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Abstract— Server providers that support e-commerce applica-
tions as a service to multiple e–commerce websites traditionally
use a tiered server architecture. This architecture includes an
application tier to process requests that require dynamically
generated content. How this tier is provisioned can significantly
impact a provider’s profit margin. In this paper, we study
methods to provision servers in the application serving tier to
increase a server provider’s profits. First, we examine actual
traces of request arrivals to the application tier of e-commerce
sites, and show that the arrival process is effectively Poisson.
Next, we construct an optimization problem in the context of
a set of application servers modeled as �����	��
���
�� queueing
systems, and derive three simple methods to approximate the
allocation that maximizes profits. Simulation results demonstrate
that our approximation methods achieve profits that are close
to optimal and are significantly higher than those achieved via
simple heuristics.

I. INTRODUCTION

Companies that offer e-commerce applications often con-
tract a third-party web service provider to provide and manage
the necessary computing infrastructure. To be profitable, these
providers simultaneously service multiple customer compa-
nies, maintaining a separate service level agreement (SLA)
with each customer. The stochastic nature of request arrivals
and service times makes it impossible for the provider to meet
the conditions of the SLA for every request it hosts. Hence,
as part of the SLA agreement, the provider is charged for
each service miss: a request whose service does not meet
the requirements specified in the SLA. A financially sound
strategy for the provider is to provision its resources among its
set of customers in such a way that its profits are maximized,
which translates to minimizing the charges accrued as a result
of server misses.

The web servicing architecture used by providers typically
consists of three tiers, each of which is provisioned indepen-
dently. The front-end serving tier handles all simple, static
web transactions, composed of HTTP (HTTPS) requests. The
application tier handles more complex, dynamic queries that
might involve the execution of java servlets or scripts. The
database tier handles requests that involve the lookup of
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specific, non-cached data, such as ones’ personal banking
records.

The amount of work that must be performed by the servers
that support the front-end tier is low enough that overpro-
visioning is a cheap solution to meet SLA requirements. It
has been shown in McWerther et al. [13] that prioritized
scheduling can improve the database tier’s ability to meet
its imposed SLA requirements. With methods to maximize
profits in these two tiers, a provider’s profits then depend on
how well it provisions its application tier resources to service
requests to that tier. If not configured properly, a customer can
suffer numerous service misses which the provider winds up
paying for. Surprisingly, there has been little work that assists
providers in how to configure their application tier.

In this paper, we explore how a provider should allo-
cate its application tier serving resources among its set of
customers with whom it has established SLAs. A desirable
allocation is one that maximizes profits by minimizing the
cost accrued as a result of service misses. Along this front,
we make three major contributions. First, we identify an
appropriate model for the servicing system of the application
tier. Second, we formalize the problem of allocating serving
resources to multiple customers to maximize provider profits
as an optimization problem. Third, we derive three efficient
approximation methods that allocate resources to customers,
and show through simulation that the allocations produced
achieve profits that are close to optimal and are significantly
higher than the profits achieved via simple heuristics.

To identify an appropriate model for the application tier
servicing system, we analyze traces of requests for dynamic
content to a department store e-commerce website from 2001.
Using these traces, we characterize the arrival process of
requests to the application tier. We find that, for the horizon
time of interest, the arrival process is adequately described by
a Poisson process.

Our formulation of the optimization problem models each
of the provider’s servers as an independent M/G/1/PS queue.
The solution minimizes an objective function that describes the
cost resulting from service misses. We compute allocations by
deriving three approximation algorithms, each of whose com-
putational complexity is linear in the number of customers that
the service provider hosts. The first approximation assumes
that the average servicing time of jobs for each customer is
known. The second approximation requires both the first and
second moments of the servicing time distribution. The third
approximation method utilizes known bounds for the class



of Exponential Bounded Burstiness processes, to which the
Poisson process belongs. In special circumstances, a provider
is able to estimate the adequate size of its total serving
resources via a simple equation.

Results from experiments using event-driven simulation
show that our approximation methods come close to minimiz-
ing service miss costs. We also compare the costs computed
by the approximation methods to costs computed by naive
heuristics. The results show that, by using our approximation
methods, service providers can increase their profits by a
significant margin.

This paper is organized as follows. In Section II we
overview related work. Section III describes our model of
the service provider and poses the optimization problem. In
Section IV we demonstrate that, for timescales of interest, the
arrival process of requests to the application tier is effectively
Poisson. Section V describes our approximation algorithms,
and Section VI shows results from simulations that demon-
strate the performance of our algorithms. We present our
concluding remarks in Section VII.

II. RELATED WORK

Previous work that investigates e–commerce workloads dif-
fers from our characterization study here in that previous work
do not address the application–tier workload. Instead, studies
in [14], [15] focus on the workload at the front-end tier of
a website. There has been little progress in characterizing
the e–commerce website workloads imposed specifically by
jobs whose content is generated dynamically. Studies that
investigate dynamic content workloads analyze sites other than
e–commerce websites such as a sporting event website [3],
[19] or analyze measurements from an instrumented client,
rather than a server workload [18].

There have been numerous performance studies focusing
on the problem of allocating a fixed set of resources in
order to balance the load across the set of resources. Game-
theoretic models for resource allocation have been proposed
(refer to [10] and therein for additional references) under the
assumption that the resources to be pooled are controlled by
providers that do not cooperate. In contrast, our work focuses
on a single provider that controls the allocation of its serving
resources. Federgruen and Groenvelt [6] take an algorithmic
approach to find conditions for the optimization formulation
of resource allocation problem where resources are given in
discrete units. This approach was subsequently generalized
by Wolf and Yu [24]. Tantawi and Towsley [22] explored
a similar problem via a graph-theoretic formulation, solving
a resource-allocation optimization problem. These authors
further extended this work in [23] to the case where there
are multiple classes of resources. Our work is different in that
our goal is not to balance load, but is to maximize profits. In
particular, when customers’ charges differ for service misses, a
simple load balancing strategy is less favorable than a strategy
which diverts resources to meet the load of higher-cost service
misses at the expense of missing lower-cost service misses.
In [17] Sairamesh et al. explore the problem of allocating

network link capacity to different traffic classes in order to
minimize costs. Their formulation, however, does not map
easily to the provisioning problem at the application serving
tier. They utilize an ������������� queueing model with a finite
buffer of size � for which the blocking probability is used as
a utility function of the link capacity. Such a model does not
accurately capture e–commerce systems. Furthermore, service
level agreements are usually specified as function of response
time and not as a function of the blocking probability.

A small body of work uses analytic models to evaluate
e–commerce serving systems. Almeida et al. [1] propose a
scheme of priority levels as function of potential revenue
estimated for different types of requests to a single website,
rather than customer differentiation for multiple websites as in
our work. The works by Liu et al. [11], [12] and Farias et al.
[4] are closest to our approach; both use a general concept of a
cost model given by a product between customer request rate
and fraction of requests that violate service level agreements
for the front-end serving tier. There are several aspects of
application-tier serving systems that are captured by our work
that are not captured in these previous studies. For instance,
each provider’s server is dedicated to a particular customer,
and may not be shared among multiple customers (as is
assumed in previous work). Our methods permit us to find
allocations via a pair of equations or, in special circumstances,
a single–equation solution, both of which are simpler than
the methods from [4], [11], [12]. This is of great importance
in practical settings where a provider can adjust its serving
infrastructure when loads fluctuate over time.

III. MODEL FOR THE APPLICATION SERVING SYSTEM

Our model consists of two classes of participants: a single
e-business provider and � customers which we number �
through � . Each customer 	 individually establishes a service
level agreement (SLA) with the provider, the details of which
are described below. The provider has at its discretion 

servers that it uses to service the requests of the � customers.
As is typically done in practice, the provider selects the
number of servers that it will dedicate to each customer such
that no two customers’ requests are serviced by the same
server. Each customer, who then offers services to clients
(users), can independently arrange a certain level of service to
each client. Our study focuses on the SLA between a server
provider and its customers, and the study of arrangements
between customers and clients lies outside the scope of this
paper.

The SLA for each customer 	 includes a charge, �
� , that
is paid by the customer to the provider for each request the
provider services. It also includes a refund ��� per request in
case the service provider exceeds a response time requirement.
As part of the response time requirement, the SLA defines, for
each customer 	 , a series of � � service demand levels, where the�

–th demand level has associated with it a maximum tolerated
response time � ��� � , ��� � ��� � where � ��� ��� � ��� ����� for all
� � � � ��� . The service demand time, ! , of an instance of a
transaction for customer 	 , � �"	#�$� , is the amount of time it



would take to process the transaction when a single application
server is dedicated to processing only this transaction. We let
� � be a random variable that describes the service demand
time of a transaction, and define

� � to be a function that maps
the transaction demand � � to the service demand level

�
, � �� � � � , i.e., given that � ��� ! ,

� ����!���� �
. We describe

the time that the servicing system actually takes to process a
transaction of service demand ! as 	 � ��!�� . The probability of
violating the response time requirement is 
���
������� ��	 � ��!����
� ��� ��� � � ��!���� � � � � � � ��!���� � � .

We assume that all demands for customer 	 that fall into
the same service demand level have identical service demand
times, i.e., that there is a constant estimator, ! ��� � for � �
whenever

� � ��!���� �
. In this case, the probability of vi-

olating the response time requirement can be rewritten as

���
��� � � ��	 � ��! ��� � ��� � ��� � � � � � � ��!���� � � . The SLA must then
also contain a mapping from estimators ! ��� � of a service de-
mand level to a response time � ��� � . In the case that

� � is a non–
decreasing “quantization” function of � � , the set

��� � � ��! �#"$"%" � � �
comprise the “jump points” of the quantization function such
that

� �&��!���� � , for
� ��� �(' � � � � � � ��� � . A possible choice for

! ��� � is the average given by )+*�,*�,�-/. ! �10� �2��!�� , where 0� � is the
distribution function of � � . When only one level is used ( � � �
� ), then ! � �3)546 ! �70� � ��!����98;: � �=< . The option to specify
a set of demand levels covers the case of service demands
with multimodal distributions, whereas a simple specification
based only on the average 8;: � < can often be limiting. Also,
in practice, an SLA may be specified only in terms of worst-
case assumptions, i.e. a maximum tolerated response time for
the larger envisioned service demand expressed as a single
demand level. Our model permits this simplification. An
allocation based on a worst-case assumption, however, may
result in underutilized servers when compared to an allocation
based on a multiple–level service demand SLA.

We let > � be the arrival rate of requests from customer 	 .
We assume that the 	 ����! ��� �?� , �$� 	 � � , are identically
distributed random variables. A provider’s profits can then be
written as:@A

�$� � > ��� � �CB � �
� 
A
�D��� � �E	 �F��! ��� �G�H� � ��� �?� � � � �+� � ���

and the provider’s objective is to maximize this quantity.
Note that the manner in which the provider chooses to
provision its servers affects only � �E	 � ��! ��� � ��� � ��� � � . Hence,
the provisioning problem is equivalent to one in which the
goal is to provision the servers among customers such that

 @
�%��� 
 � 
����� > � � ��	 � ��! ��� � �I� � ��� � � � � � � � � � � � is mini-

mized.
We assume that each server is work conserving, and splits its

processing power evenly among all of its simultaneously active
jobs. The actual time, 	 � ��!�� , spent servicing the transaction
depends heavily on the number of other jobs being serviced
by the system. An application server typically relies on a
round-robin mechanism implemented in its operating system
that concurrently services multiple requests. This mechanism
assures that an equal time interval (“quantum” of computation)

is assigned to each simultaneous job. After this quantum of
computation, the job must wait for the other concurrent jobs to
each receive a quantum. This process repeats for a job until its
servicing is finished. In theory, as the quantum is made very
small, in the limit this servicing mechanism becomes a proces-
sor sharing system. In practice, the quanta are small enough
such that a processor sharing system provides a fairly accurate
model of serving systems. Also, in application servers, a
server’s servicing resources are finite, such that the number
of jobs that can be serviced simultaneously is bounded. Since
SLAs incorporate delay guarantees, it is unlikely that the
number of jobs in the system reaches this upper bound. Thus,
it is safe to assume for simplicity of analysis that there is
no limit on the number of simultaneous jobs. This allows us
to model the application server as an unbounded Processor
Sharing (PS) queueing system.

The parameters described above are assumed to be available
as inputs to the provider such that it may decide the number
of servers, J � , to allocate to each customer 	 such that

 @
�%��� J �K� 
 . We assume that once a subset of servers is

dedicated to a particular customer, that customer’s processing
load is equitably balanced among that subset of servers. Hence,
customer 	 ’s requests, � � 	 � � , arriving at rate > � are
divided evenly among its J � dedicated servers, such that the
arrival rate to each of the J � servers receives requests at rateL � ��> � �MJ � .

Our goal is formally stated as follows: Find the allocation
� L � � L ! ��"%"%" , L @ � that minimizes

@A
�%���

� 
A
����� > � � � � �E	 �&��! ��� �G��� � ��� �?� � � � �+� � � (1)

such that > � � L �ON �G�QP � �$	#�$� (2)@A
�$��� > � �

L � ��
R� (3)

S � L � 8;: � �=<�� �G��P � � 	#�$� (4)

Note that because � ��	 ����! ��� �G�T� � ��� �?� is a function of
L � ,

the objective function depends on the values of
L �?� L ! �#"$"%"%� L @ .

The first set of constraints (Equation 2) requires that the
number of servers allocated to each customer is at least one.
The second constraint given by Equation 3 says that the sum
of allocations must be equal to the number of servers that
the provider owns. The third constraint describes a condition,L � 8;: � �=< � � (Equation 4), necessary for finite response times
in the stationary regime of a single processor queueing system.

IV. APPLICATION–TIER WORKLOAD CHARACTERIZATION

In this section, we demonstrate that the arrival process to
an e–commerce website’s application tier can be characterized
over small to moderate timescales as a Poisson process. This
analysis lays the foundation that allows us to model the serving
system as a set of ���MU � � � � �

queueing systems.



A. Methodology

We analyze actual traces of requests for dynamic content.
We apply a procedure that has been used previously by Sriram
and Whitt in [20] to analyze the superposition of voice and
data sources. There, they consider a random variable � � which
is the sum of a consecutive sequence of

�
interarrival times,

such that � � ��� ����� ! � "%"%"���� � where � � is the time
between the 	 th and 	���� st request arrivals. The index of
dispersion for intervals (IDI) is defined to be

�
!
� �

��	 !�
�E8;: � � < �

! � where
	 !� ��8;: �

!
� < B ��8;: � �(< �

!
"

The IDI is an estimator of inter-dependence within the
arrival process. One interpretation of its values is the degree
of correlation exhibited by the inter-arrival times. Another
interpretation is an estimation of the level of “burstiness” that
is exhibited by a process. For a Poisson process the IDI equals
1; for a renewal processes the IDI is invariant with respect
to the number of samples,

�
(for further discussion refer to

[20]). In addition, the IDI analysis can be used to observe the
behavior of the measured process over multiple time-scales by
varying

�
, the number of consecutive samples.

The use of the IDI can easily be extended to analyze the
behavior of the arrival process of HTTP requests. We have
traces of a department store website. A typical HTTP trace
stores a record of every HTTP transaction performed by the
website that generated the trace, where each record contains
arrival timestamps, the requested URL, and the size (in bytes)
of the object requested. The record, however, does not contain
the time necessary (or time taken) for servicing the request.
Using an HTTP trace, we partition the request records into
contiguous intervals of equal duration, and the IDI values
are computed within these limited-time intervals in order to
increase the likelihood that the arrival process is stationary
within the measurement interval. We compute the IDI for the
arrival process of HTTP requests of dynamic content at the
department store’s website using numerous daily traces from
each of them. We also measure the rate of requests of dynamic
content.

B. Trace Analysis

We present results of our experiments using traces from June
14th, 2001 from a department store’s e-commerce website as
a representative of e-commerce services. We identify requests
for dynamic content (and hence requests served by the appli-
cation tier) as those that contain the character ? (“question
mark”) in the requested URL.

We partition the logging of requests over a 24-hour period
(midnight to midnight) into intervals of 30 minutes and
compute the IDI for each of the 30-minute intervals. We
then construct non-overlapping sequences of

�
consecutive

inter-arrival intervals (although it is also permitted to use
overlapping intervals to compute the IDI). Figure 1(a) plots the
IDI ( 
 -axis, left–hand side) and load (arrival rate) of the arrival
process (along with 
 –axis, right–hand side) over a 24-hour
period when

� ��� S . The time of day in hours is varied along
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Fig. 1. IDI values and load over a 24-hour period ( ��
���� ).

the � –axis, where 0 corresponds to 12AM (midnight). The
sum of lengths of

� ��� S consecutive inter-arrival intervals
yields a time interval for computing IDI in a range from 5
to 25 seconds. The curve labeled “load” depicts the load in
requests per minute. We note that the IDI values are close to
one except at times when the load is low, and that the IDI
remains small even during periods where the load is rapidly
increasing.
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Fig. 2. The IDI test over different timescales using traces of a dept. store
website.

There is an intuitive explanation as to why the arrival
process of requests for dynamic content presents a different
behavior than the arrival process of requests static content,
whose arrivals are generally bursty. Queries for static content
from a single user are often batched. The canonical example
involves a web page that contains several objects, such as
images and text. Hence, the interarrival times of adjacent
requests to a server for static content often come from the same
user and their transmission times are heavily correlated. On the
other hand, the observation of low levels of correlations within
the arrival process at the application tier can be explained
intuitively by regarding the arrival process as a superposition
of multiple users placing queries, where numerous additional



queries are placed by other users between a user’s pair of
queries for dynamically generated content. In contrast with
an arrival process of requests of static content, a request of
dynamic content (to the application serving tier) typically
requires processing of a single job instead of a batch of
transactions. Therefore, in timescales (seconds) on the order
of lengths of interval between user actions, we expect the
incoming requests to come from different users. Since each
user’s actions are independent from the actions of the other
users, there is little correlation in the superposition process of
all arrivals.

Figure 2(a) plots, using a logarithmic scale, the IDI values
as
�

is varied along the � -axis. The value of the IDI is close
to one for values of

�
up to 30, and then increases rapidly

with further increasing
�

. We conclude that over small to
moderate timescales, the arrival process behaves like a Poisson
process, but that for larger timescales, there is a high degree
of correlation among arrivals. The observations presented here
were also observed from traces taken on different days.

The intuition delineated above also explains why the IDI
peaks during low-load periods. During such periods, requests
come from a small population of users and the inter-arrival
times of two or more requests from a same user will be highly
correlated. Therefore, correlations among arrivals are expected
to increase in low–load periods because of small number of
sessions. For provisioning purposes, however, the behavior
process during low–load periods is not of much concern, since
the arrival rate > � used to provision servers will overestimate
the arrival rate during these periods.

The justification that enables us to concern ourselves with
correlations only up to a certain timescale comes from the
theories in two independent studies developed by Grossglauser
and Bolot [7] and Ryu and Elwalid [16]. These works show
that for a queueing system, the timescales over which correla-
tions exist are delimited by an upper bound termed the Critical
Time Scale in [16]. As a result, any model that accurately
captures the correlation structure, including Markovian models
[7] up to the Critical Time Scale will closely approximate the
behavior of the queueing system. In our case, e-commerce
website transactions at the application tier are expected to
complete on the order of a fraction of a second. The com-
putation of IDI values on the timescale of tens of seconds is
expected to measure correlations that well exceed the Critical
Time Scale. Since we measure IDI values close to one for
timescales of up to tens of seconds during high-utilization
periods, a Poisson process adequately models request arrivals
in the timescales of interest.

Since the arrival traffic is effectively Poisson, an
���MU ����� � �

queueing system is a fairly accurate model of the
behavior of an application server. We utilize this model to de-
rive mechanisms that allocate servers to e–commerce websites
(customers). In general, when a number of servers is allocated
to a customer we model each server as an ���MU ����� � �
queueing system. Assuming requests to this customer website
are placed at each queueing system with equal probability, the
arrival rate of requests is effectively equally split among the

servers allocated to that customer. Hence, on average the same
amount of work is placed upon each queueing system.

V. SERVER PROVISIONING

In this section, we derive three methods that allocate servers
to customers. An exact solution requires knowledge of the
distribution of response times in an M/G/1/PS queue. The
solutions generated by these methods approximate the optimal
solution of the optimization problem posed in Section III.
Approximation methods are necessary for this problem since
the distribution of response times in an M/G/1/PS queue in
exact form remains an open problem (for most known results
refer to [27]).

A. General Solution Procedure

In our original optimization problem (Equations 1, 2, 3, and
4), we replace � �E	 � ��! ��� � �H� � ��� � � with a bounding function,� ��� � � L � � ! ��� � , � ��� � � . The difference in the three methods is
the used bounding function. We seek to minimize the objec-
tive function 
 @

�%��� 
 � 
����� > � � � � ��� � � L � � ! ��� � � � ��� � � . Using the
Karesh-Kuhn-Tucker (KKT) [2] conditions, this optimization
problem can be solved via Lagrange multipliers.

First, we take the partial derivatives of the Lagrangian
function for customers 	 and � , each with variables

L � and
L��

respectively. For the partial derivative with respect to variableL � (to variable
L��

) we are able to express the Lagrange
multiplier related to constraint given by Equation 3 as a
function of customer 	 ’s (customer � ’s) parameters. After
equating the function of customer 	 ’s parameters with the one
of customer � ’s parameters we determine

L � as function of
L �

:

��Q
�D��� � � L

!
����� 

	 ,��� 
 � L ��� ! ��� � � � ��� �?� � � � �+� � �5�
�
�A
� ��� �

� L !��� ��� � �
� L�� � L � � ! � � � � � � � � � � � � � ��� � (5)

We can use the above equation to solve for
L��

in terms of
� � � ! � � � � � � � � , � ��� ! ��� � � � ��� � � and

L � . We refer to this solution
as the comparative equation. A property of the comparative
equation used in the three methods presented in this Section
guarantees that � � � L�� 8;: � � < � � . Hence, Equation 4 is
always satisfied. A specific

L � value is obtained by applying
the comparative equation for each � in terms of 	 , excluding
exceptional cases noted below, to the equality given by Equa-
tion 3, resulting in a first-allocation equation.

One complication, however, is that the solution from the
comparative equation may determine some set of customer’s
arrival rates to be greater than the actual arrival rate (for
customer 	&� L � � > � ). Such a solution is of course not
practical (unacceptable given the constraints), so a constraint
from either Equation 2 or 4 is imposed whereby

L �3������ � > �Q�����M8;: � � < � .
Thus, assuming the result of the comparative equation

for customer 	 is
L��� , the

L � value to be taken is
L � ������ � L��� �&> � ��� �?8;: � �=< � . Since for our methods

L � 8;: � � < � � ,
we further simplify

L � � ����� � L��� ��> � � . This solution de-
termines the first-allocation equation to be derived applyingL �+� ����� � L��� ��> � � , � � 	 � � , to Equation 3.



Still, in order to derive a first–allocation equation, it is
useful to define a set � to contain all customers such that
the comparative equation yields an acceptable solution. The
cardinality of � is measured by � .

The number of servers per customer 	 , J � , � � 	 � � is
finally computed using a rounding procedure applied to the
ratio > � � L � (details discussed in Section V-E).

We remark that, when a server provider has a sufficient
number of servers to guarantee that � ��� , the first–allocation
equation can be used to derive from the comparative equation
a single equation that applied to each customer results in the
final allocations. This is of practical importance for a server
provider has a mechanism to re-allocate servers via a single
equation when total demands fluctuate.

B. Costs as function of average response times

The first method, called Average–based method, requires
knowledge of the average servicing times of every customer.
This parameter is usually known or can be reasonably esti-
mated by the provider. For a PS queue with utilization � ,S � � � � , a job requiring ! units of time is expected to
be completed, in average, after ! � � � B � � units of time, due
to the simultaneous processing of other jobs. The slow down
factor is known to converge to � � � ��B � � for large ! under
any work-conserving discipline [8].

We approximate the number of service misses as a function
of averages of response time. We apply the Markov inequality
to find a bound to the ccdf of response time 	 ��!�� distribution

� ��	 ��!��HN �/� � 8;: 	 ��!�� <
� � ! � �

��B � " (6)

Therefore the number of service misses for a customer 	 at
demand level

�
is approximated as > � � � � � � � ��� 
 	 , ��� 
 	 ,��'�� 
 .

The optimization problem is to minimize the loss of revenue

 @
�%��� 
 � 
����� � � > � � 

	 , 	�

� 
 � ��� ��� 

	 ,�2'�� 
 , as described in Section III,

subject to the constraints given by Equations 2, 3, and 4.
We derive the comparative equation

L ��� � ��� � 	 
 ����� � 
 ��2'�� � ��� ��� � 	 
 ,
where � ��� � �

� �

 ��� � � ��
� ��� � 
 ��� � 
,�! . � 

	 , 	�

� 
 � ��� ��� 

	 ,� � �" ! . ��� 	 " 	#

� � � � � ��� � 	 " . The first–

allocation equation is subsequently derived:

L�� � � ���M8;: � � < � 
 �%$�&('� � � � � �

�B�� �)� B 
 �%$�&('��� � � B(� ��� � � (7)

where � is the number of customers for which the comparative
equation is valid and '� ��� > � 8;: � � < . The constraint

S �L � 8;: � � < � � , ��� 	 � � (Equation 4) is always satisfied,
since, rewriting the result of the comparative equation, � �H�� ��� � 	 
�2'�� � ��� � � � 	 
 , we find a fraction whose numerator is smaller
than its denominator. Hence, the arrival rate for any 	 is derived
to be L �O� ����� � � � � � � � �M8K: � � <

�HB � � � � � � � � � ��> � � "
C. Costs as function of variance of response times

Our second method requires knowledge of both the first
and second moments of the servicing time distribution. Again,
these parameters are easily estimated in practice. We call this

method the Variance–based method, because the bound for
response time distribution in this method applies Chebyshev’s
inequality to bound the variance of response times. An exact
expression for the variance of response times involves an
integration term [26], making an exact derivation difficult.
We derive another bound of the complementary distribution
function using an upper bound of the variance. Consider a
PS queue with average demand time 8;: � < , second moment
of general demand time 8;: �

!
< and utilization � . Again let

an arriving request require a job demand ! . From the exact
known result for the variance of response times in a PS queue
[26], we can show that var : 	 ��!�� < �$! ���'�� ��� �+*,���� �-� �
 ��'���� * . Zwart
and Boxma [28] find an expression for the second moment of
the response times in an M/G/1/PS queue in which this same
expression appears as an asymptotic limit when job sizes grow
large. Therefore, the bound is tighter for large size jobs. We
derive a second bound for the complementary distribution of
response times (ccdf) in an M/G/1/PS queue. First, we apply
Chebyshev’s inequality, � �E	 ��!���B 8K: 	 < N � � � var � . 
 � � �� * .
Using the necessary condition for stability � � � , we find:

� ��	 ��!��RB 8;: 	 < N �/� � 8;: �
!
<

8;: � <
!

� � B � ��/ � ! " (8)

1) Optimization: Using Equation 8, the cost per customer
is approximated using

� ��� ��� L ��� ! ��� � � � ��� �G� � � 

	 , �0� �1*
 �� *

	 , 
 ��'�� 
 �32 ��� � 
 � ,such that the overall cost for the provider is@A
�%���

��
A
����� � � > �

! ��� � 8;: �
!
� <

�
!
��� � � ��B ���E��/#8;: � � < � � � � � � �D"

The optimization via Lagrange multipliers results in alloca-

tions
L � , � � 	 � � such that

� *
�4 *

 ��'�� 
 �65 � � *� 4 *�
 ��'�� � �65 , where798 �
�;: �0� �+*: �
 ��� � : � � * 
��

:
����� ! 8 � � � � �<8 � � � � �

!8 � � . After algebraic
manipulation, we obtain the comparative equation in this
method:

L � � �
8K: � � <<= � �?> 4 � � �4 
 
 ��'�� � � * B$�= � �?> 4 � � �4 
 
 ��'�� � � * � � " (9)

The right-hand side of Equation 9 is written as a product
of two fractions. The second fraction is smaller than one. Fur-
thermore, the second fraction equals � � � L � 8;: � � < . Hence, the
comparative equation for the Variance–based method yields
results that satisfy the constraint given by Equation 4.

Equation 3 in this case yields a radical equation containing
only one customer rate to be used as a first allocation as
follows. The first allocation equation for the Variance–based
method is derived from Equations 9 and 3:

A
�3$�& @A > � = � �?> 4 � � �4 
 
 �2'�� � � * ���= � �?> 4 � � �4 
 
 �2'�� � � * B �

BC
��
 B � �)� (10)

It is hard to isolate the first rate variable,
L �

, to derive a first-
allocation Equation. Thus, a shortcoming of this method is
the difficulty of finding the first allocation. Simple numerical
solution procedures such as the Bisection method [5] can be
applied in this case.



D. The EBB–based Method

Our third method utilizes bounds derived for a class of
processes called Exponential Bounded Burstiness processes as
defined in [25] by Yaron and Sidi, and later generalized in
[21]. Zhang et al. find statistical guarantees for a generalized
processor sharing discipline in [9] when the arrival process
belongs to the class of EBB processes. From earlier results
from [25], it is relatively simple to prove (shown in this
section) that the Poisson process belongs to the class of E.B.B.
processes. We can therefore leverage the results of Zhang et
al. and establish a bound on the ccdf of response times in our
���MU ����� � �

model.
The theory in [25] defines the class of E.B.B. processes

to contain any process � ���F� such that there exist parameters
��� ���+��� � satisfying the condition � � )	�� � � ��
 �K���C���HB � � �	 � �
��� '���� . We let � ���F� be a Poisson process with rate

L
,

and deduce from Proposition 3 (regarding a Bernoulli random
process) in [25] that an � � S

can be found satisfying
� �E)��� � � ��
 �1� � L ���2�����HB �(� � 	 � ��� '���� , where �K� S

.
Thus, a Poisson process with rate

L
is an E.B.B. process with

parameters � L ���(��� ���O� .
Since a Poisson process is time–invariant, we substitute� ���F�5� )��� � � ���C� in the previous inequality, where �5� 
HB � ,

and
� ���F� remains of the same nature of � ���F� , i.e. Poisson

process with rate
L

. Here, we are able to apply a Chernoff
bound, � � � ���F��� � L �!���"� � 	 � � �0� #�$&%('*)6�# %(+-,/.0)('1,/2 . By using the 3 –
transform of the Poisson process, we find � given an � � S

:

� � � ���F�H��� L �4���"� � 	 � � � ' � � 
 ��' # � '�5*687 
 # � 
 � �:9 � �� 5;6�7 
 # ��� " (11)

Mapping parameters of Equation 11 to the ones of
� � ) �� � � ��
 ��� � L �<������� B � � � 	 � �=� '���� yields � � � ���F�H�
� L �>���"� � 	 � �?� '@5;6�7 
 # ��� , with the necessary conditionL � �+BA3 � � � L �B������CED ��3/��N S

. Furthermore given � � S
, 37� �

so that the right-hand side is a decreasing function. In this case
the decay parameter is given by ��CED ��3/� . We pick 3 @ , as a value
for 3 , such that the bound decays quickly. But the condition
given by � � ��B<3 @ � � � � �4�2����CEDC��3 @ ��N S

must be satisfied,
and, increasing � , we find larger values of 3 @ satisfying this
condition. However, increasing � , also relaxes the tightness of
the bound, unless the desired range of response times is much
farther than the mean value

L � . Thus, a tradeoff exists for the
selection of � .

For convenience, we define
L�� � L �F� and � � � � L ��2�F8;: � < � ���G�28;: � < . Applying the upper rate parameter,

L �� , and the decay parameter, ��CEDC��3 @ � , to one of Zhang et al.
results we find that the bound of probability of delay 	 (Eq.

36 of [9]): � ��	 N � � ��� � � '��H7 � , where � � � IKJ�LNM O-P��' J - L %RQ - M O ) P ,D is the fraction of processing rate for a job, and
S ��S �5;687 
 I � ���� 
 7('�� O � . In our model all jobs receive equal treatment, and

we use the fraction of processing rate D � ��� '
 , where '
 is
the number of concurrent jobs under processing. Therefore,
� ��	 N � � �T� � � 'U��7 � is expanded to

� ��	 N �/� � � 5;6�7 
 #�V � � OXW
��B<� '@5;6�7 
 #�V � 
 7('�� O � W � '�5;6�7 
 # V �07 � (12)

Since � � is found in terms of S , among other parameters, we
may write � � as a function of S . A suitable value for S is the
minimum value for the function � � � S � . We select the value 0S
such that the derivative � ��Y � 0S �5� S

, 0S � 5;6�7 
 � O � '@5;687 
 7 �� 
 � O '@7 � .
By applying this result to Equation 12, we find a third bound

for the ccdf of response times to be applied in our framework:

� �E	 �$� � � �>ZZ -/.��B � � '@5;687 
 # V � .�- MM � � (13)

where ��� � � �[D .
1) Optimization: We derive here the comparative and first–

allocation equations for the method based on the EBB model.
A drawback of the EBB method is that it only permits a
single mapping of � � to ! � . A natural value of ! � is 8;: � ��< ,
as discussed in Section III. Here we further bound the ccdf
of the response times to a function

� ��� L ��� ! ��� � � � that yields a
more conservative cost function whose solution is tractable. In
order to find

� ��� L ��� ! �F� � � � we derive the inequality departing
from the bound in Equation 13� ZZ -/.��B � � '@5;687 
 # V � . - M 
M 
 � 
 � �

��B � � '�5;6�7 
 # V � . - M 
M 
 � 

� � � ��� Y �8� ��'�5;6�7 
 # V � . - M 
M 
 � 
 (14)

which results in
� �&� L �F� ! ��� � � � defined for the EBB–based

method as in the last term of the above inequality. Thus,� �F� L �&� ! ��� � � � � � � �\� Y �8� ��'�5;6�7 
 #�V � .�- M 
M 
 � 
 . The inequality is
valid only if ��� � 0� � , where 0��� is any � � such that � ��� �CB �C� �
� �]� Y , � Y � S

. Thus, here we add an extra constraint to
the original problem, but most likely a system can be overall
provisioned such that this condition holds true.

We solve the problem of allocation, as defined in
our framework, minimizing the total cost function

 @
�%��� � �E> � � �&� L �F� ! �F� � � � � � � � � � � . Since the constant� Y is used across all customers as a multiplicative constant,

we need to solve the optimization problem as formulated
in our general model (Section III) with the function

� � > � � �2'@5;687 
 # V � .�- M 
M 
 � 
 .
We find the comparative equation for pairs of variables

L �
and

L �
, � �$	 � � � � ,
L�� � L � � � 8;: � �=< �M8;: � � <

� � � L � 8;: � � <
^ 5;687 
X_ ��`
��acb d 
0e_ 
 ` 
 acb d � e �5*687 
 # V � � � � B � ��f "

The first–allocation equation is obtained using Equation 3
for

L � :
L �+� � � � �M8;: � � < � 
 � $�& > � 8;: � � < � � �


 �)� B�� B 
 � $�&hg � ��� � � �� � ^ 5;6�7 
�_ �X`
��acb d 
0e_ 
 ` 
 acb d �8e �5;6�7 
 # V � �"� � B � � f "

E. Solving allocations via comparative and first–allocation
equations

The typical procedure to find allocations involves first to
construct the first–allocation equation and determine the value



of one of the rates, say
L � . This equation make use of a

parameter for � , which is the number of customers for which
the comparative equation is ultimately valid. However, � can
only be identified once the values for

L �
, � � � � �

are known. Here, we present an algorithm that iterates over
candidate values of

L �
, � � � � � , and � until an appropriate

solution is found.
Let us assume a first allocation is computed using a value of� equal to 0� , yet to be found. If after all comparative equations

are computed and the resulting � equals 0� , then the first allo-
cation equation is computed such that the general conditions
of the problem are satisfied. Therefore, the procedure to find
values for

L � must find a 0� value.
A natural first choice is to set � � � and � � � � � � �#"$"%"%� � �

for the first-allocation equation. Using the
L �

value found via
the first-allocation equation, each

L � is computed since the
comparative equation gives

L � in terms of customer 	 ’s and
� ’s parameters. The algorithm keeps a customer 	 in � , if
> � � L � N � . If > � � L � � � , the customer is placed out of� and its

L � is set to > � . The value of � is re-evaluated by
the cardinality of � . If � is re-evaluated equal to its previous
value, the allocations satisfy the constraints of the problem. In
this case the algorithm stops and outputs the set � L �?��"%"%" L @ � .
Otherwise, the sequence of computations of first-allocation
equation and comparative equations is repeated with the new
value of � and the re-arranged set � . In the worst–case,
the sequence of first–allocation plus comparative equations is
repeated at most � times.

The selection of the index � for a
L �

value to be obtained in
computations of first–allocation equation does not affect the
result, if an extra procedure is taken, since from the theoryL �

is a solution of a set of � equations and � variables. The
extra procedure involves assuring that the index � is such that
the comparative equation is valid for

L��
in the final allocation.

Hence an index � must be selected for a first allocation such
that > � � L�� N � is likely.

An intuitive idea to find such index is to choose the index
whose partial cost 
 � 
����� � � > � � ��� � � L �&� ! ��� � � � ��� �?� � � � �+� � � is
maximum among partial costs of all customers, since a high
partial cost implies high likelihood that > � � L�� N � .

The number of servers for a customer 	 is determined from
the value > � � L � . This ratio does not necessarily result an
integer value, making a rounding procedure necessary. We
find the number 
3� 
 @

�$� � > � � L ��B 
 @
�%����� > � � L ��� , where

� ��� denotes the maximum integer smaller than � , and to
construct the set ��� 
�� containing the 
 customers whose
fractional portions of their costs are largest when estimated
via 
���
����� � � > � � ��� � � L � � ! ��� � � � ��� � � . Finally, we determine the
number of servers J � to be J � � � > � � L � � � � � if 	������ 
����
and � > � � L � � , otherwise.

VI. EXPERIMENTS

We perform a series of experiments via discrete–event
simulation to evaluate costs for a variety of partitioning
configurations of a provider’s servers. For our simulations we
utilize the model with Poisson arrivals and processor sharing

queues in order to describe application servers. We resort to
synthetic workloads for a number of customers, since we had
traces of only one e-commerce website, and no knowledge
of processing times for the requests contained in the traces.
By using synthetic workloads we have the ability to fully
characterize customers as a function of their sensitivity to
response time and intensity of the workload. We compare the
costs that result from application of the Average, Variance and
EBB-based methods developed in the previous section to the
costs obtained by simple heuristic approaches. A first heuristic
sets the number of servers in proportion to a customer arrival
rate times the charge per request and divided by the tolerated
response time. We name this heuristic “naive”. A second
heuristic, termed “uniform”, divides the servers evenly among
existing customers. The costs produced by these methods and
heuristics is compared to an estimate of the minimum cost
obtained via Monte-Carlo simulation. For each experiment,
an iteration of the Monte-Carlo simulation assigns servers at
random among the customers that assures that each customer is
assigned at least one server. We perform one million iterations
per experiment, and return the lowest cost obtained.

To our knowledge, there is no study that parameterizes the
time necessary to execute applications in an operating system
of an application server. However, the standard SPECWeb99
used to evaluate Web server performance uses a lognormal
distribution for file sizes [15]. We select a lognormal distribu-
tion to describe the distributions of � � , � � 	 � � , for this
reason, and also because it permits one to vary both first and
second moments.

We compare the various methods and heuristics over a suite
of specific configurations of customers. Each customer 	2��� �
	�� � can either be tolerant (labeled ’T’), when the SLA
specifies a required response time for a query of less than	 8K: � � < . A customer’s SLA is severe (labeled ’S’) when its
required response time is �?8K: � � < . In addition, each customer’s
intensity, '����
 > ��8;: � � < can be high (labeled ’H’) such that
we set '��� ��
�� � , or can be low (labeled ’L’) such that we set'��� � S " � 
�� � . We set the standard deviation of servicing times
equal to the average size 8;: � � < , thus the variance is �E8;: � � < �

!
.

Hence, a customer 	 belongs to one of four classes: TL, TH,
SL, or SH. We describe a configuration as a vector containing
customer description labels: ��� � ��"%"$"%��� @ � , where � � � � TL, TH,
SL, SH �/��� � 	 � � . We assume only one response time
level per customer, i.e. P
	&� � � � � . In this case, the demand
! � ��8;: � � < . We assume the charges � � , � �$	#� � , are 1 for
simplicity. In the absence of a first-rate allocation equation for
the variance method, we solve the root for the radical equation
via the Bisection method [5].

A. Experimental Results

In our first set of experiments, we compare the costs
yielded by the various methods and heuristics for five different
customer configurations for a provider supporting � � >
customers with 
 � � S servers. The configurations are: A
= (SH, SL, SL, SL); B= (SH, SH, SL, SL); C=(SH, TL,
TH, SL); D=(SH, TH, SL, SL); E= (SL, SL, SL, SL). Figure



3 plots along the 
 -axis the costs incurred for the various
allocations under these five different customer configurations.
The bars labeled “average”, “variance”, “EBB”, “uniform”,
“naive”, and “MC” (Monte-Carlo) indicate costs incurred
for the server allocation selected by the respective method
(average, variance, and EBB), heuristic (uniform and naive),
or Monte-Carlo estimated minimum (MC).
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Fig. 3. Different configurations under different provisioning schemes.

The results demonstrate that our methods achieve alloca-
tions whose costs are close to the minimum possible cost
(with high likelihood), while the simple heuristic approaches
generally incur significantly higher costs. The one exception
is case E, where the four customers are identical. It is not
surprising that in this case, the heuristics also work well. In
general, the variance method comes closest to the minimum
cost, with the average method and the EBB method usually
yielding a slightly higher cost.

In our second set of experiments, we select two base–
configurations and vary the arrival rate of a single customer
in a system with 
T��� S servers. Results are shown in Figure
4. The overall arrival rate for the first customer, > � , is varied
along the � -axis. The cost values appear along the 
 -axis. The
configuration labeled “Sx” denotes that the overall arrival rate
of the associated customer varies along the � -axis and is not
simply classified as high or low. The curve labeled “Monte-
Carlo” depicts the minimum cost estimated via Monte-Carlo
simulation. The curves labeled “Average”, “Variance”, “EBB”
depict results for the Average–based, Variance-based, EBB-
based methods, respectively, and the curves labeled “uniform”
and “naive” depict the cost for the heuristics’ methods.

In Figure 4(a) the base–configuration is (Sx, SL, SL,
TL). We find that the Average–based method and the EBB–
based method yield configurations whose costs are remarkably
close to those achieved from the configuration chosen by the
Monte-Carlo simulation, and the variance method’s resulting
cost relatively close to the cost obtained via Monte-Carlo
simulation. The most important result, however, is that cost
under all three methods increases slowly with additional load
(increasing arrival rate), whereas for the uniform and naive
heuristics, costs increase rapidly with higher loads.
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(a) Configuration (Sx, SL, SL, TL) as base.
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(b) Configuration (Sx, TL, TH, SL) as base.

Fig. 4. Costs incurred when varying only one customer (1) arrival rate ( ��� ).

In Figure 4(b), the base–configuration is (Sx, TL, TH, SL).
Figure 4(b) demonstrates the increase in cost that a provider
will incur if the servers are allocated to customers using simple
heuristics. The costs that result from applying the Average–,
Variance–, and EBB–based methods are close to the estimated
minimum cost.

In Figure 5, we analyze the cost generated by configurations
selected via the methods and heuristics as the number of
customers is varied along the � -axis. The costs are shown
along the 
 –axis. Here, the provider offers 60 servers, where,
in each experiment, a customer’s configuration is set at random
to TL, TH, SL, and SH with respective probabilities 0.6,
0.15, 0.15, and 0.1. We see that, irrespective of the number
of customers, the costs achieved by the method-produced
configurations are near-optimal, whereas the costs achieved by
the heuristic-produced configurations are significantly larger.
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VII. CONCLUSION

We study methods to provision an e-commerce service
provider’s application-tier servers among a set of customer
companies to maximize the provider’s profit. We use as our
setting the standard business model in which the provider
forms a separate service level agreements (SLA) with each
customer that indicates the profit per transaction, bound on
delivery time, and the charge penalty for failing to meet the
delivery time bound. We devised three methods for allocating
a fixed number of servers among an arbitrary set of customers
with a variety of traffic demands and different SLA configu-
rations. The first method uses only an estimation of average
response time to evaluate costs for the provider. The second
method utilizes an estimation of variance of response times
to evaluate costs for the provider. The third method utilizes a
Poisson process description under the E.B.B. model.

Analysis of traces revealed that it is reasonable to treat the
arrival process of requests from a customer to the provider’s
application tier as a Poisson process. This allowed us to setup
an optimization problem in the context of a set of ���?U ����� � �
queueing systems.

Via Monte-carlo simulation, we showed that the costs of
the derived methods are near-optimal, and are significantly
lower than more naive heuristic methods. We conclude that
application of these methods by a provider to provision its
application tier serving resources offers a low complexity
solution that can significantly increase profits.
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