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Abstract

The problem of designing efficient algorithms for sharing the
cost of multicasting has recently seen considerable attention.
In this paper, we examine the effect on the complexity of
pricing when two practical considerations are incorporated
into the network model. In particular, we study a model
where the session is offered at a number of different rates
of transmission, and where there is a cost for enabling
multicasting at each node of the network. We consider
two techniques that have been used in practice to provide
multiple rates: using a layered transmission scheme (called
the layered paradigm) and using different multicast groups
for each possible rate (called the split session paradigm).
We demonstrate that the difference between these two
paradigms has a significant impact on the complexity of
pricing multicasting.

For the layered paradigm, we provide a distributed
algorithm for computing pricing efficiently in terms of local
computation and message complexity. For the split session
paradigm, on the other hand, we demonstrate that this
problem can be solved in polynomial time if the number
of possible rates is fixed, but if the number of rates is part
of the input, then the problem becomes NP-Hard even to
approximate. We also examine the effect of delivering the
transmissions for the various rates from different locations
within the network. We show that in this case, the pricing
problem becomes NP-Hard for the split session paradigm
even for a fixed constant number of possible rates, but if
layering is used, then it can be solved in polynomial time
by formulating the problem as a totally unimodular integer
program.

1 Introduction

Multicast transmission offers tremendous savings in net-
work bandwidth over unicast transmission for applica-
tions that deliver the same content to multiple cus-
tomers by allowing these customers to “share” the trans-
mission on common access links [8]. However, this shar-
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ing of link bandwidth significantly complicates the issue
of pricing [9]. Charging all receivers equally is not an ad-
equate solution, since some receivers might be charged
more than they would be willing to pay. If such a re-
ceiver drops out of the multicast session, the remaining
receivers would be charged more than if a lower, ac-
ceptable price had been offered to the exiting receiver.
An alternative approach to pricing that has received
considerable attention recently [10, 15, 17, 21, 22] is to
have each receiver place a bid for the content. The net-
work uses these bids to determine the set of receivers
that obtain the content, as well as the price these ac-
cepted receivers pay. The price charged to an accepted
receiver can be no more than its bid, but for reasons
discussed below, it is often advantageous to charge re-
ceivers a smaller price. The policy that the network
uses to make these decisions is referred to as a pricing
mechanism. The task of making these decisions using
a specific pricing mechanism is referred to as realizing
that pricing mechanism.

An algorithm for realizing a pricing mechanism in
a distributed environment such as the Internet should
be efficient in terms of both the computation performed
at the distributed nodes of the network, as well as the
communication between these nodes. Identifying these
types of algorithms was first addressed by Feigenbaum,
Papadimitriou and Shenker [10]. They consider two
pricing mechanisms: Marginal Cost and Shapley Value,
and provide efficient algorithms for the Marginal Cost
mechanism, as well as algorithms and lower bounds
on the efficiency of algorithms for the Shapley Value
mechanism.

In this paper, we address the model used for the
work in this area. In particular, the previous work on
pricing mechanisms for multicasting [10, 15, 17, 21] uses
a transmission model with a number of simplifying as-
sumptions. We here address two of these assumptions:
(1) that there is only one possible rate of transmission
of the multicast session, and (2) that multicasting is
possible at every node of the network at no cost. Both
multiple rate sessions and the fact that not every node
of the network is capable of multicasting are very real
concerns in the current Internet, and thus the ability
to realize pricing mechanisms in models that account
for these concerns is central to the task of designing al-



gorithms for pricing mechanisms. Incorporating these
issues into the transmission model makes the task of
realizing pricing mechanisms for multicasting consider-
ably more challenging.

In the transmission model of this paper, we assume
that a multicast session can be sent at any of a set
of ¢ pre-determined rates p1 < p2 < < pe
We consider two of the most common techniques for
providing multiple rates that are used in practice: using
a separate multicast group for each possible rate [6],
and using a separate layer for each rate, where layer
1 has rate p;, layer 4, 1 < ¢ < £, has rate p; —
pi—1, and to obtain rate p;, a receiver is sent layers
1...5 [3, 4, 20, 27]. We refer to the first technique
as the split session paradigm, and the second as the
layered paradigm. For both paradigms, each receiver
places a bid per rate indicating its willingness to pay
for delivery at that rate. In addition to determining
the set of accepted receivers for the multicast session,
the network must now also determine, for each user,
what rate is obtained. We here demonstrate that the
seemingly small difference between these paradigms has
a significant effect on the complexity of realizing pricing
mechanisms.

Our model also assumes that for each node of the
network, there is a cost for enabling that node, i.e.,
for making it capable of multicasting. If a node is
enabled, it can forward any number of copies of a session
it receives; otherwise it cannot forward more copies
than it receives. Note that the cost of enabling a node
may be offset by the reduced cost of only having to
deliver one copy of the session to that node. This
aspect of our model incorporates recent approaches to
multicasting such as network overlays and application
layer multicasting [5, 7, 16, 18, 26]. To realize a
pricing mechanism in this model, the network must
still determine the set of accepted receivers, but which
set is chosen is now influenced by the cost of enabling
multicasting at each node. Furthermore, the network
must choose the set of nodes of the network to enable.

As in [10], many of our results assume that there is
a single directed multicast tree that defines the routes
used by all transmissions. [10] demonstrates that with-
out this assumption, even when there is no cost for en-
abling a node, and when there is only a single possi-
ble rate, it becomes NP-Hard to find constant factor
approximations to the pricing mechanism we consider
here (the problem becomes a version of the Prize Col-
lecting Steiner Tree problem [19, 12]). Sophisticated
techniques for approximating other pricing mechanisms
when the routes can vary depending on what receivers
are accepted are provided in [17]. Incorporating such
techniques into the more involved network model we

consider here is an interesting open problem. We also
point out that while the hardness result of [10] indi-
cates that removing the single tree assumption entirely
leads to intractable problems, it does not rule out the
possibility of efficient algorithms for a more modest gen-
eralization which we describe below.

1.1 Summary of results

In this paper, we focus on the Marginal Cost mech-
anism [22]. While this is only one of several important
mechanisms, it serves as a good test case: we believe
that our results for the Marginal Cost mechanism pro-
vide important insights on the effect of the practical
network considerations we study for pricing mechanisms
in general. We start by introducing a straightforward
generalization of the Marginal Cost mechanism to sce-
narios where there are multiple possible rates, and prove
that this generalization has the same properties as the
mechanism for single rate scenarios. To the best of our
knowledge, this is the first pricing mechanism that has
been defined for multicast sessions with multiple rates.
Auction mechanisms for multiple goods where there is
no cost for each additional copy of a good delivered have
been studied in [13]. We define the new Marginal Cost
mechanism mechanism in Section 2, but note here that
any algorithm for this mechanism can also be used for
the simple mechanism that chooses the network con-
figuration that maximizes the network profit, and every
accepted receiver pays exactly what it bid for the service
it receives. The profit obtained by such a mechanism is
referred to as the network welfare.

In Section 3, we consider algorithms for realizing
Marginal Cost in the layered paradigm with costs for
enabling nodes for multicast. We provide a distributed
algorithm for this problem that is efficient in terms
of the amount of local computation performed at each
node, and only requires three messages per edge of the
multicast tree.

We also study realizing the Marginal Cost mecha-
nism for the split session paradigm with costs for en-
abling nodes. We demonstrate that our algorithm for
the layered case can be adapted to provide a solution
for this case. However, the computation required of
the adapted algorithm becomes proportional to 2¢, and
thus, this algorithm is only applicable for the case where
¢ is small. We also demonstrate that we should not ex-
pect to find an efficient algorithm for large £. In partic-
ular, we demonstrate that it is NP-Hard to determine
even any reasonable approximation to the network wel-
fare when the number of possible rates is part of the
input. This result holds even in networks without a
cost for enabling multicasting costs. This hardness re-
sult is significant in that it demonstrates that in terms



of realizing pricing mechanisms, the layered paradigm
enjoys a considerable advantage over the split session
paradigm.

Finally, in Section 4, we turn to the question of
removing the assumption that there is a single fixed
multicast tree. We consider the effect of having a
single fixed multicast tree for every layer or group
comprising the session, but the trees for the different
transmissions need not be the same. We demonstrate
that in this case, maximizing network welfare for the
split session paradigm becomes NP-Hard even for the
case of a constant number of possible rates, and no cost
for enabling multicasting. Somewhat surprisingly, we
find that in the multiple tree case, the Marginal Cost
mechanism for the layered paradigm can be realized
in polynomial time if there is no cost for enabling
multicasting. We demonstrate this by showing that
this problem can be expressed as a totally unimodular
integer program.

2 Network Model and Optimization Problems

We consider the problem of offering delivery of a single
multicast session, in isolation, to a set R C N of
receivers, over a network modeled as a directed graph
G = (N,E). The session emanates from a source
s € N, and is delivered to the receivers via the edges and
vertices of G. When a node n € N is enabled, any flow
of information entering that node can be forwarded on
multiple outgoing edges. If a node is not enabled, then
each copy of an incoming flow can only be forwarded on
a single outgoing edge. There is a cost ¢, for enabling
node n. We can also model nodes that cannot be
enabled for multicasting by setting their cost to co. We
here assume that the source s can be enabled for free
(and thus is always enabled), although all of our results
can be modified to apply when this is not the case.

There is also a cost for using a directed edge e € F,
denoted by c., an ¢-dimensional vector. In the split
session paradigm, [c.]; (the jth entry of c.) is the cost
at e of providing the jth group. In the layered paradigm,
[ce]; is the cost of providing the jth layer. We assume
that receiver r expresses its willingness to pay via a bid,
denoted by b,, an /-component vector such that [b,];
indicates the price that r is willing to pay to receive
the jth group or layer. In the split session paradigm,
a receiver is sent at most one group. In the layered
paradigm, if a receiver is sent layer j, it must also be
sent layers 1 through j — 1.

For most of this paper, we make an assumption
analogous to that made in [10]: the multicast session
uses a single source, and a unique path from that source
to each receiver, regardless of the set of receivers or
enabled nodes. With this assumption, we can restrict

our attention to the nodes and edges of the tree formed
by the union of paths from the source to each of the
receivers. We refer to this tree as the multicast tree.
When considering networks where every node is enabled
for multicasting, this assumption is justified by the
multicast routing strategy, commonly used in practice
[8], consisting of a tree of shortest paths from the
receivers to the source. In the case of either the layered
or the split session paradigm, this kind of routing may
be used with different source nodes for the different
groups or layers, since this is an effective way to balance
the session load throughout the network. Thus, in
Section 4, we consider a model where every layer or
group uses a fixed multicast tree, but the trees do not
have to be the same.

The fixed multicast tree assumption does limit the
practical applicability of our model to some scenarios.
However, we consider the model of this paper an impor-
tant step towards understanding algorithms for pricing
in such networks. Furthermore, the hardness result from
[10] applies to a network where the routing depends on
which nodes are enabled, even if the cost of enabling
those nodes is zero. Thus, unless P = NP, we must
either make some restriction on the choice of routes, or
take an approach similar to that of [17], which considers
approximation algorithms for other pricing mechanisms
in the simpler network model.

For the optimization problems we consider, the
input is distributed as follows: each node n is informed
of ¢,, c. for each e incident to n, and b, for any
r located at n. The simplest problem we consider
is maximizing network welfare. In that problem, the
network must determine a set R' C R of receivers that
are sent the multicast session, for each » € R’ a rate
of transmission, as well as the set of multicast enabled
nodes. Each receiver in R’ pays exactly what it bid for
the group or subset of layers that it receives, and the
other receivers pay nothing. The network welfare is the
total payments minus the total costs.

2.1 The Marginal Cost Mechanism

A natural definition of a receiver’s satisfaction is
the utility obtained from the service provided by the
network minus the amount it must pay to receive this
service. The simple network welfare pricing mechanism
described above produces a profit for the network equal
to the network welfare, but it also gives a receiver
an incentive to bid less than its true utility. By
bidding a smaller value, a receiver reduces the cost of
receiving the session, thereby increasing its satisfaction
and reducing overall network profits. What is needed
is a strategy-proof mechanism: a mechanism where a
receiver maximizes its satisfaction by bidding its true



utility. There are a number of other properties that are
desirable in a pricing mechanism, including:

e Efficiency: a configuration that maximizes (total
utility minus total cost) is chosen.

e No Positive Transfers (NPT): the price that the
receiver pays is not negative.

e Voluntary Participation (VP): receivers that are
not admitted are not charged anything.

e Consumer Sovereignty (CS): A receiver is always
able to guarantee acceptance of a bid if the bid is
increased to a sufficiently large value.

It is shown in [22] that the Marginal Cost pricing
mechanism is strategy-proof, efficient, NPT, VP, and
CS. A drawback to Marginal Cost is that it does
not provide another desirable property, called Budget-
balance: the amount paid by receivers exactly equals the
cost of transmission. Marginal Cost never runs a budget
surplus, but may run a deficit. This is one reason to also
consider other mechanisms, such as Shapley Value [24],
although that mechanism does not satisfy Efficiency.
We refer the reader to [10, 22] for motivation and further
explanation of these properties. All of the previous work
on Marginal Cost assumes that the service being priced
is “all or nothing”: each receiver either obtains the
service at the single possible rate or it obtains nothing.
However, the definition of Marginal Cost can be easily
extended to multiple rates.

We next provide such a definition. Consider any
network G and set of receivers R that wish to join a
session under a network model where each receiver @
submits a set of bids, b; = (b},bZ,---,b?), of which at
most one is accepted. In the multiple good Marginal
Cost mechanism, the network chooses the configuration
of the network that maximizes network welfare. The
price charged to a receiver ¢ that has an accepted bid
of b¥ is defined to be M; = bf — (P*(R) — P*(R\{i})),
where P*(X) is the maximum network welfare when
restricting admission to receivers within the set X. If
no bid from ¢ is accepted, then 7 is charged 0. In other
words, the price that receiver ¢ must pay is the amount
of the bid that was accepted, minus the amount that the
network welfare is increased by receiver i participating
in the multicast session. The fact that this definition
of Marginal Cost is strategy-proof follows from the
well known Vickrey-Clarke-Groves Theorem in auction
theory [25, 22]. In addition, we have a simple proof
that more directly solves this problem that appears in
a technical report version of this paper [1].

3 Efficient Distributed for

Marginal Cost

Algorithms

In this section, we present an efficient distributed algo-
rithm for realizing the Marginal Cost mechanism. We
first provide an algorithm that maximizes network wel-
fare in the layered paradigm. We then demonstrate that
it can be modified to maximize network welfare in the
split session paradigm, albeit at the cost of an expo-
nential dependence on the number of groups. We then
show that our algorithms for both the layered paradigm
and the split session paradigm can be converted into
algorithms that compute Marginal Cost.

For any node n of the multicast tree, let m , be
the parent node of n in the tree. Let my1,, be the
parent of node 7y ,. We define h;, to be the value of
k such that 7y, is the source node of the tree. For
any node n, let D(n) be the set of children of n in
the tree. An important value computed during the
course of our algorithm is S x(n), which is computed
for 0 <j<¥¢ 1<k<hy Sjk(n)is the maximum
network welfare of the subtree rooted at node n, minus
the cost of transmitting all necessary layers from node
Tk,n to node n, subject to the following two conditions:

® T, is not enabled for all 1 < r < k. Nodes n and
Tn,; May or may not be enabled, but only the cost
of enabling n counts against S; x(n).

o At most j layers are transmitted from 7y, to n
(and thus to any node that is a descendent of n.)

In other words, S;x(n) is the maximum value of
the sum of a set of accepted bids that are in the subtree
rooted at n, minus the sum of the costs in the subtree
rooted at n to deliver those bids, minus the cost of
transmitting the necessary layers from node 7, to
node n, subject to the two conditions above. Another
set of intermediate values used by our algorithm are
represented by C(r, , ), & vector such that [c(r, , n)l;
is the cost of transmitting one copy of layer j from my,
to n.

We now describe our algorithm, which we call
Max-Layered-Welfare. For ease of exposition, we
here describe the slightly simpler case where the set of
possible receivers is exactly the same as the set of leaves
of the multicast tree, but it is not hard to modify this
to account for the general case.

Algorithm Max-Layered-Welfare:

e The source initiates a phase of the algorithm where
every node n of the multicast tree sends each of its
children n; € D(n) the vector c(,, , n), for each k,
1 < k < h,. Each child n; uses these values to
compute each €z, .1 n:) = C(x, 4,ni) T Cnyns (i-e.,
a vector addition).



e Each leaf node n of the multicast tree computes, for
each kand j, 1 <k < hy,, 0<j <Y, Sr(n). Each
So,(n) = 0, and then the remainder are computed
in order of increasing j, using the formula Sj,x(n) =

max(Y2)_y[balr = 37 i [€(my oIy Si—1,8)-

o The next phase of the algorithm proceeds from the
leaves to the source, and each node n; sends to
its parent n, the value S;;(n;), for each k and j,
1<k <hy,1<j<{L The node n sets each
So,k(n) = 0, and then computes all other values of
S;k(n), proceeding from j = 1 to j = £, using the
formula

(3.1) Sjk(n)

= maXx

Z SJ k41 nz

ni€D(n)

Z Sjl nl Z[c(w" k,n)]r’ j— lk( )

n; €ED(n)
e The source mnode s returns the value
EnieD(s) Sjal(ni)'

THEOREM 3.1. The value returned by Algorithm Max-
Layered-Welfare is the mazimum possible network
welfare under the layered paradigm. Furthermore, the
computation performed by any node n requires time
O(¢h,|D(n)|), and ezactly two messages are communi-
cated between node n and its child n; € D(n).

Proof. Tt is not difficult to implement this algorithm
with the stated computation and communication com-
plexity, and thus we here only describe the proof that
the value returned by the algorithm is correct. To do
so, we prove that for every n, j, and k, the value of
S, k(n) computed by the algorithm is correct. Assum-
ing this, the correctness of the algorithm follows from
the fact that the source determines the welfare obtained
by sending the optimal number of layers to each of its
children. Also note that it is easy to show that the val-
ues of c(r, , n) computed are correct. Thus, we only
need to show the correctness of the S ;(n). The proof
is by a double induction on j and the maximum (simple
path) distance from n to a leaf. For the base of the in-
duction, we show that S; ;(n) is correct if either j = 0,
or n is aleaf. When j =0, S; x(n) = 0, since no receiver
in the subtree rooted at n can receive any layers. When
n is a leaf, but j > 0, we see that S; ;(n) is correct by
induction on j, since when up to j layers can be sent to
node n, either we send all j layers to n, or we use the
best solution using less than j layers.

For the inductive step of the double induction,
consider S; (n) for any k, any layer j > 0, and any non-
leaf node n. By the inductive hypothesis, we can assume

that for every child n; € D(n), both S;;11(n;) and
S;1(n;) are computed correctly, and also that S;_1 5 (n)
is computed correctly. There are now four cases: either
node 7, transmits layer j to node n or it does not,
and either node n is enabled, or it is not. If, in the
optimal solution, node 7,  does not transmit layer j to
node n, then regardless of whether n is enabled or not,
S;k(n) = Sj_1,k(n). If the optimal solution transmits
all j layers to node n, and n is enabled, then S; x(n) =
Yonien(m) Sia(ni) = cn — 37_;[€(x, 4,m]r- This holds
because we max1mize the welfare at the subtree rooted
at n when n is enabled by maximizing the welfare of
the subtrees rooted at each of its children subject to
the condition that each of them receives the multicast
session directly from n. From this maximization, we
subtract the cost of enabling n and of transmitting one
copy of layers 1 through j from 7, ; to n. Finally, if the
optimal solution transmits all j layers to node n, but
n is not enabled, then all layers are unicast through n,
and we see that S;x(n) = 3, cp(n) Sik+1(ni). Since
the algorithm takes the maximum of these possibilities,
it does in fact compute the correct value of S; ;(n).

The total number of bits communicated in this
algorithm is O(¢hK), where K is the maximum number
of bits required to represent any value S;(n;) or
C(xnm), and h is the height of the tree. While this
is not as small as might be hoped for, we prove in
the full version of this paper [1] that Q(hK) bits are
necessary when considering networks with a cost for
enabling multicast, even when there is only a single
possible rate of transmission, and that Q(¢K) bits are
necessary when there are £ layers, even when there is no
cost for enabling multicasting at any node. These two
bounds provide evidence that the linear dependence of
the number of bits communicated on both A and £ is
reasonable.

We next show that algorithm Max-Layered-
Welfare can be modified to compute the maximum
welfare for the split session paradigm. We provide a
brief sketch of how to do so. We define Sy ;(n), where
[ is any subset of the ¢ groups, analogously to S; x(n),
except that the second condition becomes

e A group s is transmitted from 7y, to n only if
s€e[.

The algorithm follows along the same lines as
Max-Layered-Welfare, with small modifications. To
compute Sy i(n) for all [/ and k at a node n, the
algorithm starts with [ being the empty set, then
considers all subsets of size 1, followed by all subsets of
size two, until [ contains all groups. The main formula



of the algorithm (analogous to (3)) is as follows:

Sre(n) =max< Y Sppia(ni), max Sy k(n),

n; ED(n) em(/)
Z Sf,l(ni) —Cn — Z[c(wn,k,n)]s s
n;€D(n) sef

where m([) is the set of all subsets of [ containing
exactly one less element. We call the resulting algorithm
Max-Split-Welfare. The proof of the following follows
along the lines of the proof of Theorem 3.1.

THEOREM 3.2. The value returned by Algorithm Max-
Split-Welfare is the mazimum possible network wel-
fare under the split session paradigm. Furthermore,
the computation performed by any node n requires time
O(£2*h,|D(n)|) and exactly two messages are commu-
nicated between node n and its child n; € D(n).

3.1 Computing the Marginal Cost

We now show how to use algorithms Max-
Layered-Welfare and Max-Split-Welfare to com-
pute Marginal Cost. The following information is suffi-
cient for a receiver r to know what it pays and what it
receives: the network welfare, r’s accepted bid (if any),
as well as the maximum network profit obtainable when
r is not admitted. We provide this information to each
receiver r using a single downward phase of the algo-
rithm from the root to the leaves of the tree.

The network welfare computed during the upward
phase is simply passed back down the tree during the
downward phase. To inform every receiver of which
bid is accepted, every node stores, during the upward
phase, which term of the maximization in (3) provides
the largest value. The root informs its children of what
configuration they are in, which, combined with the
stored information, is sufficient for them to determine
the configuration of their children, and so on, until every
node knows what configuration it must be in to achieve
the maximum network welfare. This informs every
node of its closest enabled parent in the multicast tree,
whether or not it is enabled, which layers or groups it
receives from this enabled parent, and what to forward
to its children, if it has any.

More difficult is computing, for each receiver r, the
maximum network profit when r is not admitted. This
could of course be computed easily using one phase
per receiver, but our objective is to provide all the
receivers with this information using a single downward
phase. We here describe how to achieve this in the
layered paradigm, although it is easy to modify what we
describe here to work in the split session paradigm. We

assume that every node n stores the values S; ;(n;), for
all n; € D(n), j and k that it learned during the upward
phase. In addition, in the downward phase, each node
will compute the quantity Bjx(n), for 0 < j < £ and
1 < k < hp. Bji(n) is the maximum total network
welfare possible, subject to the following conditions:

o The closest ancestor of n that is enabled is m, j.

o Node 7, ; transmits the first j layers to n, but no
other layers.

e If node n is an internal node of the tree, no layers
are transmitted to any child of node n.

e If node n is a receiver, the profit from that receiver
is not included in the network welfare.

Note that the network configurations prescribed by

Bj i(n) for j > 0 are wasteful in the sense that the layers
transmitted to node n are not used by any receiver.
Each node n learns every value of B,(n) from its
parent during the downward phase. Qur algorithm for
computing Marginal Cost works as follows:

Algorithm Layered-Marginal-Cost
e The source node s sends every n; € D(s) the value
of Bj1(n;), for 0 < j < ¢, computed using

Bj1(n;) = >

n,€D(s);ni#n;

J
S&l(n;) - Z[c(s,m)]r'
r=1

¢ Every node n, on receiving B; ;(n), for 0 < j < £
and 1 < k < h,, from its parent, computes
Bj k(n;), for each n; € D(n), 0 < j < ¢ and
1 < k < hy,, and sends these values to n;. For
the case where 2 < k < h,,;, node n uses

4
Bj (i) = max | By 1 (n) + > Sik(nd)

nieD(n);ni#n;
J
- Z[c(n,ni)]r-
=1

For the case where k = 1, node n uses

£ hn
Bj1(n;) = max | max By, (n) + E
t=j u=1
ni€D(n);ni#n;

J
- Z[c(n,ni)]r — Cp-
r=1

St (n;)

o Each receiver r returns maxz;l By k(7).



THEOREM 3.3. The value returned by each receiver r in
Algorithm Layered-Marginal-Cost is the mazimum
possible network welfare obtainable under the layered
paradigm, without admitting r. Furthermore, the com-
putation required of any node can be performed in poly-
nomial time and each node n sends only one message to
each child n; € D(n).

Proof. Proving the bounds on the amount of compu-
tation and communication is straightforward, and thus
we here focus on proving correctness. Note first that
if receiver r obtains the correct values of Byy, for
1 < k < hy, then it returns the correct value, since
in the optimal configuration without r, there is some &
such that 7, is enabled (recall that the source is always
enabled), and so for some value of k, By j(r) contains
the maximum welfare.

We prove that all values of B;;(n) are correct by
induction on h,. For the base case, consider some n
that is a child of the source. The maximum network
welfare obtainable without any profit provided by the
subtree rooted at n is the sum of the maximum welfares
obtainable in the subtrees rooted at the other children of
the source. Thus, since we require that layers 1 through
j are sent to n, the algorithm computes the correct value
of Bj(n) for any n that is a child of the source. For
the inductive step, we assume that node n receives the
correct values of B; ;(n) from its parent, and show that
this implies that for any n; € D(n), n sends the correct
values of B;(n;) to n;. For 1 <t < ¢, let T ;(n;) be
the network welfare of the optimal configuration where
t layers reach n, m, ;1 is the first enabled ancestor of
n, and no receiver in the subtree rooted at n; receives
any layers. In the case where k = 1, node n is enabled.

We first consider the case where k > 1, i.e., when
node n is not enabled. In this case, the value of T} x (n;)
is Bt k—1(n) plus the sum of the maximum welfares
possible in the subtrees rooted at each n; € D(n), n} #
ni, when the cost of sending any required layers (up to
t) from 7, y_1 to n} is included. The amount added for
each n} is exactly the value S; (n}), computed during
the up-phase of the algorithm Max-Layered-Welfare.
Thus, T;x(n:) = Big-1(n) + Engep(n);n#m St,x(n]).
The network configuration that achieves the correct
value of Bj(n;) is the configuration that maximizes
Tix(ni), subject to the requirement that j < t <
£. Since we require that j layers travel to n;, we
have Bj,k(n,-) = maxf:j Tt,k(ni) — Efﬂ:l[c(n,ni)]T' In
Algorithm Layered-Marginal-Cost, since we assume
that node n receives the correct values of B;;(n) from
its parent, node n sends the correct values of the
Bch(’nz') to n;.

We next consider the case where £k = 1, i.e.,

when node n is enabled. In this case, T;1(n;) =
maxZ;l By, (n) + ZnQED(n);n;;«éni St1(nf) —cp, since in
the optimal configuration for T 1 (n;), there is some first
ancestor of n, ., that is enabled (recall that the
source is always enabled). The network configuration
that achieves the correct value of By i(n;) is the config-
uration that maximizes T} 1(n;), subject to j <t < £.
Since we require that j layers travel to n;, we have
Bji(n) = maxf:j Tia(ni) — Zi:l[c(n,m)]f" In Algo-
rithm Layered-Marginal-Cost, since we assume that
node n receives the correct values of B;;(n) from its
parent, node n sends the correct values of the B; 1(n;)
to n;.

3.2 Hardness of the split session paradigm

We next examine the computational complexity
of maximizing network welfare in the split session
paradigm. The algorithm Max-Split-Welfare has a
running time that is exponential in £, but runs in poly-
nomial time for any fixed £. We here demonstrate that if
£ is given as part of the input, then the problem becomes
N P-Hard to even approximate. Thus, we should not
expect a significantly more efficient algorithm for max-
imizing network welfare in the split session paradigm.

THEOREM 3.4. If £ is specified as part of the input,
then there is no polynomial time {'~€-approximation
algorithm, for any € > 0, for the problem of mazimizing
network welfare in the split session paradigm, unless
NP = ZPP. This holds even if there is no cost for
enabling multicast at the nodes of the network.

Proof. We show that such an approximation algorithm
could be converted into a polynomial time |V|'~¢-
approximation algorithm for the largest independent
set in a graph. Since [14] demonstrates that such an
algorithm only exists if NP = ZPP, the theorem
follows. Given an arbitrary input graph G = (V, E), we
construct an input for the network welfare maximization
problem. This input can be constructed for any network
topology where there is a subset R of | E|+ |V| receivers
that share the first edge from the source, but each has
a distinct last edge from the source. Furthermore, this
input can be constructed even if we are subject to the
requirement that edge costs are proportional to the rate
of the flow crossing that edge. In other words, if for any
edge e, there is a constant ¢(e), such that the cost for
any group g to use e is B(g)c(e), where B(g) is the rate
of g.

For each vertex v € V', we have one group g(v). All
that we require of the group rates is that B(g(v)) >
2 - deg(v) — 1, where B(g(v)) is the rate of g(v) (we
assume that there are no degree 0 vertices in V: such
vertices can easily be dealt with separately). For each



edge e = (u,v) € E, we have one receiver 7(e) € R,
and for each vertex v € V, we have one receiver
r(v) € R. For each edge of the communication network,
the cost of a group using that edge is either equal to
the rate of the group, or 0. In particular, the cost for
sending g(v) over the shared first edge from the source is
B(g(v)), the cost of g(v) traversing the last edge from
the source to any receiver in R is also B(g(v)), and
the cost of all other edges in the network is 0. Each
receiver r(u) bids B(g(v)) for group g(v), for u # v, and
2B(g(u)) — 2 - deg(u) + 1 for group g(u). Each receiver
r(e), where e = (uz,u2), bids B(g(v)) for group g(v),
for uy,uz # v, and B(g(v)) + 2, for v € {u1, uz}.

We next show that maximizing the network welfare
for the described input is equivalent to finding the
largest independent set in the graph G. Assume first
that G has an independent set I of size |I|. To convert
this into a solution to the network welfare maximization
problem, the network sends group g(v), for each v € I,
to each r(e) such that e = (u,v) for any w. This is a
valid solution, since I is an independent set. Also, the
network sends such g(v) to each r(v). The revenue from
group g(v) for v € I is 2B(g(v)) — 2 - deg(v) + 1 from
r(v), plus deg(v)(B(g(v)) + 2), from all r(e). The total
cost for group g(v) is B(g(v))(deg(v) + 2), for a total
welfare of 1 for each such group. Thus, the total welfare
is exactly 1.

Also, any solution to the network welfare maximiza-
tion problem with profit P can be converted to an inde-
pendent set of size P. To do so, we consider only those
groups that result in a profit. For any such group g(v),
the only way to achieve a profit is if every receiver that
bids more than B(g(v)) actually receives group g(v).
If this is done, then the total profit for group g(v) is
exactly 1. No two groups that have a profit of 1 can
correspond to vertices that share an edge, and thus the
set of groups that achieve a profit must correspond to an
independent set of size at least P. The theorem follows.

4 The multiple tree case

In this section, we examine the effect of removing the
assumption that there is a single multicast tree that
defines the routing for all groups or layers. In particular,
we consider the case where for every layer or group,
there is a single fixed tree that must be used, but the
trees for the different layers or groups do not have the
same tree, either because they originate from different
sources, or because they use a different routing scheme.
We refer to this as the multiple tree case. This is
actually a property that is desirable in practice, since
it helps balance the network load. Unfortunately, many
problems become NP-Hard with this relaxation, even if
there is no cost for enabling multicasting. Throughout

this section we assume a model where there is no such
cost.

We first demonstrate that maximizing network
welfare becomes more difficult for the split session
paradigm in the multiple tree case. Recall that in the
single tree case, we have an algorithm for computing
Marginal Cost in the split session paradigm that re-
quires computation that is exponential in the number
of sessions, but is polynomial for the case of a constant
number of sessions.

THEOREM 4.1. In the multiple tree case, the problem
of mazimizing network welfare using the split session
paradigm is NP-Hard for any fixed constant number of
groups larger than 12. This holds even if there is no
cost for enabling multicast at any node of the network.

Proof. We reduce from BOUNDED-3-SAT, the version
of 3-SAT where every variable appears at most 5 times,
and every clause has exactly 3 literals. This restriction
of 3-SAT is still NP-Complete [11]. Given a bounded
3-SAT formula ®, we first assign a color to every literal,
such that if two literals are assigned the same color,
then they never appear in the same clause, and they are
not negated versions of the same variable. This can be
done using 12 colors in a greedy fashion. In particular,
for each variable in turn, we assign the colors for both
literals of that variable at the same time. Since those
literals can appear in a total of at most 5 clauses, at
most 10 colors are ruled out by previous assignments to
the other two literals in those 5 clauses. Since there are
12 colors, there is always at least two colors available to
color the two new literals.

We then construct the welfare maximization prob-
lem. We here provide the proof for the case where there
is a single source, and each group has an arbitrary mul-
ticast tree rooted at that source. However, it is not
difficult to modify this reduction so that it holds when
the input is required to be a weighted directed graph,
the source for each group is placed at some vertex of the
graph, and the tree for a group is defined by shortest
paths from the source to all the receivers. Furthermore,
we here assume that for every edge of the communica-
tion network, the cost to use that edge is the same for
all groups, although this is also easy to modify so that
costs are proportional to rate. In the network, there are
two nodes for each variable z;, labeled z} and z2. There
are also five nodes for each clause c;, labeled ¢} through
c?. The edges of the network are as follows. There is an
edge from the source node to z}, for each variable z;.
These edges have cost 6. There is an edge from z; to
z? for each variable z;. These edges have no cost. For
any variable z; and clause c;, there is an edge from z}
to c; if z; appears in c¢;. These edges have cost 2. For



each clause c;, there is an edge of no cost from c} to cf,
for k € {2,3,4,5}. Finally, for each clause ¢;, there is
an edge from the source to c;?, for k € {2,3,4,5}. These
edges have cost co. For each variable z;, there is an
edge from the source to 2 with cost co.

There are four receivers for each clause c;, one at
each c;?, k € {2,3,4,5}. There is also one receiver for
each variable z; at acf There are no other receivers.
The receivers at any cg?, for k € {3,4,5} each make a
bid of 1 for any group that is successfully delivered to
that receiver. The receivers at any cf each bid 2 for
any group. The receivers at any z? each bid 6 for any
group. There are a total of 12 groups, one for each
of the colors. We next describe the multicast trees for
each group. For group ¢, the tree is routed from the
source to every z} such that either of the literals z; or
Z; is assigned to color ¢t. Note that since z; and Z; are
assigned different colors, there are exactly two groups
that are routed from the source to each node z;}.

From each z} that group ¢ is routed to, ¢ continues
to z7. From zj, t is also routed to every cj where ¢; is a
clause that contains the literal of z; that is assigned to
color t. Note that since literals appearing in the same
clause are assigned to different groups, the routing for
any group ¢ is in fact a tree (even though the underlying
network is not a tree). Also note that exactly 3 groups
are routed to each c¢;. All three of these groups are
routed on the edge from ¢} to ¢f. Also from cj, the
three groups diverge: one group each goes to c;;-, cﬁ-,
and c?. The trees described thus far allow exactly one
group to be routed to each node c;?, for any c; and
k € {3,4,5} (specifically, the group that is associated
with the color of one of the literals within the clause c;).
The remainder of the groups are routed to c;-“ by using
the edge directly from the source to cf. Similarly, the
remainder of the groups are routed to ¢; and z7 using
the edge directly from the source. This completes the
construction of the multicast problem. The network is
depicted in Figure 1. The theorem now follows from the
following two claims; their proofs appear in [1].

CLAIM 1. If the formula ® is satisfiable, then the re-
sulting multicast problem can achieve network welfare
at least C, where C' is the number of clauses in .

CLAM 2. If, in the multicast problem resulting from the
formula ®, it is possible to achieve network welfare at
least C, where C' is the number of clauses in ®, then the
formula ® is satisfiable.

4.1 An algorithm for the layered paradigm
The increased difficulty in finding good solutions for
the split session paradigm might suggest that maximiz-

Source

Variables

Ci o o o Clauses
Cl @ O O O O O
3 a

Figure 1: The network used in the proof of Theorem
4.1.

ing welfare in the layered paradigm in the multiple tree
case is also NP-Hard, but this turns out to not be the
case.We next provide a polynomial time algorithm for
this problem by demonstrating that the welfare maxi-
mization problem can be stated as a totally unimodular
integer program. Such integer programs can be solved
in polynomial time using linear programming techniques
(see for example [23]). This leads to a centralized poly-
nomial time algorithm that finds the optimal solution.
This may require significant communication overhead
in a distributed setting, and thus an interesting open
problem is finding a communication efficient distributed
algorithm for this problem. Some approaches to solving
linear programming problems in a distributed fashion
have been studied in [2], but in our scenario, the objec-
tive function is distributed across the users, and thus
the techniques from [2] do not apply here. We also note
that this algorithm can also be used to compute the
Marginal Cost allocation in polynomial time by com-
puting the cost for every receiver individually.

THEOREM 4.2. There is a polynomial time algorithm
that maximizes network welfare in the layered paradigm
of the multiple tree case.

Proof. We show that this problem can be expressed as
a totally unimodular integer program. For each edge
e and each layer ¢ that can travel on edge e, we have
a variable z.;, such that 0 < z; < 1. If zo; = 1,
this represents that layer ¢ traverses edge e; otherwise
Ze; = 0. To ensure that we have a valid multicast tree,
for any edges e and €' such that in the tree for layer ¢,
edge e connects a node n to its parent, and e’ connects
n to a child, we include the constraint z.; < z.;. To
ensure that we have a valid layered flow, for any pair of
edges e and e’ such that e is the last edge that brings
a layer i to a receiver in the multicast tree, and €' is
the last edge that brings a layer ¢ + 1 to that same



receiver, we have the constraint z.r(;11) < Te;- Any
feasible solution to this integer program defines a valid
set of layered multicast trees. Our objective function is
to maximize

>

Tei 'pe,i - E Tei * ce,z’
i,e€leaf(i) e,

where c(e, i) is the cost of sending layer 7 on edge e,
leaf(i) is the set of edges that bring layer i to its
receivers, and pe ; is the profit provided by bringing layer
1 to the receiver served by e.

Note that this integer program has a constraint
matrix A such that all entries are +1, each row of A has
at most two entries, and if a row contains two entries
one is +1 and the other is -1. Thus, the determinant
of any submatrix of A has either no nonzero terms, a
single nonzero term equal to £1, or one term equal to 1
and one term equal to -1. Therefore, A is in fact totally
unimodular.
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