and optimal routing generated by
our new mechanism. We show that by using the new mech-
anism, every ISP increases profits.

Our proposed mechanism is a considerable and likely con-
troversial shift from the current bilateral settlements where an
ISP’s profit are computed solely from its local interactions. This
all-local property gives the ISP a false sense of independence
since these profits are in fact affected by other ISPs’ decisions
throughout the network. Nonetheless, this sense of indepen-
dence and profit based on local perception is appealing. The
two principle motivations we present for our mechanism are: 1)
Our profit redistribution is not a zero sum game, and in fact all
participating players stand to gain; and 2) from a social (and thus
policy) perspective, our mechanism encourages interconnection,
thereby leading to a better connected and more robust Internet.

We start off with preliminaries and a model description needed
for our framework in the next section. To aid our discussion,
Table I summarizes the major notation that we use in this paper.

II. COOPERATIVE FRAMEWORK

A. Three Layers of the Current Internet and a Novel Two-Stage
Settlement Model

We view the current Internet as three layers of bilateral in-
teractions between ISPs as illustrated in Fig. 1. At the bottom

Fig. 1. A view of ISP interactions of the Internet.

layer, pairs of ISPs decide whether or not to connect. They de-
cide the venue and type of the connections. For example, peering
connections assume a symmetric traffic pattern going through
the links, while customer–provider links assume asymmetric
traffic flows that the provider ISP helps its customer ISPs for-
ward traffic.

At the middle layer, each ISP advertises BGP routes to neigh-
boring ISPs and decides how to route traffic efficiently to reduce
its own cost. For example, hot-potato routing is often used to
choose the closest egress point based on the intradomain cost.
At the top layer, end-users pay their local ISPs for the services,
and customer ISPs pay their provider ISPs by bilateral agree-
ments. Although all layers depend on one another, due to the
limitations of bilateral interactions and selfish decisions of the
ISPs, the behavior of the network from a global perspective can
be highly inefficient and, to a large extent, unregulated.

Unlike the existing bilateral agreements, we consider a col-
lection of ISPs, providing end-to-end services to all their cus-
tomers, as a whole. We propose a two-stage multilateral finan-
cial settlement, illustrated in Fig. 2, as the following.

S1) Customers make service agreements (charge and re-
quirements) at their local ISPs; however, from the cus-
tomers’ view, the agreement is on the end-to-end service
rather than a connecting and forwarding service.
S2a) All payments from customers are collected by a mul-
tilateral profit distribution mechanism , which decides the
proportion of revenue each ISP receives.
S2b) Knowing the rule of the profit distribution mecha-
nism, each ISP makes local decisions on interconnection
and routing to maximize its profit.

In the first stage, the service negotiation at the edge of the net-
work does not require users to buy resources from multiple
ISPs along the communication paths. Our pricing model is ex-
tremely general, and service agreements are not restricted to ser-
vice bundling, service differentiation, or the pricing structure
of the services. For example, services can be charged at their
origins or destinations. Commercial content providers might be
charged more than nonprofit organizations. Either usage-based
pricing or flat-rate pricing can be applied. In the second stage,
the mechanism distributes revenues among ISPs for
every possible interconnection topology and routing deci-
sion . Our objective is to design the profit distribution mech-
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Fig. 2. A two-stage multilateral settlement model.

anism that encourages selfish ISPs to interconnect ex-
tensively and route efficiently.

B. Network Model

We first define the network flows that will be used in our
network models as follows.

Definition 1: A flow on a directed graph is a
mapping function .

Remark: Each can be considered as the traffic rate
going from vertex to through the link on graph .
Suppose we want to achieve end-to-end data delivery rates

, we define the flows that achieve these rates.
Definition 2: A single feasible flow is a flow that achieves

a source–destination rate from vertex to vertex on a di-
rected graph .

Remark: If and are not connected in graph , by default
we define by a zero vector. Mathematically, each nonzero
vector satisfies the following flow conservation constraints:

Definition 3: A feasible flow is a flow that achieves rates
on a directed graph . It can be written as a

summation of single feasible flows .
We consider a network system comprised of a set of ASs. We

denote as the set of ASs. denotes the number of ASs
in the network. We use AS and ISP interchangeably, assuming
each ISP has one AS. ISPs with multiple ASs can be considered
as one super-AS in our model, where other ASs connect to the
super-AS if it connects one of the ASs of the ISP. In this sense,
our model does not require the ASs of an ISP to be connected
to each other.

To fairly distribute profits among ASs, we want to measure
the contribution of each AS for generating those profits. In par-
ticular, we measure the profits that can be generated by subsets
of the ASs. We call any nonempty subset a coalition
of the ASs. Each coalition can be thought of as a subnetwork
that might be able to provide partial services to their customers.
We denote as the worth function, which measures the value
produced by the subnetworks formed by all coalitions. In other

Fig. 3. A router-level model and its corresponding AS-level topology.

words, for any coalition , defines the profit generated by
the subnetwork formed by the set of ASs . Through the worth
function , we can measure the contribution of an AS to a group
of ASs as the following.

Definition 4: The marginal contribution of AS to a coalition
is defined as .

In the next section, we will describe the mechanism that uses
this worth function to distribute profits among ASs. In the rest
of this section, we develop our network model and the corre-
sponding worth function.

Router-Level Model: We denote as the
router-level network system. denotes the set of routers in
the network. denotes the set of directed links connecting
the routers. The graph defines the router-level
topology of the network. We denote the subset of routers
possessed by AS as . Mathematically,
defines a partition of , i.e., and
for . We denote as the subgraph of induced by

, defined by , where and
. is the router-level

topology formed by the coalition . We assume that the net-
work needs to provide end-to-end data delivery services to
customers, and these services require the network to achieve
router-to-router traffic rates . denotes a
flow profile used by the ASs to route traffic at these rates.

Definition 5: A flow profile maps each coalition to
a feasible flow on the induced directed subgraph .

Remark: Each is a feasible flow defined on the sub-
graph , which can be considered as a routing strategy used
by coalition to route data traffic.

Given the router-level topology , we can con-
struct the corresponding AS-level topology .
denotes the set of directed logical links between the ASs, de-
fined by . Fig. 3
illustrates an example of a router-level topology and the corre-
sponding AS-level topology. At the AS level, the subgraph ,
formed by the coalition , is defined by , where

.
Worth Function : We define the worth function to be the

profit, i.e., the revenue minus the routing cost, as

(1)

where denotes the revenue and denotes the routing cost.
We say that AS is connected to AS by if there is some

and a sequence such that ,
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, and for . We define the revenue
generated from the end-to-end service connecting AS to AS
by . The revenue function is defined as the following.

(2)
The revenue function depends on the topology of the network.
As long as the AS is connected to AS , the revenue function
indicates that a revenue of can be obtained from the cus-
tomers for providing data delivery services. We assume that a
feasible flow is used to achieve this service; however, the rev-
enue does not depend on which flow is used to achieve the ser-
vice. On the other hand, the routing cost not only depends on
the topology of the network, but also depends on the flows that
achieve data delivery end-to-end services.

We denote as the routing cost function on link ,
defined by , where and denote
the sending cost of router and the receiving cost of router .
We assume that and are monotonically increasing
with the aggregate traffic intensity on the link and

. We denote as the routing cost of an AS , de-
fined as the aggregate sending and receiving costs of the links
possessed by the AS. Given any feasible flow defined on
the subgraph of a router-level topology, AS ’s routing cost

is defined by

In reality, the instantaneous traffic intensity varies, and the
routing cost might depend on the congestion level. Here, we
consider the total routing cost incurred over a certain period
of time. Therefore, we consider the costs as a function of the
average traffic intensity. Thus, given any flow profile , we
define the cost function as the following:

(3)

III. PROFIT DISTRIBUTION MECHANISM

In this section, we formally define the class of profit distribu-
tion mechanisms and derive a specific mechanism based on
various desirable properties. In Sections IV and V, we will show
that the mechanism is also compatible to optimal routing and
smart interconnection.

Definition 6: A profit distribution mechanism is an oper-
ator on a network system that assigns a profit vector

in . Each denotes the
assigned profit of AS .

Remark: For the network system , we suppose that
the topology and the flow profile are fixed, therefore all infor-
mation is embedded into the worth function defined by (1).
Later, when ISPs change interconnection and routing decisions,
links and flow profile will appear as parameters for the net-
work system.

A. Desirable Properties

We design a suitable mechanism that satisfies the
following desirable properties among ASs.

Property 1 (Efficiency): .
The efficiency property requires that the profit assigned

equals the profit received from the service. In other words,
the mechanism does not contribute or receive extra revenue.
Since is defined as the profit (revenue minus cost), all costs
will be recovered from the revenue, and the profit distribution
mechanism determines the surplus for each AS. If we focus on
the system that consists of both the revenue-generating entities,
i.e., ISPs, and the revenue contributing entities, i.e., customers,
the efficiency property is equivalent to the budget balance [21]
condition in the literature of mechanism design [23], under
which no money runs out of or into the system.

Property 2 (Symmetry): If for all
, then .

The symmetry property requires that if two ASs contribute
the same to every subset of other ASs, they should receive the
same amount of profit.

Property 3 (Fairness): For any , ’s contribution to
equals ’s contribution to , i.e.,

.
Here, for some defines the distributed profit for

a subsystem of , where all ASs are removed from
the system and is restricted to the subsets of . The fairness
property addresses the fairness between any pair of ASs. If we
start with a two-AS system , the gain (or
loss) from cooperation is . Thus, the
egalitarian solution is

The fairness property preserves and generalizes the egali-
tarian property in the sense that by reducing ASs recursively,
the family of constitutes the egalitarian
solutions [21].

Property 4 (Dummy): If is a dummy AS, i.e.,
for every , then .

The dummy property requires that ASs that have no marginal
contribution to any other coalitions should receive zero profit.
Because these ASs cannot contribute for making any potential
profit, it is harmless to remove them from the system.

Property 5 (Strong Monotonicity): If and are
two systems such that for some ,
for all , then .

Property 6 (Additivity): Given any two systems and
, if is the system where the worth function is

defined by , then
for all .

Both strong monotonicity and additivity properties connect
the distributed profits of two systems that only differ in the worth
functions. Suppose and represent two different types of ser-
vices provided by the same group of ASs. Comparing the con-
tribution across two different services, the strong monotonicity
property requires that the more an AS contributes to a service,
the more profit it receives. The additivity property requires that
the profit distribution mechanism is an additive operator on the
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space of the worth function. The additivity property guarantees
that if the worth function of the service is additive, then the dis-
tributed profit is the sum of the profits generated by serving each
individual service. In other words, the profit distribution for ser-
vice will not be affected by the service . In practice, we can
consider a subset of ASs of the Internet that provides certain
QoS service by devoting separate bandwidth provisions. The as-
signed profit associated with the QoS service will only depend
on the profit generated by the QoS service itself.

B. Shapley Value Mechanism

Proposed by Lloyd Shapley [25], [30], the Shapley value is
the unique value that satisfies all six properties above.

Definition 7: The Shapley value is defined by

(4)

where is the set of all orderings of , and is the
set of players preceding in the ordering .

Remark: The Shapley value of an AS can be interpreted as
the expected marginal contribution , where is the set
of ASs preceding in a uniformly distributed random ordering.

In particular, if the routing costs are negligible when com-
pared to the revenue generated from the services, we can regard
the revenue function as the worth function. In that case, the
network system can be reduced to the system

, which only depends on the structure of the AS-level
topology . The Shapley values of the system
can be calculated by substituting for in (4). The value

is referred to as the Myerson value [22] in the lit-
erature, where the worth function only depends on the intercon-
necting topology.

IV. INCENTIVE FOR OPTIMAL ROUTING

Given a fixed topology and a flow profile, the Shapley value
achieves various desirable properties as mentioned in

the last section. In this section, we still assume that the ASs
form a fixed topology; however, each AS might want to use
a specific flow profile that maximizes its profit . We
consider a network system , which we drop the
fixed parameters and , and refer to it as . The
problem becomes that each AS might choose a flow profile
that maximizes its profit under the Shapley value
mechanism. We analyze the flows that the Shapley value mech-
anism induces ASs to use.

A. Optimal Flow and Equilibrium

From a global perspective, we wish that ASs would choose
the feasible flows that maximize the aggregate profit of the net-
work. We define as the space of all flow profiles . We define
the set of optimal flow profiles as the following:

(5)
Notice that the optimal routing strategy might not be unique. We
refer to as any optimal flow profile in .

Since the worth function , where does not de-
pend on the flow profile , any optimal flow profile
also minimizes the aggregate routing cost for any coali-
tion . However, selfish ASs might want to minimize their own
costs instead of the aggregate routing cost. Consequently, they
might not follow the optimal flows. We define a routing strategy

, a possible flow profile chosen by AS , as the following.
Definition 8: A routing strategy of AS maps each coali-

tion that AS belongs to, i.e., , to a feasible
flow on the induced directed subgraph .

Notice that a routing strategy has the same definition as a flow
profile defined in Section II-B, except it is defined on a subdo-
main. only contains the feasible flows carried by coalitions

that AS belongs to. We interpret as a routing strategy of
AS because it gives AS the possibility of changing the flows
when is participating in the coalition. In reality, AS might not
be able to control all the flows for any coalition ; however,
we define a larger space of routing strategies that AS can pos-
sibly implement. Similarly, we denote the space of all routing
strategies of AS as . The set of optimal routing strategies of
AS is defined by

(6)
We also refer to as any optimal routing strategy in . Given
a flow profile and a routing strategy , we define an updated
flow profile as the following:

if
if

(7)

can be interpreted as the new flow profile after AS
applies the strategy to the old flow profile . If ,
the becomes closer to an optimal flow profile. If each
AS applies an optimal routing strategy sequentially on any
flow profile , the resulting flow profile becomes optimal.

The following theorem shows that under the Shapley value
mechanism, each AS can apply an optimal routing strategy

on any existing flow profile to maximize its own profit at
.

Theorem 1 (Optimal Routing): Given any flow profile
, by applying an optimal routing strategy , AS maximizes

its profit under the Shapley value mechanism, i.e.,
for all and .

Proof: We compare the marginal contribution of AS to
any coalition that it does not belong to, i.e., , under two
systems that use the flow profiles and respectively.

The second equality holds because for any
that by definition in (7). The inequality holds because

, and the optimal strategy
achieves no less worth for the coalition . Therefore,

. By the
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strong monotonicity property, we conclude that
.

Theorem 1 states that every AS can maximize its own profit
by adopting an optimal routing strategy. Intuitively, this is be-
cause when an AS uses an optimal routing strategy, the profits of
the coalitions that this AS belongs to increase. Since the Shapley
value is a weighted sum of all marginal contributions that this
AS contributes to different coalitions, an AS can increase its
profit-share by using an optimal routing strategy accordingly.
Moreover, not only does any optimal flow profile maximize
the aggregate profit , it is also a Nash equilibrium for
all ASs.

Corollary 1: Under the Shapley value mechanism, every op-
timal routing strategy is a Nash equilibrium.

Proof: Given any optimal flow profile , an AS can
always deviate from it and apply a routing strategy . The new
flow profile becomes . However, there exists an

such that after applying it to the updated flow profile, the
profile changes back to , i.e., . This
routing strategy is the reverse action that AS takes to restore
the flow profile back to . Suppose an optimal routing strategy

is not a Nash equilibrium. Then, there exist an AS with a
routing strategy , which
satisfies. However, since as well, the result contradicts
Theorem 1.

Corollary 1 states that when an optimal flow profile is being
used, it is compatible to all ASs’ optimal routing strategies and
no AS has an incentive to deviate from it. Notice that although
the optimal routing strategy might not be unique, the Shapley
value solution (the profit for each AS) is unique.

Theorem 2 (Profit Decomposition): For each AS, the Shapley
value profit can be decomposed into a Myerson value on the
AS-level topology and a Shapley value on the routing cost

where is the Shapley value of AS in the system
that has the worth function .

Proof: Since the worth function can be written as
, by the additivity property, the value becomes

The last equality holds because is insensitive to the routing
costs, and the Shapley value is equivalent to the Myerson value
introduced in Section III-B.

In defining the revenue function in (2), we assumed that
when a coalition forms a connected graph, all end-to-end data
delivery services are provided and the corresponding revenues
are generated. Under this assumption, Theorem 2 gives a con-
venient way to decompose the Shapley profit into an AS-level
Myerson value revenue and a router-level Shapley value cost. In
general, connected ASs may refuse to provide services and gen-
erate less than a full amount of revenue. However, the Shapley
profit can always be decomposed as a Shapley revenue compo-
nent minus a Shapley cost component, where the revenue com-
ponent does not only depend on the AS topology and there-

Fig. 4. An example of two backbone ISPs. (a) Two ASs with link costs.
(b) � � � � ���. (c) � � � � ������. (d) � � � � ���.

fore cannot be simply represented by the Myerson value on the
topology. Practically, this result also explains why sometimes
inter-AS links can be used to improve the aggregate profit of
the system. We illustrate some examples of the AS value solu-
tions in the next subsection.

B. Examples and Simulation

Fig. 4(a) illustrates a first example with two coast-to-coast
backbone ISPs. Customers of router 1 on the west coast need
to communicate with customers of router 4 on the east coast.
We normalize the revenue and required traffic intensity to be
1. Router 1 peers with router 3 on the west coast, and router 2
peers with router 4 on the east coast. We assume that all the
receiving costs are zero, and the cost on a link is the same as the
sending cost. The costs on intra-AS paths and inter-AS paths
are (where is the traffic carried on
the link) and . By Theorem 2, each AS
obtains the same profit

We compare the profit distributions for different routing
strategies by AS 1. In Fig. 4(b), AS 1 uses the hot-potato
routing strategy, which routes all traffic through router 3. The
routing costs of the two ASs are and .
Although AS 1 avoids using its internal link 1 2, it does
not optimize its own cost. Each AS obtains . In
Fig. 4(c), AS 1 chooses the feasible flow that minimizes its
own routing cost . Both ASs improve their profit to be

. In Fig. 4(d), AS 1 uses an optimal flow that
minimizes aggregate routing costs for both ASs. As a result,
this optimal flow achieves the maximum profit for
both ASs, which is twice as much as the profit from hot-potato
routing. Notice that no matter how much real cost an AS
may carry, it will be recovered from the revenue . The
Shapley-value mechanism determines the profit of each AS
from the total profit . Fig. 5 illustrates a second example
where a source AS 1 wants to communicate with AS 4. Again,
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Fig. 5. An example of using a peering link.

Fig. 6. Hot-potato routing versus optimal routing.

we normalize the revenue and required traffic intensity to be
1. Traffic must go through AS 3; however, AS 2 is a local
peer with AS 1, which can also carry traffic. We assume the
sending costs on link and to be and ,
respectively. We assume all other costs are negligible. The
right subfigure shows the profit distribution and the optimal
routing strategy. Each AS obtains an equal profit of 9/64. One
way to understand this even-share solution is that any of the
ASs is indispensable. For example, without AS 2, the total
routing cost is 1; therefore, the profit becomes zero. Theorem 2
also gives an explanation. From the AS-level topology, AS 2
is a dummy AS. The Myerson values are and

. However, from the cost
compensation, AS 2 obtains . In this sense,
we know that AS 2’s profit comes from its contribution of
reducing the routing cost. In general, this explains why some-
times in reality, peering links or even provider-to-customer
links are used to provide efficiency. In a third example, we
consider the topology of six ASs shown in Fig. 3. We assume
each end-to-end service generates a revenue of 10 and has the
required traffic intensity for all pairs of routers and

that do not belong to the same AS. We compare the profit
distribution of the ASs under the Shapley mechanism when
ASs use hot-potato routing and optimal routing in Fig. 6. The
result confirms that optimal routing induces more profit for all
ASs than any other nonoptimal routing strategies.

V. INCENTIVE FOR INTERCONNECTING

In previous sections, we assumed that whenever a
source–destination pair is connected by the graph , the
coalition achieves an end-to-end data delivery service using

a feasible flow . However, selfish ASs, whose objectives
are to maximize profits, might not be willing to provide the
service. For example, two ASs can provide a transit service
by interconnecting with each other and obtain a revenue of

. However, it incurs a routing cost that is larger than .
The Shapley value for each AS becomes . It
demonstrates how both ASs share the loss instead of profit.
In reality, both ASs might not want to be interconnected and
provide the service.

In this section, we assume that ASs are free to decide whether
or not to provide an end-to-end data delivery service, as well as
whether or not to interconnect with other ASs. We explore the
change in the profit distribution when ASs vary the intercon-
nection topology. We show that under the Shapley value mech-
anism, ASs have incentives to be well connected so as to maxi-
mize their own profits.

To model the willingness of routing, we define an extended
flow profile as follows.

Definition 9: An extended flow profile maps each coalition
to a feasible flow on the induced directed subgraph

or a zero vector.
Remark: This definition extends the domain of flow profiles

that can be used by ASs. Each denotes either a feasible
flow carried by the coalition defined in Section II-B or a zero
vector, which implies that no flow is carried.

We define to be the space of all extended flow profiles,
which also includes all the flow profiles, i.e., . With the
definition of an extended flow profile, any coalition can choose
to serve certain end-to-end services and set a zero vector for
other services that it does not want to provide. Now, the revenue
generated by a coalition depends on the end-to-end data de-
livery services that it provides. We need to extend the revenue
function to the following:

(8)

The worth function defined on the extended flows becomes

(9)

where is the same cost function defined in (3).
To extend the set of optimal flow profiles in (5) and the set

of optimal routing strategies in (6), we define the set of optimal
extended flow profiles and optimal extended routing strate-
gies for AS as the following:

We refer to as any optimal extended flow profile in and
as any optimal extended routing strategy for AS in . No-

tice that the extended optimal flow profile might choose not to
carry flows for certain end-to-end services in order to maximize
the worth function .

Parallel to the optimal routing results in Section IV-A, we
have the following results for extended flow profile .
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Theorem 3 (Extended Optimal Routing): Given any extended
flow profile , by applying an optimal routing strategy ,
AS maximizes its profit under the Shapley value mechanism,
i.e., for all and

.
Proof: The same arguments from Theorem 1 apply.

Corollary 2: Under the Shapley-value mechanism, every op-
timal extended routing strategy is a Nash equilibrium.

Proof: The same arguments from Corollary 1 apply.
In addition, by allowing the ASs to choose whether or not to

provide an end-to-end data delivery service, we guarantee that
the profits of the ASs are nonnegative under any .

Theorem 4 (Nonnegativity): for any
AS and any optimal extended flow profile .

Proof: Since the Shapley value is a linear combination
(with positive coefficients) of marginal contribution ,
we prove that
for all . Since the optimal extended flow profile
is being used, both and are nonneg-
ative. If , the result is trivial. If ,
then the flow is not a zero vector. We conclude that

because adding AS can only re-
duce the transit cost under the optimal routing decision .

Theorem 4 guarantees that each AS can at least recover its
cost by joining the whole coalition and routing traffic opti-
mally. Notice that this result might not hold when the routing
strategy is not optimal. Clearly, when an AS receives a positive
profit, it has an incentive to be connected and provide the ser-
vice. However, the only possible discouragement is a zero profit.
The next theorem characterizes the ASs that gain zero profit.

Theorem 5: Any AS that has profit is a
dummy AS, and there exists an optimal extended flow profile

that does not route through AS for all .
Proof: As shown in the proof of Theorem 4, the marginal

contributions are nonnegative, i.e., for all .
Since , we have for all .
Hence, we know . This implies that
when AS joins the coalition , it does not improve the worth.
Thus, we can always apply an optimal extended flow to

and assign zero throughput for AS .
Theorem 5 states that if any AS receives zero profit under

the Shapley-value mechanism, it is a dummy AS, and there is
always an optimal extended flow without using this AS. Conse-
quently, although ASs that receive zero profit do not have incen-
tive to remain interconnected, their disconnections do not hurt
the cooperation for providing services.

Interestingly, on the other hand, if an AS does not carry any
traffic in an optimal flow with the whole coalition , it
does not necessarily imply that AS ’s profit is zero. Because
AS might carry traffic in an optimal flow for some

, which means AS provides some backup usage in
case ASs leave. In this case, AS has an incentive to
be interconnected and receives positive profit, although it might
not actually be carrying any traffic in the optimal flow for the
whole coalition . A later example shown in Fig. 10 (with cost
function ) exhibits this situation. Although the
optimal flow only uses path , AS 3 to 8 also receive
positive profits.

It might be puzzling that an AS may obtain a positive profit
in a system without actually carrying any traffic. However, these
ASs are not dummy, and they provide robustness of the network
in case some of the relay ASs fail. Moreover, although these ASs
share part of the total profit, they still benefit the veto ASs that
are essential for generating profit.

Definition 10: An AS is called a veto AS, if for
all in .

Every veto AS is essential in order to generate the profit
for any coalition. In other words, if any veto AS leaves

the system, no positive profit can be generated by any coali-
tion that does not contain the veto AS. In particular, for single
source–destination flows, the source and destination are by na-
ture veto ASs.

Next, we provide three theorems that prove the Interconnec-
tion Incentives of our mechanism.

Theorem 6 (Monotonicity—Adding ASs): For any veto
AS of the system , we have

for any .
Proof: We first consider the case where

for some AS . When does not connect, it simply
obtains zero profit. By the fairness property of the Shapley
value, we have

. Because is a veto AS,
. By Theorem 4, . As

a result, . Finally, we can
successively reduce ASs from to reach arbitrary coalition ,
and the monotonicity also holds.

Theorem 6 tells us that the whole coalition maximizes veto
ASs’ profits. Although some nonveto AS might not carry traffic
and still obtain a positive profit, its existence still helps the co-
operation and increases veto ASs’ profits. Actually, a stronger
statement, for any ,
can be made and the proof is similar. Theorem 6 focuses on the
change of size of a cooperative coalition. The following theo-
rems assume a fixed cooperative coalition of ASs. However, we
explore the profits of the ASs when they decide whether or not
to interconnect with neighboring ASs.

Theorem 7 (Incentive for Interconnection): In the system
, suppose and are two routers

belonging to ASs and . If and are not directly connected
(e.g., ), then adding the interconnection between
and achieves no lesser profits for both AS and . Mathemati-
cally, we have
for and any , .

Proof: Let . Since the set of links
and are different for the two systems, we define

to be the worth function applied to the topology
with optimal routing strategy for coalition

. For or , we have
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The last equation holds because when either or is not in the
coalition , and gives the same topology for the induced
graph . By subtracting two values, we have

Then, it is enough to show that
for all . Since , the induced graph

is also included in for any coalition . Therefore, since the
optimal routing is used, can achieve at least as much
as .

Theorem 7 states that by interconnecting with other ASs, one
AS might be able to increase its profit. This is because when
an AS connects to more ASs, it provides better robustness and
connectivity for providing end-to-end services. However, this
result does not imply that all pairs of ASs should be connected
for the following two reasons. First, redundant links that do not
reduce the total routing cost will not increase profits for the in-
terconnecting ASs. In this case, ASs’ profits will remain the
same. Second, our model does not consider the capital expen-
diture of establishing a new link; however, we can extend our
model to include this factor. Intuitively, if the savings on global
routing cost are greater than the fixed cost of building a new link,
ASs will still benefit from interconnecting with each other. In
general, ASs’ profits are affected by other ASs’ interconnecting
decisions. The following theorem characterizes the ASs whose
profits might possibly be increased as more ASs connect.

Theorem 8 (Monotonicity—Adding Links): For any veto
ASs of the system , we have

for any .
Proof: We define . Since is a

veto AS, for all with . We have

Then, it is enough to show that
for all . Since , the induced graph is
also included in for any coalition . Therefore, since the
optimal routing is used, can achieve at least as much
as .

Theorem 8 states the interconnection effect to the veto ASs.
When more intra-AS or inter-AS links are available, veto ASs’
profits will increase. ASs are encouraged to be connected by
receiving more profit, and veto ASs will also benefit when the
coalition becomes more robust.

Remark: Theorems 7 and 8 assume that establishing new
links do not induce fixed costs. In reality, setting up an intercon-
nection link might induce cost to ASs. Therefore, if the extra ag-
gregate profit (due to savings in the routing cost) obtained from
the interconnection exceeds the cost of building the link, ASs
have an incentive to interconnect. This is because the costs of
building the new link will be recovered from the Shapley value
mechanism, and the connecting ASs would obtain more profits.

Fig. 7. Monotonicity of veto ASs when adding links. (a) Original topology.
(b) Add link 1� 3. (c) Add link 2� 5. (d) Add link 1� 4.

Notice that although the profits of connecting ASs and veto ASs
will increase, the total revenue paid by end-users remain un-
changed. Under the Shapley value mechanism, ASs have incen-
tives to interconnect so as to reduce routing costs and maximize
their own profits.

Fig. 7 illustrates the changes in profit distribution when
ASs start to interconnect with neighboring ASs. We ignore the
routing costs and focus on an AS-level topology. In Fig. 7(a),
ASs 1, 2, and 5 are veto ASs. In Fig. 7(b), link 1 3 is added.
AS 2 is no longer a veto AS, and its profit decreases; however,
ASs 1 and 5’s profits increase. AS 3’s profit also increases since
its direct connection with the source provides robustness. In
Fig. 7(c), link 2 5 is further added. As a result, AS 4 becomes
a dummy AS, and again the veto ASs 1 and 5’s profits increase.
Similarly, AS 2’s profit increases as its direct connection with
the destination provides robustness. In Fig. 7(d), link 1 4 is
added. After directly connecting to the source, AS 4 becomes
a parallel AS to 2 and 3 and is no longer dummy. Under this
topology, links 2 3 and 2 4 become dummy and might
not be used.

VI. IMPLEMENTATION ISSUES

We have shown the routing and interconnecting incentive
properties of the Shapley-value profit distribution mechanism
in the last two sections. In this section, we address various
implementation issues so as to achieve the Shapley-value
profit-share in practice.

A. Traffic and Topology Information

Our network model assumes that we know
the router-level topology and the corresponding traffic
intensity . In reality, ASs might not want to
reveal their internal structures, and router-to-router traffic inten-
sity measurements might not be feasible. However, our results
are applicable to network systems with different levels of in-
formation as well, e.g., AS level and AS peering level, as we
describe below.

AS-Level Information: Without knowing the router-level in-
formation, we can derive the AS-level topology
from inter-AS links and BGP routes. The required AS-to-AS
traffic intensity is just the aggregate router-
level traffic intensity, i.e., .
Each can be measured as the volume of traffic contracted
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Fig. 8. The corresponding AS peering-level model.

over a certain period of time for delivery. In the current In-
ternet [9], the timescale for these contracts is often monthly.
By a similarly definition, we can also define the flow profile on
the AS-level topologies that achieves AS-to-AS traffic rates

.
AS Peering-Level Information: Because AS-level informa-

tion does not distinguish the multiple peering points between
two ASs, it is often too coarse to accurately describe the net-
work system. In the AS peering-level model, each AS does not
need to reveal its internal router-level topology, but only needs to
reveal the set of edge routers (that, for instance, BGP exposes).
Presumably, all the routers of an AS are connected, therefore the
set of edge routers forms a logical, fully connected graph. Fig. 8
shows the corresponding AS peering topology for the network
system shown in Fig. 3. The AS peering model needs less infor-
mation than what is required at the router level and describes dif-
ferent peering links between ASs. In practice, the edge router in-
formation is advertised by the ASs themselves, and the peering
link establishments and usage can be observed via BGP routes.

In general, the routing and interconnecting incentives induced
by the Shapley value can be shown at different levels of a net-
work system. The more information the real system can obtain,
the more delicate level of optimal routing and interconnecting
strategies the ASs will be encouraged to use.

B. Computational Complexity

The calculation of the Shapley value is known to be -hard
[3]. In a follow-up paper [20], we discuss how to calculate
the Shapley profit-share for various types of ISPs. We derive
closed-form solutions for ISPs under regular topologies as
well as via a dynamic programming procedure that calculates
solutions under general topologies. In some situations, suitable
bilateral contracts can implement the Shapley-value result. For
example, in [19], we derive the bilateral payments between
ISPs that can achieve the Shapley-value solution under a
“content-eyeball” model. Another paper [6] also examines the
bilateral prices that can achieve the Shapley-value solution in
ISP peering. However, current bilateral practices often reach a
solution that largely deviates from the Shapley-value solution
because the Shapley solution implies that two unconventional
bilateral settlements—i.e., “reverse customer–provider” and
“paid peering” [20]—are needed to achieve solutions that are
close to the Shapley-value solution.

C. Truth Revealing and Adaptation

In the Shapley-value mechanism, we assume that the worth
of each coalition is known. However, this assumption requires
knowledge of the true revenue and cost of each ISP: information
that ISPs might not want to reveal. In order to maximize profit,
they might even have incentives to misreport their private infor-
mation. Two possible solutions are the following. First, it may
be necessary to establish some regulatory policy that requires
ISPs to report true revenue and cost, which are subject to audit
by the government. Governmental intervention is often needed
to settle ISP disputes, e.g., Level 3’s depeering with Cogent in
2005. Second, it may be necessary to design a new level of “truth
revealing” mechanism, which distributes profit not only based
on the Shapley value, but also based on ISPs’ reported informa-
tion. The concept of this kind of “incentive compatible” mech-
anism was first introduced by Hurwicz [14]. Although the “in-
centive compatible” structure of the Shapley value mechanism
is a future direction for our research, we believe that a tradeoff
between incentive compatibility and efficiency may achieve this
goal.

In either of the above solutions, we require a central medi-
ator to collect some global information for the Shapley value
mechanism as inputs. It can be a governmental institution or an
association of ISPs. Given a topology, one can store the infor-
mation of marginal impacts among the ASs. When existing ASs
leave or new ASs join, one can calculate the Shapley-value profit
by a dynamic programming procedure [20], which utilizes the
previous marginal impacts and updates these information. After
topological changes, each AS wants to adapt to a new optimal
flow; however, the Shapley-value mechanism does not restrict
ASs to use optimal flows. ASs can probe optimal flows gradu-
ally. Even if some AS cannot find the optimal flow, or be irra-
tional to use a suboptimal flow, other ASs can still adjust their
flows to minimize global routing cost. Thus, the Shapley-value
mechanism is very robust in the sense that some ASs’ irrational
behavior will not have significant negative impact on the system.

D. Example of Optimal Routing in Practice

Suppose each ISP collects a total revenue of from all of
its customers. By measuring all the traffic intensity

from AS to any other AS , one can estimate the rev-
enues to be , assuming that the revenue
is proportional to the traffic intensity directed to a destination
AS . In service contracts, the future month’s required traffic
intensity can be predicted and adjusted based on the historical
traffic patterns between ISPs.

The optimal routing results of Theorem 1 and Corollary 1 are
applicable to the AS-level system . In the following
example, we explore Columbia University’s autonomous
system (AS 14) as a source ISP.

Fig. 9 shows a snapshot of the BGP routes generated by
BGPlay [1]. From time to time, the BGP paths change. We
choose the destination ISP to be the Global Crossing (AS 3549)
and trace the BGP routes changes during May 2007. Fig. 10
shows the active routes and the corresponding ISPs connecting
Columbia University with Global Crossing. The Shapley-value
profits of each ISP are shown in Fig. 11, assuming all ISPs
have the same cost function. The cost function of AS
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Fig. 9. A snapshot of BGP routes for Columbia University on May 15, 2007.

Fig. 10. Routes from Columbia to Global Crossing during May 2007.

Fig. 11. Revenue distribution for the ISPs.

is monotonically increasing with the traffic intensity going
through it.

With no costs, each ISP obtains a Myerson value. When
, the cost is linearly proportional to the carrying

traffic and the optimal flow uses AS path . Due to
the routing cost, the sum of all profits becomes 0.7 and
most ISPs’ profits decrease. However, ISP 2 (Qwest)’s profit
increases from 0.072 to 0.079. This is because ISP 2 provides
the optimal routing path and is crucial to the maximum aggre-
gate profit of 0.7. When , the optimal flow uses
AS path for half of the total traffic and the three
remaining AS paths for 1/6 of the total traffic. The aggregate
profit is improved to . Since ISP 2 is less crucial
to this solution, its profit decreases.

Because AS-level topology totally ignores the internal
topology of each AS, consequently the AS-level network model
does not distinguish the following routing costs:

• internal routing costs from different ingress routers to dif-
ferent egress routers;

• inter-AS routing costs of using parallel inter-AS links.
For example, in the topology in Fig. 4, the AS-level model
cannot distinguish the internal costs of going through router 1
and path 1 2 from the two AS peering paths 1 3 and 2
4. Thus, the AS-level information is not enough to avoid ASs’
selfish internal routing (e.g., hot-potato routing).

In practice, although ASs do not reveal their internal topology
very often, they export their edge routers in BGP routes. Thus,
one can treat each AS as a set of fully connected edge router
IDs as shown in Fig. 8. In this AS peering model, each AS
must report the true internal routing costs for each pair of its
edge routers. In order to make the ASs tell the true internal
routing costs, we need some verification process when we
recover each AS’s real internal routing costs. With the above
conditions, each AS can decide the proportion of traffic going
through each inter-AS link and try to optimize its internal
routing costs without revealing its internal topology. Notice
that if the Shapley value mechanism can be applied at this
level, it will reshape the BGP interdomain routing protocol for
the ASs to cooperatively achieve an optimal flow; however,
keep the current intradomain protocols unchanged. Thus, we
conjecture that the optimal routing practice will encourage
shorter BGP paths in terms of routing costs and diversify the
usage of multiple parallel paths in routing.

VII. RELATED WORK

Many research interests have been focusing on the Internet
interconnections. Srinagesh [28] studied the cost structures of
various ISPs and their consequences in interconnection agree-
ments. Both Bailey [4] and Huston [15] surveyed the existing
interconnection settlements. Huston [15] and Frieden [11] also
compared existing Internet settlement models with those of the
telecommunication industry’s. Bailey concluded that bilateral
agreements are suitable for large ISPs while cooperative agree-
ments work for small ones. Huston concluded that the zero-
dollar peering and the customer/provider relationships were the
only stable models for the Internet at the time. Gao [13] pro-
posed a relationship-based model for ISPs and categorized the
interconnection relationship by provider-to-customer, peer-to-
peer and sibling-to-sibling links. Instead of modeling bilateral
relationships of ISPs, our work models the cooperations among
multiple ISPs as a whole and designs a multilateral settlement
for all ISPs to share profits.

Roughgarden et al. [26] analyzed the performance degen-
eration caused by selfish routing in terms of latency. Teixeira
et al. [29] conducted experiments and found that hot-potato
routing causes longer delays and slow convergence for BGP
routes. Johari et al. [17] showed that hot-potato routing could
be three times more expensive than optimal routing. Feigen-
baum et al. [10] used mechanism design [23] approaches to en-
courage ASs to use minimum-cost flows. This approach oper-
ates in the way that the source and the destination ASs want to
optimize a “supply chain” for routing. Our approach, however,
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treats each AS equally and divides profit fairly among a team of
collaborators.

Frieden [11] discussed the consequence of Internet Balka-
nization: The process of ISP interconnection has begun to shift
from a widespread, voluntary, and nondiscriminatory model
to a hierarchical and discriminatory model, and ISPs currently
avoid the burdens of a common carrier. Network neutrality
[7], [12], [31] proponents criticize the discriminatory behavior
by ISPs, believing that it harms the productivity, innovation,
and end-to-end connectivity of the Internet. However, most of
the network neutrality debate focuses on the potential regula-
tory enforcements, by which telephony companies have been
regulated. Wu [31] surveys the discriminatory practices of
broadband provider and cable operators and proposes solutions
of bandwidth management and policing for ISPs to avoid broad-
band discrimination. Nonetheless, little work has been done on
the ISP settlement aspect of network neutrality. Crowcroft [7]
reviews technical aspects of network neutrality and concludes
that one should not engineer for network neutrality. Like Wu’s
proposal for broadband providers, our work proposes a profit
distribution mechanism for ISPs. Without reengineering for
network neutrality, this approach encourages ISPs to intercon-
nect and alleviates the discriminatory interconnection problem.

Game theory [21], [24] has been applied to different network
areas. Mostly, noncooperative games [5], [27] are used to model
the selfish behaviors of network entities. Our work incorporates
the Shapley-value solution from coalition games [8], [16], [24]
to model the cooperative nature of the ISPs. Different from non-
cooperative games, a coalition game does not specify the minute
description of individual players, e.g., the strategies, order of
move, and corresponding payoff consequences. Instead, coali-
tion game reduces all information into the possible profits gen-
erated by each coalition. As mentioned by Winter in [30], the
major advantage of this approach is its practical usefulness in a
multiplayer environment, which provides a more tractable struc-
ture than noncooperative games.

VIII. CONCLUSION

In this paper, we propose a novel multilateral settlement
for ISPs. Under this multilateral settlement, customers pay
for end-to-end services provided by a set of ISPs, and ISPs
collectively share the revenue generated from these customers
based on a profit distribution mechanism. We design a profit
distribution mechanism that can be applied for network systems
with different levels of information: AS-level, AS peering-level,
and router-level systems. The profit distribution mechanism im-
plements the Shapley value solution, which satisfies efficiency
and various fairness properties. More importantly, we show
that under the Shapley value mechanism, selfish ISPs have
incentives to adopt global optimal routing strategies instead of
local greedy ones, as well as to interconnect with neighboring
ISPs so as to maximize their own profits. In particular, we
prove that not only do the global optimal routing strategies
maximize the aggregate profit of the network system, they
are also Nash equilibrium solutions for all ISPs to follow. In
addition, locally connecting to more neighboring ISPs will
increase an ISP’s profit. As a result, veto ISPs’ profits will be
monotonically increasing under the Shapley-value mechanism

when interconnections become more prevalent. Finally, in order
to enforce the proposed profit distribution mechanism, future
directions of this work should include the consideration of
timescale, granularity, and trust issues of the network protocols
that implement this mechanism.
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