
1

A Self-Tuning Structure for
Adaptation in TCP/AQM Networks

Honggang Zhang, C. V. Hollot, Don Towsley and Vishal Misra

Abstract

Since Active QueueManagement (AQM) Schemes are essentially feedback controllers, their impact on closed-loop
behavior is directly related to the TCP congestion dynamic which, in turn, is strongly affected by network parameters
such as link capacities and TCP loads. These parameters are non-stationary and in the absence of real-time estimates,
AQM controllers are designed for worst-case which typically leads to degraded performance under normal situations.
Thus, the need for network parameter identification and tuning appears evident, and in this work, we propose a so-
called self-tuning AQM (STAQM) that tunes AQM parameters as a function of on-line (and local) estimates of network
parameters. This approach is enabled by recent modeling and feedback interpretation of the TCP/AQM dynamic, and, is
applicable to any AQM scheme (for example, AVQ, PI, RED and REM) that is parameterizable in terms of link capacity
and TCP load. This paper describes the estimation scheme and self-tuning structure and illustrates its use on PI and
RED. Analytically, we conduct a local stability analysis of the adaptive system which provides guidelines for choosing
the time constant for parameter update. This is crucial, since small time constants could lead to local instability while
large ones compromise adaptability. To confirm global performance, we conduct extensive NS simulations where the
TCP load varies and experience significant variations in link capacity. Our experiments include heterogeneous round
trip times, unresponsive UDP flows, Web traffic, and reverse TCP traffic.

I. INTRODUCTION

RECENT advances in the modeling and analysis of TCP/IP networks have led to better understanding of AQM dy-
namics. Fluid modeling and control theoretic analysis of homogeneous systems [10] has enabled understanding

of the relationship between network parameters, such as link capacity , TCP load and round-trip time , to perfor-
mance objectives, such as AQM responsiveness and robustness. While the analysis dealt with homogeneous systems
and long-lived flows, the guiding principles are applicable to realistic network settings with heterogeneous round trip
times and short-lived flows. The authors in [10] were able to explicitly tune AQM controllers such as RED, in terms
of these parameters, and also conceive of alternative structures, such as PI [9] in a companion paper, for improved
performance. The ability of relating AQM design variables to network parameters opens up the ability to tune the
designs using realtime estimates of network conditions. This paper is concerned with such adaptive AQM schemes.
The need for AQM adaptability seems evident; mis-tuned AQM controllers significantly degrade performance, and

network parameters are quite variable. For example, unresponsive traffic such as short-lived TCP flows, or UDP traffic,
effectively alter the link capacity experienced by long-lived TCP flows. Also, traditional analysis has assumed a fixed
link capacity while considering AQM design. In practice however, a single physical pipe is often divided into several
virtual links using various scheduling mechanisms. The capacities of these virtual links are time varying, depending
on the particular scheduling algorithm used. Thus, the assumption of a fixed capacity link is often violated in reality.
Likewise, dynamic change in the long-lived TCP workload are to be expected, and the TCP/AQM dynamic is quite
This work is supported in part by DARPA under Contract DOD F30602-00-0554 and by NSF under grants EIA-0080119, ITR-0085848, and

ANI-9980552. Any opinions, findings, and conclusions of the authors do not necessarily reflect the views of the National Science Foundation.
Honggang Zhang and Don Towsley are with the Computer Science Department, University of Massachusetts, Amherst, MA 01003;
honggang,towsley @cs.umass.edu
C. V. Hollot is with the ECE Department, University of Massachusetts, Amherst, MA 01003; hollot@ecs.umass.edu
Vishal Misra is with the Computer Science Department, Columbia University, New York, NY 10027; misra@cs.columbia.edu

IEEE GLOBECOM 2003 Conference Paper; ACM SIGMETRICS 2003 Student Poster

2

sensitive to this variation. A conservative design for the “worst-case” load typically leads to degraded performance
under normal scenarios.
This work introduces a self-tuning structure to help AQM controllers deal with variations in link-capacity and TCP

workload, which is called STAQM. The scheme has two features: parameter estimation, and AQM tuning. The concept
of parameter estimation is to approximate , and from measurements made locally at the congested router. For
, we assume that the queuing delay is dominated by the propagation delay, a reasonable assumption for current and

future high capacity links, and then we can bound the two way propagation delays with physical constraints. The
actual design of a Self-Tuning AQM should be based on the “effective” RTT 1 since realistic network conditions have
heterogenous TCP flows with different RTTs. An estimation scheme based on the router sampling the SYN packets
and SYN ACKs of the ongoing TCP flows can be constructed, but that is not the focus of this paper. The link capacity
can be measured by keeping track of departed packets, and, an estimate of the TCP load can be inferred from

measurements of the (computed) dropping probability .2 Indeed, with in hand, the TCP throughput equation
provides a means for estimating . This is of particular importance since the quantity in the

analysis of [10] is the aggregate incoming throughput, or the load on the router. By basing this quantity on an estimate,
we are effectively moving beyond the assumption of the analysis in [10] of the mythical long lived flows with
identical round trip times to the real effective load on a router. Unfortunately, the term also makes an appearance
in the delay term of the dynamical system described in [10] so we still need a separate estimator for . In the absence
of a measured estimate, a worst case estimate for can be used, but we stress that in the rest of the paper the quantity

is to be interpreted as the estimated load on the router, encompassing the effects of both short-lived flows as
well as heterogeneous RTTs. The second feature of the self-tuning structure is to automatically tune an AQM based
on these estimates. This requires an explicit parameterization of the AQM controller in terms of , and . Such
parameterizations are available for both RED and PI.
Related work on adaptive AQM includes Adaptive Virtual Queue (AVQ) [12], Predictive AQM (PAQM) [13], Adap-

tive RED (ARED) [7] and [2], and self-configuring PI [5]. Our self-tuning structure is most closely related to [5].
It differs in that we incorporate estimates of link capacity, provide stability analysis, and gives guidelines of how
to choose filter time constants which is crucial to the stability and responsiveness of STAQM structure. Also, our
self-tuning structure can be applied to both PI and RED, which will be discussed later in the paper.
In the paper we will describe, analyze and simulate this self-tuning scheme. On the analysis side we will show how

this adaptive controller achieves local exponential stability by choosing appropriate filter time constants for parameter
update, and we address the tradeoff between stability and responsiveness. We focus our analysis on the general STAQM
structure and its variations on RED and PI, which we call STRED and STPI. We give a comparison of STPI and
STRED. In addition, analysis of fixed RED gives a range of network conditions where a stable RED has reasonable
responsiveness, and we design STRED in that range. Through ns-2 simulations, we will compare performance of a
STPI and a STRED against a non-adaptive PI controller, and against adaptive RED (ARED). Heterogeneous RTTs are
assumed in all the simulations. The scenarios include richer traffic mix such as Web traffic, unresponsive UDP flows,
and reverse TCP traffic. The simulation results are encouraging and show that STAQM is robust to large, dynamic
variations in both link capacity and TCP load .
The paper is organized as follows. In Section II we present some motivating simulations of the self-tuning AQM

structure. In Section III, we show how to design a self-tuning AQM for local exponential stability, and in Section IV
we put this adaptive scheme through its paces via ns-2 simulations.

II. MOTIVATION FOR A SELF-TUNING AQM

Before getting into the details of designing a self-tuning AQM, we first give some simulation results to show its
benefits over non-adaptive AQM. We will consider situations where link capacity and TCP flows vary. We take
[9] suggests a harmonic mean of RTTs as a good candidate for an “effective” RTT.
This is the loss probability computed by the AQM controller, which is readily available.

3

Bottleneck Link

BW = 15Mbps = 3750pkts/sec
delay = 70ms

TCP senders TCP receivers

delay=20ms delay=10ms

Fig. 1. Simulation settings of s single bottleneck link.
0 20 40 60 80 100 120 140 160 180 200

0

100

200

300

400

500

600

700

800

Time(Second)

Q
ue

ue
 S

ize
 P

ac
ke

ts
/S

ec

Fig. 2. Instantaneous queue size when using fixed PI de-
signed for N=60, C=15Mbps, and RTT=250ms. N, C, RTT
do not change over time.

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

Time(second)

Pa
ck
et
s

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

Time(second)

Pa
ck
et
s

Fig. 3. Comparison of instantaneous queue size between STPI and fixed PI. C increases to 90Mbps from 15Mbps at time 100 seconds. The left
plot shows a fixed PI, which is designed for N=60, C=15Mbps, and RTT=250ms. The right plot shows STPI.

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

Time(second)

Pa
ck
et
s

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

Time(second)

Pa
ck
et
s

Fig. 4. Comparison of instantaneous queue size between STPI and fixed PI. The number of flows decreases from 240 to 10 at time 100 seconds.
The left plot shows a fixed PI, which is designed for N=60, C=15Mbps, and RTT=250ms. The right plot shows STPI.

STPI and fixed PI as examples of self-tuned and fixed AQMs. Figure 1 shows the setup of a single congested link in a
dumbbell topology, with two-way propagation delay of ms. We assume the fixed PI is designed for a link capacity
of 15Mbps and 60 long-lived TCP flows. The target queue size is 175 packets (giving a queuing delay of about ms).
The router’s buffer size is 800 packets and TCP flows randomly start every seconds with packet size fixed at 500
bytes. Following the design rules given in [11], we design PI for these specific values of , and . In ns, the PI

4

coefficients are taken to be and with a sampling frequency of Hz. As shown
in Figure 2, PI works well when and are at their design values.
Figure 3 shows another simulation where changes six-fold from 15Mbps to 90Mbps at time seconds. We see

that the fixed PI controller loses control of queue length, behaving like a droptail queue. The reason for this oscillation
is that the TCP dynamic has a relatively low gain at Mbps, and PI compensates by being aggressive. However,
this AQM design turns out to be much too aggressive when gain of the TCP dynamic becomes high when the link
capacity increases by a factor of six. Now, we implement STPI as shown in Figure 3, and observe that it regulates the
queue in spite of the sudden change in link capacity. The gain of STPI automatically changed to account for the change
in .
Now we fix the link capacity and change the number of TCP flows. We initially take and accordingly

re-tune the fixed PI parameters to and At time 100 seconds, decreases to 10
flows. As shown in Figure 4, PI initially stabilizes the queue, but becomes unstable when suddenly decreases at
time=100 seconds. In contrast, STPI successfully adapts to this traffic change at seconds.
Besides PI, we also would like to consider the performance of adaptive RED (ARED) which is an AQM adapting

its gain to changes in average queue length. However, it suffers from the fundamental limitations of RED. Here, we
would like to show its limitations through simulations. We consider the same topology as in Figure 1, where the
two-way propagation delay is now ms, queuing delay ms, buffer size of packets, and link capacity of

Mbps. For ARED, we use the guidelines given in [2] and take packets, packets and
. To make the queue length comparable to ARED, we chose STPI’s target queue length to be

packets. A comparison of performance for STPI and ARED are shown in Figure 5. Initially, TCP flows start
with dropping-out at 100 seconds, and then returning at 200 seconds. As shown in Figure 5, ARED’s queue length
initially oscillates between and packets, and then oscillates between 0 and 700pkts when decreases to
flows. In contrast, STPI successfully regulates the queue length to its target queue length of packets, in the face of
the varying TCP load.

0 50 100 150 200 250 300 350
0

200

400

600

800

1000

1200

1400

1600

1800

Time(second)

Pa
ck

et
s

ARED. Instantaneous Queue Length.

0 50 100 150 200 250 300 350
0

200

400

600

800

1000

1200

1400

1600

1800

Time(second)

Pa
ck

et
s

STPI. Instantaneous Queue Length.

Fig. 5. Comparison of instantaneous queue size between STPI and ARED. Left plot is ARED, and right plot is STPI. The number of flows
decreases from 1000 to 100 at time 100 seconds, and it increases to 1000 again at time 200 seconds. ARED is designed for C=300Mbps, and
RTT=150ms.

In addition to the simulations presented here, we will also demonstrate the performance of self-tuning AQM via
simulations in Section IV. The most important performance metrics we are interested in are the link throughput, queuing
delay and its variation. Specifically, we will present the simulations in scenarios where link-capacity changes induced
by variations in unresponsive traffic, or traffic load changes, or a richer traffic mix including both reverse traffic and
http traffic. In all these simulations, we could use heterogeneous long-lived TCP flows with round trip delays uniformly
distributed in (40, 250)ms. The simulations have demonstrated that a self-tuning AQM is able to regulate the queuing
delays to the target delay and with much less variations than previously proposed AQM’s, and achieve the highest
throughput. We now present details behind the design of our self-tuning AQM scheme.

5

III. DESIGN AND ANALYSIS OF A SELF-TUNING AQM

AQM controller

Updating Rules of
Controller Parameters

BW
Estimator

Load
Estimator

TCP/Queue

Estimator

Fig. 6. Block Diagram of a Self-Tuning Controller Model.

In the preceding section we motivated the utility for automatically tuning AQM dynamics to deal with varying
network conditions. To formalize the synthesis of such an adaptive scheme we require: () a parameterization of
AQM dynamics in terms of network variables, () a scheme for on-line parameter identification, and () a rule
for self-tuning the AQM dynamics. For this last task, we will lean on the so-called certainty equivalence principle
found in the classic self-tuning approach to adaptive control [14], and update the AQM dynamic based on the most
recently available parameter estimate, proceeding as if this estimate was dead-on. Figure 6 is a control block diagram
representation of this self-tuning AQM scheme.
In this section we will first recall how AQM schemes like RED and PI can be parameterized in terms of network

variables. Then, we will describe an approach to estimating the link capacity and TCP load . Finally, we will show
how to select the estimator’s time constant to avoid local instability. This is important because incorrectly selected time
constant could lead to instability. In the next section we will study the global behavior of this adaptive AQM through
ns simulations.

A. Parameterization of AQM Dynamics

A generalized fluid description of AQM dynamics relating instantaneous queue length to loss probability is

(1)

where denotes the AQM state, and and describe the AQM dynamic behavior. For example, in RED, is
the average queue length and

(2)

where , and .3 In [11], tuning of the RED parameters
is linked to the network parameters via the relations

where is a designer-selected responsiveness factor with larger giving more responsive AQM.
For PI AQM, is the integral of the deviation and

(3)

The PI parameters are related to network parameters through

In RED, denotes the averaging weight, while , and describe the packet-dropping profile.

6

where controls AQM responsiveness.
The preceding gives examples of how an AQM dynamic can be explicitly related to network parameters .

In the absence of knowledge of these network variables, we would like to develop their on-line estimates, and, in the
next subsection, we do so for link capacity and the TCP load .

B. Estimating Link Capacity and TCP Load
Estimating dynamic variations in link capacity is both straightforward and accurate. On the other hand, it appears

more difficult to track changes in TCP workload. In fact, rather than working with a classical, model-based method for
parameter estimation we will simply use the TCP throughput relation to back-out an estimate of TCP load. In addition,
if the queuing delay is negligible compared with two-way propagation delay, we could use two-way propagation delay
to approximate . As explained in the introduction, we could also use the “effective” RTT or an estimate of RTT made
from samples of the SYN packets.
1) Estimating link capacity: To estimate the link’s capacity, call it , we periodically compute the ratio of departed

TCP packets to the router’s busy time. Since the transient link capacity of TCP traffic could change due to other rate-
varying traffic (such as UDP traffic), we smooth the sampled TCP capacity . We use a low pass filter (LPF) to do this
and describe it with the fluid model

where denotes the estimated (smoothed) capacity and the filter time constant.
2) Estimating TCP workload: Based on the TCP fluid model in [8] (similar models for the TCP window-control

mechanism can be found in [3], [4]), we can derive the following steady-state TCP relationships

where is the equilibrium congestion window size (packets) and is the equilibrium drop probability. From the
above, we obtain . This relationship is a property of TCP, and is independent of AQM. Even though the
square root relationship is valid only in the steady state, we will use it to estimate in transient phases. Estimates of
and are sufficient data to tune RED and PI as previously described. We note that measuring packet loss at the

AQM results in an underestimation of actual loss probability which in turn underestimates . Finally, we smooth the
estimate of using a LPF to give the dynamic:

where is the smoothed estimate of and the time constant. This TCP workload estimation scheme first
appeared in [5].

C. Combined parameter estimator and tuned AQM
Combining the parameter estimators and AQM model, we have the following model to describe the dynamics of a

self-tuning AQM:

(4)

where and show the explicit dependence of AQM dynamics on the estimated variables . Note that
the above AQM equations describe a nonlinear dynamic system, even if and are linear relationships as in the case
of RED and PI. For example, for a PI AQM:

(5)

7

where

For a RED AQM:
(6)

where

Thus, STPI is defined by (4) and (5), while STRED is described by (4) and (6).

D. Selection of Filter Time Constant

The objective for introducing adaptation in AQM is to improve performance under network variations. More specifi-
cally, an ultimate goal would be to show, analytically, that a self-tuned TCP/AQM network, described by the combined
differential equations

= ; = ;
= ; = ;
= ; = ;

(7)

outperforms a fixed TCP/AQM scheme. Such analysis is beyond the scope of this report and is a topic for future
research. In the next section, we will report on the results of ns simulations which will provide some experimental
justification for employing an adaptive AQM. In this subsection we will provide some guidance in selecting the filter
time constants . Our criteria for selecting these constants will be the local stability of (7), and our results will
confirm intuition which suggests that, for stable behavior, the time scale for adaptation should be significantly longer
than the time scale of AQM responsiveness.
To begin this analysis, we fix parameters and consider the linearization of (7) around its equilibrium point.

Based on the linearizations of STAQM (see Appendix for details), we can draw their control block diagrams in Figure 7
and Figure 8. Now, let and be the transfer functions of the TCP and AQM dynamic respectively:

(8)

In (7) we show that

Consequently, for stability considerations, Figures 7 and 8 reduce to Figure 9.
We now show that Figure 9 is true for a general form of STAQM. Consider a linear state space form of (1)

(9)

Based on the linearization of (7) and (9), we have the following formulas:

(10)

(11)

8

(12)

(13)

(14)

(15)

and (see Appendix B)

(16)

(17)

From (16), (14) and (13), we have

(18)

(19)

(20)

From (17) and (15), we have
(21)

Then, from (10),(11),(18),(19),(21), we are able to draw the control block diagram for this general STAQM in Fig-
ure 10. It is obvious that Figure 10 can be reduced to Figure 9.
We note that the filter time constant associated with the estimate of link capacity does not enter into our local

stability analysis. Second, the local stability of (7) can be expressed in terms of the stability of a feedback connection
between and

In context of the adaptive control problem, the transfer function represents the closed-loop dynamic of a perfectly
tuned TCP-AQM loop. That is, one where is tuned based on perfect estimates of the network parameters.
Hence, it is a good assumption that is stable, which means that its poles are confined to the open left-half of the
complex plane. We have the following stability result for this feedback connection.

Theorem 1: Suppose is strictly proper, and is stable. Then, is locally
exponentially stable for some sufficiently large and positive time constant .

Proof: The adaptive system is locally exponentially stable provided the closed-loop system in Figure 9 is stable;
i.e.,

(22)

has solutions only in the open left-half of the complex plane (OLHP). We claim this is so for some sufficiently small
and positive . We will use root locus arguments to prove this; see [15]. Since is proper, than is
strictly proper. Also, has only poles in the open left-half of the complex plane.4 Thus, for sufficiently small root
Due to the delay term , has an infinite number of poles. Since these poles are determined by the zeros of a delay polynomial with

principal part, these poles are strictly bounded away from the imaginary axis of the complex plane.

9

-

+

+

+ +

P(s) C_aqm(s)

+

Fig. 7. Linearized Model of STRED.

-

+

+

+

++

+

P(s) C_aqm(s)

+

Fig. 8. Linearized Model of STPI.

sR
aqm

sR
aqm

esCsP
esCsP

−

−

+)()(1
)()(

s
K n

rc

_

Fig. 9. Feedback loop associated with the local stability of (7). The upper transfer function represents the closed-loop dynamic
of a perfectly tuned TCP-AQM loop.

locus parameter , the solutions to (22) are in the OLHP, except possibly for a small real solution emanating from
the pole of at . Let this solution be It must be negative; i.e., . To see this, evaluate (22):

Since (recall), then is negative for . We have thus shown that (22) has solutions only in
the OLHP when is sufficiently small and positive. This proves the theorem.

Remark: The implication in Theorem 1 is that small adaption time constants can lead to local instability. On the
other hand, excessively large time constants compromise adaptability. Giving quantitative meaning to this tradeoff
requires more description of the AQM dynamic . For example, consider the PI AQM in (3) and (7). Then,

is given by

and the range of for which (7) is locally stable can be found from those rendering Figure 9 stable, or

stable. In Figure 11 we plot the stabilizing time constants as a function of the aggressiveness parameter and
round-trip time . Stabilizing lie above the curves. For example, for ms and , (7) is stabilized
for time constants greater than 300ms. 5 We also see in this figure that larger adaptation (or stabilizing) time constant
For , the AQM time constant is approximately ms.

10

+

+

+

+P(s) C_aqm(s)+

+

+

Fig. 10. Linearized Model of A General STAQM.

could result a less adaptive system. Thus, this tradeoff should be considered when designing a STAQM. Similar results
could be provided for STRED; see Appendix C.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

βpi

Ad
ap

ta
tio

n
Ti

m
e

Co
ns

ta
nt

: 1
/K
n rc

R=150ms
R=100ms
R=50ms

slower adaptation
larger stability margin

faster TCP responsiveness

Fig. 11. STPI. Stabilizing time constants are plotted against the PI aggressiveness factor for various round-trip times .
Stabilizing pairs lie above the curves.

E. Design Guidelines for STRED

Designing STPI is straightforward, however, additional issues arise when designing STRED. The issue is that a
stabilizing RED AQM is sufficiently responsive for a specified range of network parameters . From [11],
we know that a stablizing RED requires where is roughly the closed-loop time constant.
Clearly, this time constant depends on network parameters . For a fixed round-trip time, smaller ratios
result in sluggish AQM control as shown in Figure 12. For example, when sec and , the
time constant of a stable RED AQM is more than 50 seconds! Indeed, in the next section, we consider simulations
where ratios of (with time constant of 40 seconds) lead to impractical RED designs.
Consequently, we will not design STREDs for such scenarios. Instead, we would recommend a proportional controller
as in [11], achieved by simply removing RED’s low pass filter. Now, for the range of network parameters in which
RED has reasonable responsiveness, designing a self-tuning RED (STRED) is straightforward. Details can be found
in Appendix C.

11

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

50

100

150

N/C

Cl
os

ed
−l

oo
p

tim
e

co
ns

ta
nt

 (1
/ω
g) o

f R
ED

 (s
ec

on
d)

R=0.10
R=0.15
R=0.20

more sluggish

Fig. 12. Fixed RED. Responsiveness of a stable RED as a function of (N, C, R)

IV. NS SIMULATIONS

Four ns simulations were conducted to evaluate the performance of the self-tuning AQMs, STPI and STRED,
against fixed PI and ARED.

A. Simulation 1. (Compare PI, ARED, STRED, STPI for variations in link capacity .)

The topology for simulation 1 is shown in Figure 13 and consists of TCP and UDP traffic sharing a single congested
(OC-12) link with capacity of Mbps (packets/sec). The TCP and UDP traffic have equal priority in
competing for link capacity and the AQM does not distinguish between them when dropping or marking packets.
There are long-lived TCP flows with round-trip times uniformly distributed in ms. TCP Sack is used
and the simulation lasts 1000 seconds. Besides the shared queue simulations presented in this paper, we have also
considered class-based queuing (CBQ) links where UDP flows have higher priority than TCP flows.

Bottleneck Link

BW = 622Mbps=155500pkts/sec
delay = 10ms

TCP senders TCP receivers

delay=0~105ms delay=10ms

UDP senders UDP receiversAQM
Queue

Fig. 13. Simulation 1. Topology used in simulations.

Variations in the UDP traffic are used to generate link capacity variations as experienced by TCP traffic. The UDP
traffic commences at 100 seconds, with individual flows arriving according to a Poisson process having sinusoidal
arrival with a second period. Each flow generates a number of “on” periods, and this number is distributed
geometrically with a mean of 50. For each flow, the “on” period follows a Pareto distribution with mean of 0.2
seconds, while the “off” period is exponentially distributed with a mean of 0.2 seconds. The UDP flow’s sending rate
is 20Mbps during its “on” period. Due to the difficulty in simulating a large population of UDP sources with small
peak rates we simulated a small number of UDP sources having 20Mbps peak rate. Four AQMs are tested: STPI,
STRED, PI and ARED. ARED was designed based on the recommendations in [2] and, for comparisons sake, the free

12

parameters of STPI, STRED and PI were then set to achieve comparable target queue lengths. The following gives the
details in setting these parameters.

ARED: Since the link capacity is uncertain, the queue-averaging parameter is set conservatively using the full link
capacity Mbps or packets/second. This gives . Because ARED automat-
ically chooses 5ms as the target queuing delay, we also take ms,

packets and packets. All other parameters of ARED are taken as default.

STPI: The target queue length () is chosen as packets and parameters and are initially designed for full link
capacity (Mbps) and . Parameter estimation begins immediately and AQM self-tuning is enabled
at 20 seconds. The adaptation time constants are seconds and respectively. Note that time constant

falls within the stable region of Figure 11.

STRED: The target queuing delay is taken as ms. Following the design guidelines in the Appendix,
STRED is designed for Mbps (full link capacity) and . For and we
use Figure 12 and take the adaptation time constant to be about 5 second. This is the parameter regime for
which we believe STRED is meaningful. The RED parameters are ,

. Parameter estimation begins immediately and AQM self-tuning is enabled at 20 seconds. The LPF
time constants for the estimates of and are and seconds respectively. These time constants fall in the stable
region of the plot for in Figure 29.

PI: The target queue length (or) is set at packets. Parameters and are designed for the full-link capacity
of Mbps and . This is a conservative PI design, where we expect the PI AQM to become less
responsive (rather than unstable) when the link capacity drops.

0 100 200 300 400 500 600 700 800 900 1000
0

2000

4000 buffer size = 3600 packets
STPI

Pa
ck

et
s

Comparison of Instantaneous Queue Lengths

0 100 200 300 400 500 600 700 800 900 1000
0

2000

4000 buffer size = 3600 packets
STRED

Pa
ck

et
s

0 100 200 300 400 500 600 700 800 900 1000
0

2000

4000 buffer size = 3600 packets
PI

Pa
ck

et
s

0 100 200 300 400 500 600 700 800 900 1000
0

2000

4000 buffer size = 3600 packets
ARED

Time(second)

Pa
ck

et
s

Fig. 14. Simulation 1. Comparison of instantaneous queue
lengths for STPI, STRED, fixed PI, and ARED.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8
x 107

Time(second)

Pa
ck

et
s

Comparison of Cumulative Throughput

STPI
STRED
fixed PI
ARED

Fig. 15. Simulation 1. Comparison of cumulative throughput.

Figure 15 compares the cumulative TCP throughput (departure rate of TCP packets in the AQM controlled queue)
where STPI has the highest throughput, approximately 5% higher than that of ARED at seconds. STRED’s
thoughput is between STPI and ARED. The fixed PI’s throughput is about 45% less than that of STPI.
Figure 14 shows the instantaneous queue length at 0.1 second intervals. Figure 16 shows the instantaneous queue

length when the link capacity experienced by TCP flows is high (about packets/second). We see that STPI
regulates the queue length around the target queue length of packets. STRED has similar performance, and as
predicted, the instantaneous queue length of STRED is controlled in the range of and . On the other
hand, the queues controlled by fixed PI and ARED are often empty. When the link capacity is low, STPI regulates

13

300 305 310 315 320 325 330
0

2000

4000
Comparison of Instantaneous Queue Length. Buffer size = 3600 packets.

STPI

Pa
ck

et
s

300 305 310 315 320 325 330
0

2000

4000
STRED

Pa
ck

et
s

300 305 310 315 320 325 330
0

2000

4000
PI

Pa
ck

et
s

300 305 310 315 320 325 330
0

2000

4000
ARED

Time(second)

Pa
ck

et
s

500 505 510 515 520 525 530
0

2000

4000
Comparison of Instantaneous Queue Length. Buffer size = 3600 packets.

STPI

Pa
ck

et
s

500 505 510 515 520 525 530
0

2000

4000
STRED

Pa
ck

et
s

500 505 510 515 520 525 530
0

2000

4000
PI

Pa
ck

et
s

500 505 510 515 520 525 530
0

2000

4000
ARED

Time(second)

Pa
ck

et
s

Fig. 16. Simulation 1. Comparison of instantaneous queue lengths for STPI, STRED, fixed PI, and ARED. The left plot is over time interval
(300, 330) seconds when TCP experiences highest link capacity (about packets/second). The right plot is in time interval (500, 530)
seconds where TCP flows experience lowest link capacity (about packets/second).

the queue length, whereas ARED and fixed PI oscillate between an empty buffer and its limit of packets); see
Figure 16. As for queuing delays, recall that the AQM designs were driven by ARED’s choice to regulate delay
around a ms target. Consistent with their regulation of instantaneous queue length, STPI and STRED regulate the
queuing delay around ms, whereas, ARED and fixed PI have significant jitter. The standard deviation of queuing
delay for ARED is ms, almost twice that of STPI’s ms. STRED is ms. Fixed PI’s is ms. In summary,
STAQMs(STPI and STRED) are able to regulate the queuing delays with much less variation than fixed PI and ARED.
Also, the STAQMs achieved the highest throughput.

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16
x 104 Estimated BW for TCP flows

Time(second)

Pa
ck

et
s

pe
r s

ec
on

d

Fig. 17. Simulation 1. Link capacity (estimated by STPI) expe-
rienced by TCP flows.

0 100 200 300 400 500 600 700 800 900 1000
400

500

600

700

800

900

1000

1100

1200

1300
Estiamted number of long−lived TCP flows

Time(second)

Fig. 18. Simulation 1. Number of TCP flows implicitly esti-
mated by STPI.

Finally, in Figure 17 we plot the estimated link capacity and in Figure 18, the estimate of number of TCP flows .
As explained in Section III.B.2, our techniques underestimate , as confirmed in this figure.

B. Simulation 2. (Compare PI, ARED, STPI for variations in TCP workload .)

We use the same topology as in the preceding simulation but do not include UDP traffic; thus, the link capacity
experienced by TCP flows is fixed at Mbps. We allow the number of long-lived TCP flows vary between
and flows as shown in Figure 19. Again, we use heterogeneous round-trip times distributed over the - ms

14

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

Time(second)
Nu

mb
er

 of
 F

low
s

Number of TCP flows estimated by STPI.

Estimated N
Actual N

Fig. 19. Simulation 2. The number of TCP flows estimated by STPI.

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000 buffer size = 3600 packets

Pa
ck

et
s

STPI Instantaneous Queue Length

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000 buffer size = 3600 packets

Pa
ck

et
s

PI Instantaneous Queue Length

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000 buffer size = 3600 packets

Time(second)

Pa
ck

et
s

ARED Instantaneous Queue Length

50 52 54 56 58 60 62 64 66 68 70
0

500

1000

1500

2000

Pa
ck

et
s

STPI Instantaneous Queue Length

50 52 54 56 58 60 62 64 66 68 70
0

500

1000

1500

2000

Pa
ck

et
s

PI Instantaneous Queue Length

50 52 54 56 58 60 62 64 66 68 70
0

500

1000

1500

2000

Time(second)

Pa
ck

et
s

ARED Instantaneous Queue Length

Fig. 20. Simulation 2. Comparison of instantaneous queue lengths for STPI, fixed PI, and ARED. The left plot is over whole simulation
duration. The right plot is in time interval (50, 70) seconds where TCP load level is lowest (active TCP flows.)

range. Since the ratio could be as low as 0.0006, a stabilizing RED controller would be very sluggish as discussed
in Section 3. Thus, we will not design a STRED for these conditions and compare only the performance of STPI, fixed
PI and ARED. Since ARED’s parameters do not explicitly depend on TCP load, we use the same parameters as in
Simulation 1. The target queue length is between and packets. The fixed PI is conservatively designed for an
initial load level flows and full link capacity Mbps. Its target queue length is 800 packets.
As shown in Figure 20, STPI regulates the queue length to its target level; but fixed PI is slow to respond when
increases from to flows from to seconds. Also, there is a long period when the queue is empty

when decreases from to from to seconds. ARED oscillates between an empty queue and large
queue length of packets – this occurs under high load . This behavior is similar to the situation in the
left plot of Figure 16. STPI controls the queuing delay to the ms target delay, while the queuing delay for ARED
oscillates between and ms (although its target delay is also 5ms). The standard deviation of queuing delay for
ARED is ms, almost three times that of STPI’s ms. Fixed PI’s has standard deviation of queuing delay of ms.
In summary, STPI was able to regulate queuing delay with much less variation than that of fixed PI and ARED. The
throughput for STPI and ARED were very similar.
Finally, we would like to point out a stability issue associated with ARED. TCP fluid models ([11]) show that the

steady-state loss rate must relate to network conditions as . For the set-up in simulation 2 this means
that the steady-state should approximately be . However, as shown in the left plot of Figure 21, ARED

15

does not achieve the expected steady-state loss but produces much more. Furthermore, ARED appears to be locally
unstable. Following the notation in [11], the transfer function for RED is . ARED is essentially RED
with fixed to second and where varies with which, in turn, is tied to average queue length. The
range of is . Thus, when and ,
ARED’s varies in the range . Analysis indicates that this range of leads to local
instability and helps to explain ARED’s oscillation as shown in the right plot of Figure 20. In contrast, the average loss
rate for STPI is about 0.00005, close to that required by fixed-point analysis. Compare the plots on the right-hand
side of Figure 20 in the time interval with the left plot of Figure 5. The latter case has a homogeneous RTT
of 150ms, with the former case having heterogenous RTTs with an average of 150ms. The heterogenous RTTs appear
to mitigate (but not quench) the oscillations in ARED.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Loss
 Rat

e

ARED loss rate

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10−3

Time(sec)

Loss
 Rat

e

STPI loss rate

Fig. 21. Simulation 2. Loss rate comparison between ARED and STPI for the smallest load (N=100).

C. Simulation 3. (Compare PI, ARED, STPI, STRED for variations in link capacity for Web traffic and reverse
long-lived TCP traffic.)

In our third simulation, we consider a richer mix of traffic which contains long-lived TCP flows and short-lived TCP
flows (https flows). Figure 22 shows the simulation topology. There are 1000 long-lived TCP flows traveling in both
the forward and reverse paths. The round trip delays for the long-lived flows are uniformly distributed in (40, 250)ms.
In addition, there are 4000 http flows on the forward path, and 4000 http flows on the reverse path. Each http flow idles
after finishing a session. The idle time is an exponential random variable with mean of 3 seconds. Two AQMs control
both the forward and reverse path queues. The simulation lasts 500 seconds.

Bottleneck Link

Both forward path and reverse path
BW = 622Mbps=155500pkts/sec
delay = 10ms

senders of
forward
long-lived
TCP traffic

receivers of
forward
long-lived
TCP traffic

delay=0~105ms delay=10ms

receivers of
reverse
long-lived
TCP traffic

senders of
reverse
long-lived
TCP traffic

forward path

reverse path

delay=0~105ms

AQM
Queue

AQM
Queue

forward http flows

reverse http flows

delay=10ms

Fig. 22. Simulation 3. Topology used in simulations.

16

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3
x 1010

Time(second)

By
te

s

Comparison of Cumulative Throughput

STPI
STRED
fixed PI
ARED

Fig. 23. Simulation 3. Comparison of accumulative throughput
among STPI, STRED, fixed PI, and ARED.

0 50 100 150 200 250 300 350 400 450 500
0

2000

4000 buffer size = 3600 packets
STPI

Pa
ck

et
s

Comparison of Instantaneous Queu Length.

0 50 100 150 200 250 300 350 400 450 500
0

2000

4000 buffer size = 3600 packets
STRED

Pa
ck

et
s

0 50 100 150 200 250 300 350 400 450 500
0

2000

4000 buffer size = 3600 packets
PI

Pa
ck

et
s

0 50 100 150 200 250 300 350 400 450 500
0

2000

4000 buffer size = 3600 packets
ARED

Time(second)

Pa
ck

et
s

Fig. 24. Simulation 3. Comparison of instantaneous queue
lengths for STPI, STRED, fixed PI, and ARED.

200 205 210 215 220 225 230 235 240 245 250
0

2000

4000 buffer size = 3600 packets

Pa
ck

et
s

Comparison of Instantaneous Queue Length.

STPI

200 205 210 215 220 225 230 235 240 245 250
0

2000

4000 buffer size = 3600 packets

Pa
ck

et
s STRED

200 205 210 215 220 225 230 235 240 245 250
0

2000

4000 buffer size = 3600 packets

Pa
ck

et
s PI

200 205 210 215 220 225 230 235 240 245 250
0

2000

4000 buffer size = 3600 packets

Time(second)

Pa
ck

et
s ARED

400 405 410 415 420 425 430 435 440 445 450
0

2000

4000 buffer size = 3600 packets

Pa
ck

et
s

Comparison of Instantaneous Queue Length.

STPI

400 405 410 415 420 425 430 435 440 445 450
0

2000

4000 buffer size = 3600 packets

Pa
ck

et
s STRED

400 405 410 415 420 425 430 435 440 445 450
0

2000

4000 buffer size = 3600 packets

Pa
ck

et
s PI

400 405 410 415 420 425 430 435 440 445 450
0

2000

4000 buffer size = 3600 packets

Time(second)

Pa
ck

et
s ARED

Fig. 25. Simulation 3. Comparison of instantaneous queue lengths for STPI, STRED, fixed PI, and ARED. The left plot is in time interval
(200, 250) seconds where link capacity is lowest (Mbps or 19438 pkts/sec.) The right plot is in time interval (400, 450) seconds where
link capacity is highest (Mbps or 155500 pkts/sec.)

We consider a scenario of varying link capacity in the forward path. Initially, the link capacity experienced by both
forward and reverse traffic is Mbps. At 100 seconds, we decrease the link capacity by a factor of 8, then, we return
to Mbps at 300 seconds. The link capacity of the reverse path is kept constant at Mbps. For all four AQMs,
we use the same parameters as in Simulation 1. The target queue length is between and packets for ARED,
and the target queue length for STPI and fixed PI are 800 packets. The size of TCP data packets is 1000 bytes. Since
the ACK packets (40 bytes per packet) share the queue with TCP data packets, we set the mean packet size to be 500
bytes. Since the queued packets have different sizes, we used the mean packet size. Similar to Simulation 1, for a
stable RED in this scenario, the target queue length is not a fixed value, but varies between 0 and 3000 pkts. The link
capacity estimated by STPI is quite accurate, and the traffic load is underestimated as before. Figure 23 compares
the accumulative throughput where STPI has the highest throughput at 500 seconds, approximately 6% higher than
that of ARED, and 64% percent higher than fixed PI. STRED has almost the same throughput as STPI. Figure 24
compares instantaneous queue lengths. STPI regulates the queue length well while ARED and fixed PI oscillate.
These oscillations affect queuing delay. Regardless of network conditions, STPI regulates the queuing delay with little
jitter. The standard deviation of queuing delay for STPI, STRED, fixed PI and ARED are ms, ms, ms, and
ms respectively. Similar to the previous simulations, STPI is able to regulate queuing delay with much less variation

17

than that of fixed PI and ARED, and achieved the highest throughput. Even though STRED’s throughput is almost the
same as that of STPI, STRED’s queuing delay can not be guaranteed.

D. Simulation 4. (Compare PI, ARED, STPI for variations in TCP workload for Web traffic and reverse long-lived
TCP traffic.)

In this simulation, we also consider a richer mix of traffic which contains long-lived TCP flows and short-lived TCP
flows (https flows). We use the same simulation topology as in simulation 3. We keep the link capacity constant at

, and vary the number of long-lived TCP flows. Initially, there are 200 long-lived TCP flows travelling in
both the forward and reverse paths. The round trip delays for the long-lived flows are uniformly distributed in (40,
250)ms. In addition, there are 800 http flows on the forward path, and 800 http flows on the reverse path. Each http
flow idles after finishing a session. The idle time is an exponential random variable with mean of 3 seconds. Two
AQMs control both the forward and reverse path queues. At 200 seconds, an additional 800 long-lived TCP flows and
3200 http flow in both directions. At 400 seconds, these newly added long-lived TCP flows drop out. The simulation
lasts 500 seconds.

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4
x 1010

Time(second)

By
te

s

Comparison of Cumulative Throughput

STPI
fixed PI
ARED

Fig. 26. Simulation 4. Comparison of accumulative throughput
among STPI, fixed PI, and ARED.

0 50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000 buffer size = 3600 packets

Pa
ck

et
s

STPI Instantaneous Queue Length

0 50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000 buffer size = 3600 packets

Pa
ck

et
s

PI Instantaneous Queue Length

0 50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000 buffer size = 3600 packets

Time(second)

Pa
ck

et
s

ARED Instantaneous Queue Length

Fig. 27. Simulation 4. Comparison of instantaneous queue
lengths for STPI, fixed PI, and ARED.

100 105 110 115 120 125 130 135 140 145 150
0

1000

2000

3000

4000 buffer size = 3600 packets

Pa
ck

et
s

STPI Instantaneous Queue Length

100 105 110 115 120 125 130 135 140 145 150
0

1000

2000

3000

4000 buffer size = 3600 packets

Pa
ck

et
s

ARED Instantaneous Queue Length

100 105 110 115 120 125 130 135 140 145 150
0

1000

2000

3000

4000 buffer size = 3600 packets

Time(second)

Pa
ck

et
s

ARED Instantaneous Queue Length

300 305 310 315 320 325 330 335 340 345 350
0

1000

2000

3000

4000 buffer size = 3600 packets

Pa
ck

et
s

STPI Instantaneous Queue Length

300 305 310 315 320 325 330 335 340 345 350
0

1000

2000

3000

4000 buffer size = 3600 packets

Pa
ck

et
s

ARED Instantaneous Queue Length

300 305 310 315 320 325 330 335 340 345 350
0

1000

2000

3000

4000 buffer size = 3600 packets

Time(second)

Pa
ck

et
s

ARED Instantaneous Queue Length

Fig. 28. Simulation 4. Comparison of instantaneous queue lengths for STPI, STRED, fixed PI, and ARED. The left plot is in time interval
(100, 150) seconds where the number of flows is smallest (200 long-lived TCP flows). The right plot is in time interval (300,350) seconds where
the number of flows is highest (1000 long-lived TCP flows)

18

We do not consider a STRED because the lowest value of is 0.0013 render stable RED to be very sluggish as
shown in Figure 12. For all three AQMs (STPI, PI, ARED), we use the same parameters as in Simulation 1. The target
queue length is between and packets for ARED, and the target queue length for STPI and fixed PI are 800
packets. The size of TCP data packet is 1000 bytes. Similar to Simulation 3, we set the mean packet size to 500 bytes,
and we measured the queue length in bytes. Fixed PI is designed for N=200.
As in simulation 3, the link capacity estimated by STPI is quite accurate, and the traffic load is underestimated.

Figure 26 compares the accumulative throughput where STPI achieves the highest throughput at 500 seconds, approx-
imately 4.89% higher than that of ARED, and 11.35% percent higher than fixed PI. Figure 27 compares instantaneous
queue lengths. STPI regulates the queue length well, on the contrary, ARED and fixed PI oscillate, as shown in fig-
ure 28. Regardless of network condition change, STPI is able to regulate the queuing delay and with little jitter. These
oscillations affect queuing delay. The standard deviations of queuing delays for STPI, fixed PI and ARED are ms,
ms, and ms respctively. Similar to the previous simulations, STPI was able to regulate queuing delay with much

less variation than that of fixed PI and ARED, and achieved the highest throughput.

E. General Discussions on Simulations

From these simulations we see that the STAQM structure (especially STPI) provides robust performance in the face
of network parameter variations. STPI and STRED achieve the highest cumulative throughput; see Figure 15, Figure
23, and Figure 26 in comparison to ARED and fixed PI. Also, STPI regulates the queuing delay to the target delay
with the smallest jitter. It quickly adapts to large changes in link capacity and traffic load level, maintaining control
of queue length. This latter performance distinguishes STPI from ARED. In Simulation 2, ARED’s variation queue
length variation is much larger.
Another important point to note, is that use of STRED (as well as RED) is limited to the larger ratios N/C as shown in

Figure 12. For the N/C ranges corresponding to low sluggishness, STREDworks well by regulating the queue length in
the range of minimum and maximum queue length, as shown in Simulation 1 and Simulation 3. If we modify RED to
be a proportional controller (achieve this by removing it averaging filter completely), then STRED is applicable under
any network condition. But, there is a caveat. AQMs that do not employ an integrator, like RED and proportional,
have equilibrium queue lengths that scale with link capacity. Now, for RED and ARED, the tricky implication of this
is to insure this equilibrium falls within the user-specified range. Indeed, as shown in Figure 20, the suggested ARED
settings lead to an unstable queue. ARED forces the queue length to stabilize in a range that does not include its
equilibrium value! This leads to bad oscillations.
In summary, these ns simulations confirm robust performance of STAQM over a wide range of network parameters

and scenarios that included a rich traffic mix including Web and reverse long-lived TCP sessions.

V. CONCLUSIONS
The self-tuning structure proposed in this paper is straightforward to implement and is applicable to any AQM

scheme that can be parameterized in terms of link capacity and TCP load. When linked with a PI AQM, the resulting
STPI adaptive controller is, as far as ns simulations indicate, remarkably robust to variations in link capacity and TCP
load. This adaptability is crucial since in practice network conditions vary a lot, and can lead to unstable or sluggish
controllers with a static designs. STPI compares favorably with ARED in terms of throughput and queuing delay, and,
can deal with high-capacity links. Future research directions include more sophisticated stability analysis, expanded
parameter estimation, and application to larger and more realistic networks. We are also exploring a sampling based
estimator for the “effective” RTT of the flows at a congested link, enabling an even better performing self-tuning
controller.

REFERENCES
[1] S. Floyd and V. Jacobson, “Random Early Detection gateways for congestion avoidance,” IEEE/ACM Transaction on Networking, vol. 1,

no.4, August 1997

19

[2] S. Floyd and R. Gummadi and S. Shenker, “Adaptive RED: An Algorithm for Increasing the Robustness of RED,” Technical Report, to
appear, 2001.

[3] F. Kelly, “Mathematical Modeling of the Internet,” Mathematics Unlimited - 2001 and Beyond, 2000.
[4] S. H. Low, F. Paganini, and J.C. Doyle, “Internet Congestion Control,” IEEE Control Systems Magazine, Vol. 22, no. 1, pp. 28-43, 2002.
[5] W. Wu, Y. Ren, and X. Shan, “A Self-configuring PI Controller for Active Queue Management,” in Asia-Pacific Conference on Communi-

cations (APCC), Session T53, Tokyo, Japan, 2001.
[6] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Blue: A new Class of Active Queue Management Algorithms,” Tech. Rep., UM CSE-TR-

387-99, 1999.
[7] W. Feng, Dilip D. Kandlur, Debanjan Sahar, and Kang G. Shin, “A Self-Configuring RED Gateway,” in Proceedings of IEEE/INFOCOM,

1999
[8] Vishal Misra, Wei-Bo Gong, and Don Towsley, “Fluid-based Analysis of a Network of AQM Routers Supporting TCP flows with an

Application to RED,” in Proceedings of ACM/SIGCOMM, 2000.
[9] C.V. Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong, “On Designing Improved Controllers for AQM Routers Supporting TCP

Flows,” in Proceedings of IEEE/INFOCOM, April 2001.
[10] C.V. Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong, “A Control Theoretic Analysis of RED,” in Proceedings of IEEE/INFOCOM,

April 2001.
[11] C.V. Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong, “Analysis and Design of Controllers for AQM Routers Supporting TCP

Flows,” in IEEE TAC’s special issue on Systems and Control Methods for Communication Networks, Vol. 47, no. 6, 2002.
[12] S. Kunniyur and R. Srikant. “Analysis and Design of an Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management,” in

Proc. of ACM SIGCOMM 2001, August 2001.
[13] Yuan Gao, Guanghui He, and Jennifer Chao-Ju Hou. “On leveraging traffic predictability in active queue management,” in Proceedings of

IEEE/INFOCOM, June 2002.
[14] K.J. Astrom, B. Wittenmark, “Adaptive Control,” Addison-Welsley. Reading, Massachusetts, 1995.
[15] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems. Addison-Wesley. Reading, Massachusetts,

1995.

APPENDIX

A. Linearization of Self-Tuning AQMs (STRED and STPI)
The following equations describe the self-tuned TCP/AQM dynamic.

STRED
STPI

STRED
STPI

(23)

State variables are: . We will show the linearizations of the above equations at the operating
points of state variables.
First, the operating point relationships are:

20

STRED
STPI

STRED
STPI

(24)

where .
Evaluating the partials of those functions at the operating points gives:

STRED

STPI

STRED
STPI

(25)

We will take the derivations of and .

(26)

(27)

Since , so , then,

We notice that and have similar forms, by using this property, we can subsitute into the expression of
to get the following equations:

STRED

STPI
(28)

B. Two Important Relationships in the Linearization of a Linear Time Invariant Self-Tuning AQM
We now prove the two important relationships in STAQM linearization; namely,

(29)

(30)

21

First, we consider (29). We know that

(31)
(32)

From (32), we write as a function of
(33)

Take the derivative of (33) gives

(34)

Evaluate (34) at the equilibrium point, then we have

(35)

Take the derivative of (31) gives

(36)

So from (35) and (36) we have the following relationship

(37)

This completes the proof of (29).
Now, consider with the objective of computing .
Since when , then 6

(38)

But,
(39)

This completes the proof of (30).

C. Choice of Time Constant for STRED
For a RED AQM, is given by

The choice of time constant is dependent on , aggressiveness factor and . We evaluate in a range
of (,) in Figure 29. As increases, the time constant for a stable system could be smaller. For a given , more
aggressive (larger) RED design needs larger time constant .

D. The Procedure for Designing STRED
The following steps should be followed: () we solve for the time constant of a stable RED by choosing a

stability phase margin (e.g., 85 degree gives), and choose , (e.g.,
); () . Thus, the exponential average weight factor can be decided;

() we choose to set ; () we will decide to solve for .

can change only on the space of points described by

22

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

0.5

1

1.5

2

2.5

βred

1/
Kn rc

R=150ms
R=100ms
R=50ms

N/C=0.002

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

βred

1/
Kn rc

R=150ms
R=100ms
R=50ms

N/C=0.006

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

0.1

0.2

0.3

0.4

0.5

βred

1/
Kn rc

R=150ms
R=100ms
R=50ms

N/C=0.010

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

0.1

0.2

0.3

0.4

βred

1/
Kn rc

R=150ms
R=100ms
R=50ms

N/C=0.014

Fig. 29. STRED. Stabilizing time constants are plotted against the RED aggressiveness factor for various round-trip times , and different
s. Stabilizing values lie above the curves.

In the following analysis, we will show that cannot be arbitrarily chosen if we want to design a
stable RED. Let and denote the loss rate and instantaneous queue length in the steady state, be the window
size in steady state. Based on TCP dynamic in the steady state (fluid model in [8]), we know that , and

, so, . In steady state, is equal to the average queue length of RED, so,
([11]). Thus, in order to maintain TCP steady state, we need to have , which means

. Given a target queuing delay, should be the targe queue length. Let

. If chosen by user , then set and . This means that the user specified queuing
delay cannot be guaranteed if we are using REDAQM and want a stable system. Otherwise if chosen by user ,
we choose . Then, if we want the target queue length to be in the middle of
and . Finally,
For example, and 5ms queuing delay means . Following the above

design rules, we have: . The actual queuing delay is
0.0072 seconds. This scenario is simulated in the first 100 seconds of Simulation 1.
Note, this design cannot guarantee the queuing delay sepcified by the user, because if the is greater than , in

order to maintain RED stability, we have to force to be and to be 0. This is the fundamental property of
RED. Note, even though the target queue length chosen by the user can fall in the range of and . RED
cannot guarantee to be the target queue length due to the nature of a proportional controller.

