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Abstract. Protocols for generic secure multi-party computation (MPC)
generally come in two forms: they either represent the function being
computed as a boolean circuit, or as an arithmetic circuit over a large
field. Either type of protocol can be used for any function, but the choice
of which protocol to use can have a significant impact on efficiency. The
magnitude of the effect, however, has never been quantified.

With this in mind, we implement the MPC protocol of Goldreich, Micali,
and Wigderson [13], which uses a boolean representation and is secure
against a semi-honest adversary corrupting any number of parties. We
then consider applications of secure MPC in on-line marketplaces, where
customers select resources advertised by providers and it is desired to
ensure privacy to the extent possible. Problems here are more natu-
rally formulated in terms of boolean circuits, and we study the perfor-
mance of our MPC implementation relative to existing ones that use an
arithmetic-circuit representation. Our protocol easily handles tens of cus-
tomers/providers and thousands of resources, and outperforms existing
implementations including FairplayMP [3], VIFF [11], and SEPIA [7].

1 Introduction

Protocols for secure multi-party computation allow a set of parties P,..., P,
to compute some function of their inputs in a distributed fashion, while reveal-
ing nothing to a coalition of corrupted parties about any honest party’s input
(or any group of honest parties’ inputs), beyond what is implied by the output.
Seminal results in cryptography dating to the 1980s [30,13,12] show that any
polynomial-time function can be computed securely in the presence of coalitions
of up to n — 1 corrupted parties. For many years, the perception was that these
were to be viewed as purely theoretical results with little practical relevance. This
changed (to some extent) with the advent of Fairplay [24], an implementation of
Yao’s protocol for secure two-party computation that demonstrated for the first
time that generic protocols were within the realm of feasibility. Since then, sev-
eral implementations of generic secure two-party and multi-party computation
protocols have been developed [3,22,5,11,26,7,15,23], and this is currently an
active area of research.



In this work our focus is on generic protocols for secure multi-party compu-
tation (MPC) in the semi-honest setting. (In the semi-honest setting, parties are
assumed to follow the protocol but coalitions of malicious parties may attempt
to learn additional information from the joint transcript of their execution of
the protocol. By “generic” we mean protocols that can be used to securely com-
pute arbitrary functions.) There are, broadly speaking, two approaches taken by
protocols for secure MPC: they either represent the function being computed
as a boolean circuit, or as an arithmetic circuit over a (cryptographically) large
field! F. Although any function f can be computed using either type of protocol,
the choice of representation affects the size of the circuit implementing f, and
hence the overall efficiency of a secure protocol for computing f. The magnitude
of the effect, however, has never been measured experimentally.

Most existing implementations of secure MPC rely on an arithmetic-circuit
representation, with ShareMind [4], VIFF [11], and SEPIA [7] serving as promi-
nent examples. We are aware of only one existing implementation of secure MPC
(namely, FairplayMP [3]) using boolean circuits. As we will see, for certain prob-
lems a boolean-circuit representation is more natural, and so it is important to
have protocols of both types available. Indeed, the motivation for our work came
from trying to apply secure MPC to privacy-preserving computation in on-line
marketplaces, where customers select resources advertised by providers and it
is desired to ensure privacy to the extent possible. (See the following section
for details.) In doing so, we found that existing implementations of secure MPC
were unsuitable or too inefficient for our purposes. Moreover, all the MPC imple-
mentations mentioned above assume an honest majority, even though resilience
against an arbitrary number of corruptions is known to be attainable.

1.1 Owur Contributions

We implemented the classical MPC protocol of Goldreich, Micali, and Wigder-
son [13] (the GMW protocol), which uses a boolean-circuit representation for
the function being computed and is secure against a semi-honest adversary con-
trolling any number of corrupted parties. In our implementation, described in
Section 2, we employ several optimizations to improve efficiency. Our code is
publicly available? and we expect that, as with other systems, it will be useful
in future work on privacy-preserving distributed computation.

With our system in place, any privacy-preserving multi-party computation
can be solved, in principle, by defining an appropriate circuit for the task at
hand. We designed circuits addressing three different (but related) problems in
the context of on-line marketplaces where, generally speaking, providers advertise
resources to be selected and subsequently utilized by customers, and the purpose
of the marketplace is to match customers with providers in a way that optimizes
some value under a certain set of constraints. We look at the following examples:

1 Of course, a boolean circuit can be viewed as a circuit over the field F = GF(2). The
distinction is that protocols using arithmetic circuits require 1/|F| to be negligible
in order for security and correctness to hold.

2 http://www.ee.columbia.edu/ kwhwang/projects/gmw.html



— P2P content-distribution services [9, 18] provide a marketplace where
content is the resource, and providers advertise availability of content at
peers. Here, a customer may want to determine which peer hosting the de-
sired content is the best choice (e.g., closest, or having minimal delay) for
retrieving that content.

— In cloud computing providers are cloud platforms (e.g., Amazon EC2,
Microsoft Azure, etc.), resources are the services (e.g., storage, bandwidth,
or processing) offered by each provider, and customers want to find the
provider(s) offering services matching their needs at the cheapest price [1, 8,
29,27, 28,20].

— A mobile social network can be viewed as a marketplace where users
are both customers and resources, and the provider helps users locate and
connect to other users who share similar interests.

Formal definitions of the problems in each of the above settings are given in
Section 3, and we describe optimized circuits solving each of them in the full
version of this paper [10]. For these problems, we find that it significantly helps
to be able to work with boolean circuits rather than arithmetic circuits.

In Section 4 we evaluate the performance of our MPC protocol as applied
to one of the above problems. (Since they have similar circuits, the other two
problems should display similar results.) Our results shows that our protocol can
be used to efficiently and securely implement a distributed marketplace with tens
of providers/customers and thousands of resources over a wide-area network. Our
implementation outperforms systems such as VIFF [11] and SEPIA [7], in part
because we use boolean circuits rather than arithmetic circuits as those systems
do.? Another advantage of our protocol is that it provides security against any
number of corruptions, whereas the cited implementations [3,4, 11, 7] all require
an honest majority.

1.2 Other Related Work

There are several existing implementations of secure two-party computation [24,
22,26,14,15,23]. These are all specific to the two-party setting and do not yield
protocols for three or more parties. Interestingly, and in contrast to other multi-
party implementations [3, 11, 7] that only handle three or more parties, the GMW
protocol we implement can handle any number of parties n > 2. For the two-
party case, however, we expect our implementation to be roughly a factor of two
slower than the best available system [15].

Other implementations of secure multi-party computation, besides those dis-
cussed above, include [6,4,17]. The code for SIMAP [6] is not publicly available,
and anyway SIMAP appears to be superseded by VIFF. Sharemind [4] handles
only the three-party setting, assuming at most one semi-honest corruption. The
work of Jakobsen et al. [17] achieves resilience against an arbitrary number of

3 FairplayMP [3] also uses boolean circuits, but did not support multiple input values
per party and crashed on the input sizes used. See Section 4 for further discussion. We
do not compare to ShareMind since that system only supports 3-party computation.



malicious corruptions. Their implementation is based on arithmetic circuits and
has worse performance than VIFF (though with better resilience).

2 MPC Implementation

We provide an overview of the GMW protocol and details of our implementation.
The GMW protocol provides security against a semi-honest adversary corrupt-
ing any number of parties. (We refer to [12] for formal definitions of security.)
Assuming semi-honest behavior is reasonable in settings where the codebase is
difficult to change without detection, where software attestation can be used to
convince other parties that correct software is being run, or where parties are
trusted but must ensure secrecy of data for policy reasons or because of concerns
about future break-ins.

2.1 Overview of the GMW Protocol

1-out-of-4 oblivious transfer. Oblivious transfer (OT) is a key building block

of the GMW protocol. A 1-out-of-4 OT protocol is a two-party protocol in which

there is a sender holding values (xg, z1, 22, x3) and a receiver holding an index

i € {0,...,3}; the receiver learns x;, but neither the sender nor the receiver

learn anything else; i.e., the receiver learns nothing about any other values held

by the sender, and the sender learns nothing about the receiver’s index.
Details of our OT implementation are given in Section 2.2.

The GMW protocol. The GMW protocol assumes the function f to be com-
puted is represented as a boolean circuit consisting of XOR and AND gates or,
equivalently, gates for addition and multiplication modulo 2. Let n denote the
number of parties. In the GMW protocol the parties maintain random n-out-of-n
shares (sy1,. - ., Swn) of the value s,, on each wire w in the circuit; that is, party
P; holds share s,,; and all shares are random subject to s,, = @l Swi- Setting up
such shares on the input wires is easy: party P; with input s,, on wire w chooses

random s,,; for j # 7, sends s,,; to P;, and locally sets s,; = 5,@ (@#i swj).
Shares on internal wires of the circuit are then computed inductively in the
following way:

XOR gates. Say w is the output wire of an XOR gate with input wires v and v,
and the parties have shares (Sy1,...,Sun) and (Sy1,...,Sun) Of Sy and s, re-
spectively. Then each party P; locally computes S.; = Su; @ Sui, and one can
observe that (Sy1,...,Swn) is a valid sharing of s, = s, @ sy.

AND gates (cf. [12]). Say w is the output wire of an AND gate with input wires u
and v, and the parties have shares ($y1, ..., Sun) and (Sy1, .- ., Syn) Of s, and s,
respectively. Note that

n n n
Sw = Sy * Sy = (Z 5ui> ' <Z Sm’) = Zsuisvi + Z(Suisvj + Sujsvi)-
=1

=1 =1 1<j



Each party P; can compute Sy;S,; locally. As for the remaining term, each pair

of parties P;, P; computes a random additive share of sy;8,; + Su;Svyi in the
{i.3}

following way. P; chooses a random bit ¢; ", and computes four values

C;{m}’ C;{z,]} ® suj, C;{z,]} ® suj, C§Z,]} B Suj B Su;

corresponding to the four possible values of P;’s shares sy, Sy;. Party P; then
acts as a receiver in 1-out-of-4 OT, with index determined by the actual values
of its shares sy;, 54, to obtain the appropriate value from P; that we denote by

c;-{i’j}. Note that c;-{i’j} —l—cj{i’j} = (SwiSvj+5ujSvi). Finally, each party P; computes

_ E : {i.5}
Swi = SuiSvi T ¢, wo
J#i

It can be verified that (sy1,. .., Swn) I8 & (random) sharing of s, = s, - S,.

Evaluation of XOR gates is essentially free, whereas evaluating AND gates
requires (g) invocations of 1-out-of-4 oblivious transfer.

Once a sharing (Su1, ..., Swn) of an output wire w is obtained, the value s,
can be reconstructed by having each party privately send its share to all other
parties. It is also possible for only some specific party to learn a given output
value by sending shares to that party only. We note that this is the only step in
the protocol where private channels are needed, and then only if more than one
party is to learn a given output value.

2.2 Oblivious-Transfer Protocols

As noted in the previous section, oblivious transfer is a key building block of the
GMW protocol; it is also the most computationally expensive part of the proto-
col, since it is the only part of the protocol that relies on public-key techniques.
As described above, the GMW protocol requires one invocation of 1-out-of-4 OT
per pair of parties each time an evaluation of an AND gate is performed, and so
m executions of OT (per pair of parties) to evaluate a circuit containing m AND
gates. We can improve the overall efficiency, however, using two techniques:

— Using OT pre-processing [2], each pair of parties can perform m oblivious
transfers on random inputs at the outset of the protocol, and then (very
efficiently) use the pre-computed values thus obtained to achieve the func-
tionality of oblivious transfer on their actual inputs when evaluating an AND
gate. Thus, all the oblivious transfers that will be needed throughout the en-
tire protocol can be run in parallel at the beginning of the protocol.

— Using OT extension [16,21], it is possible to achieve the functionality of m
invocations of 1-out-of-4 OT at essentially the cost of k invocations of 1-out-
of-4 OT of m-bit strings, where k is a statistical security parameter. (More
precisely, the marginal cost for each additional OT is just a small number of
hash computations.) Security here is based on the assumption that the hash
function is correlation robust [16].



k parallel invocations of 1-out-of-4 OT
Let g, G, and ¢ be fixed, where G is a cyclic group of prime order ¢, and g is
a generator of G. Let H : {0,1}"—{0,1}™ be a hash function.
INPUTS. S holds {(z, 27,23, 23)}jepy with 7 € {0,1}™. R holds (r1,...,7%)
where r; € {0,...,3}.
THE PROTOCOL.
1. S chooses a < Z4 and computes co = ¢g“, and also chooses c1, ¢2,c3 + G.
It sends co,...,c3 to R.
For j € [k] the parties do:
2. R chooses f; < Zq. If r; = 0 then it sets d; = g%; else, it sets d; =
Cr; /g% . Finally, R sends d; to S.
3. S computes ep = d§ and e; = (ci/d;)* for i € {1,2,3}. Then S sends
T = H(ei,j,1)®x) to R fori € {0,...,3}.

4. R computes ng = e;;, and then outputs :cij = :Tcij @H (er;,J,75)-

Fig. 1. The Naor-Pinkas OT protocol.

Combining these optimizations, each pair of parties needs only run k (parallel)
invocations of some “base” OT protocol (for m-bit strings) at the outset. These
can be converted to m > k OT executions (on bits) using OT extension; these
m “pre-processed” OTs can then be used, as needed, during the rest of the
protocol. It remains only to specify the “base” 1-out-of-4 OT protocol we use.
We take as our base OT protocol the one by Naor and Pinkas [25], secure under
the decisional Diffie-Hellman (DDH) assumption in the random-oracle model.
Their protocol (actually, a version implementing k parallel executions of their
protocol) is described in Figure 1 for completeness.

2.3 Implementation Details

We implemented the GMW protocol in C++. Our implementation takes as input
a file containing a description of a boolean circuit for the function f of interest.
(All parties are assumed to be running with identical copies of the circuit.)
See Section 2.4 for an example. Unlike FairplayMP [3], we do not provide a
mechanism for compiling a high-level language into a boolean circuit.

Parallelism. Nowadays, it is common for computers to have multiple cores.
We use multi-threaded programming so as to take advantage of the available
parallelism. In particular, each OT execution is performed by a separate thread.
In the OT extension protocol, we optimize execution time by having parties send
values as soon as they are computed, rather than waiting for the other party to
finish sending. (This does not affect security, since this occurs at fixed times that
are independent of the parties’ inputs and we assume semi-honest behavior.)

Random oracle. We use SHA-1 to implement a random oracle H with arbitrary
output length by defining

H(M) = SHA-1(seed, 0)||SHA-1(seed, 1)|| - - -,



where seed = SHA-1(M). Note that seed need only be computed once. We use
the SHA-1 implementation of PolarSSL (http://polarssl.org).

Oblivious transfer. For our base OT protocol we use the Naor-Pinkas protocol
(see Figure 1) with group G C Z, of prime order ¢, and p = 2¢ + 1 with p
prime. In our default implementation, p is a 1024-bit integer. We modified the
modular-arithmetic module of NTL (http://www.shoup.net/ntl) to be thread-
safe, and used it to implement the base OT protocol. Recall we use OT extension
to improve efficiency. By default, we use statistical security parameter k& = 80
in our implementation. Messages are transmitted in chunks of reasonable size to
obtain a balance between the idle time and the number of socket calls.

2.4 Circuit Example n 2
4752

Our implementation of the GMW 7| : 2 § 42;
protocol takes as input (at each party @ 0010
running the protocol) three files that 5 6 N (1) I !
contain configuration information, the vii
input of the party in question, and a o} D g (1) 8 :i :1 8
description of a boolean circuit for the 5 4 0 3 g20-1-115
function f of interest. (All parties are g Z 8 :1 :i i 2
assumed to be running with identical — p, P 0 p 8512417
copies of the circuit.) In Figure 2 we g ? 2 g 2 (1, !

show an example circuit along with its
description using our representation. Fig. 2. Circuit Example
The circuit description uses the following format:

The first line of the file has the form n X, where X denotes the number of
parties participating in the protocol.

The second line of the file contains a d followed by the total number of wires
in the circuit, the number w of the first non-input wire (i.e., wires 0 to w —1
are input wires), and the number of XOR gates in the circuit.

For each party, there is a line containing an i followed by the party’s id, the
number of the first input wire belonging to that party, and the number of
the last input wire belonging to that party. (We assume wires are numbered
such that every party provides inputs on a consecutive set of wires.)

For each party, there is a line in the file containing an o followed by the
party’s id, the number of the first output wire belonging to that party, and
the number of the last output wire belonging to that party. (We assume
wires are numbered such that every party receives outputs on a consecutive
set of wires.) If a party receives no output, the number of the last output
wire for that party is set to 0.

For each party, there is a line in the file containing a v followed by the party’s
id and then an integer denoting the number of bits that should be used to
represent each item in that party’s input file. (E.g., if the input file of party 1
contains a ‘4’ then this value will be represented as the 3-bit integer ‘100’
if this line of the file is ‘v 1 3’, but will be represented as the 5-bit integer



‘00100’ if this line of the file is ‘v 1 5’.) Each bit in the ultimate representation
of the integer will correspond to one of the input wires of the party.

— The remaining lines of the file describe the gates in the circuit. For each gate,
we list (a) the number of the output wire of this gate (which also serves as
the gate id); (b) the gate type, which can be either input (0), AND (1), or
XOR (2); (c) the numbers of the left and right input wires (set to —1 if these
are input gates); and (d) the out-degree of the gate. If the out-degree is non-
zero, then the ids of the gates that receive the output of the current gate are
listed. Gate ids 0 and 1 are reserved for the constants 0 and 1, respectively.

3 Problem Definitions

We introduce three problems in the context of on-line marketplaces where, gen-
erally speaking, providers advertise resources to be selected and subsequently
utilized by customers, and the function of the marketplace is to match customers
with providers so as to optimize some value under a certain set of constraints.
As highlighted in the Introduction, we look at examples in the settings of P2P
content distribution, cloud computing, and mobile social networks.

As a toy example, consider a customer who wishes to buy a car (resource)
from one of several dealers (providers). The customer is interested in several
different models of cars (but not all models); the different providers offer a variety
of models (not all of which interest the customer); and each provider prices each
model independently. The customer wishes to find an acceptable car at the lowest
cost, without revealing the set of models he or she is interested in; the providers
do not want to reveal their prices. Secure MPC allows the customer to learn the
identity of a provider selling an acceptable model at the lowest price, with the
customer learning no other prices (or which models are sold by each provider),
and with the providers learning only of the customer’s willingness to buy some
particular model at the given price.

More formally, let R be some set of resources. The input of each provider P;
is a collection of values for the resources in some subset R; C R; i.e., P;’s input
is of the form {v!},cpg,. (If desired, each P; could just use some default value
vl =1 for r ¢ R;; in that case, we may simply write P;’s input as {v%},cr.) We
look at marketplaces where the computation can be broken into the following
two steps, which will be executed as a single secure computation (so only the
final output is revealed, not the intermediate results after the first step):

1. For each provider P; and resource r € R;, compute a scoring function sc’. =
Score(i, r, v, x,,), where z,, denotes the private input of the customer. (In
the running toy example, each model is scored by its offered price if the
model is of interest to the customer, and by co otherwise.)

2. Next, apply a best-match function B to the set of sci. values to obtain a result
that is given to the customer. (In the toy example, B outputs (i, r,sck) with

minimum sc..)



We allow the scoring function to be arbitrary. For the best-match func-
tion we consider two possibilities: either B returns a single (4,7) maximiz-
ing /minimizing sc’. (with ties broken arbitrarily, and with or without including
sc. as part of the output), or B returns the set of all (4,7) for which the score sc’.
is greater/lower than some threshold. In the following subsections we instantiate
this general framework in several specific scenarios.

3.1 P2P Content-Distribution Services

In our P2P content-distribution setting, content is replicated across various P2P
servers or source peers (such as seeders) whose pairwise communications are
measured (and perhaps even controlled) by network providers such as ISPs.
Before a peer starts downloading content, he or she would like to find out the best
source peer (with respect to network bandwidth, end-to-end delays, throughput,
and so on) from which to receive the content.

Here the providers are the ISPs and the resources are the source peers them-
selves (which for simplicity we identify with their indices). Let R be the set
of source peers, with |R| = k. We assume that the ISP to which each source
peer is bound is public knowledge, so ISP P; is associated with some set of
peers R;. The input of each ISP /provider P; is the measured bandwidth v? for
each peer/resource r € R;. The customer knows which peers have a replica of
the item it wishes to retrieve, and holds as secret input a vector x,, = (by, ..., bg)
where b, = 1 iff peer/resource r has the desired content, and b, = 0 otherwise.
The objective is for the customer to find the best (e.g., highest-bandwidth) peer
among those holding the desired content, without revealing which source peers
have the content; the ISPs do not want to reveal the bandwidth of their peers.

Here the scoring function can be defined as:

Score (i,r,v}., (b1,...,by)) = {O otherwise °

and the best-match function B returns i,r maximizing sci. (In fact, it suffices
to return r here since the provider to which 7 is bound is irrelevant and anyway
known.)

3.2 Cloud Computing

In this setting, providers offer various service packages and the customer wants
to select the service package meeting its needs at the lowest available price. The
service packages offered by the providers are the resources here, and each such
resource - has a value v, = (g,, p,) that is composed of its service quality ¢, and
price p,.. (For simplicity, we treat service quality as a one-dimensional quantity,
e.g., CPU cycles. Our treatment can easily be generalized.) The customer holds
input (g, p), where g represents a minimum acceptable service quality and p is a
maximum budget. Two scenarios can be considered: either the customer wants
to find the cheapest resource r with ¢. > ¢, or the highest-quality resource r
with p,. < p; each of these cases is treated below. In either case, the customer



never reveals its budget or its service requirements to any of the providers, nor
do the providers reveal to the customer (or to each other) what service packages
they are offering.

Lowest-price selection. In this formulation, the customer seeks the package
that satisfies its requirements at the lowest price. Here we may define the scoring
function as:

p if ¢; > g and p, <p

oo otherwise '

Score ((i, 7,47, p;), (¢,;p)) = {

The best-match function B returns an 4, r minimizing sc’..

Highest-quality selection. Here the customer seeks the package that meets its
budget while giving the highest quality service. Now we may define the scoring
function as:

i _[a ifg>qandp, <p
Score ((ZaTa qrapr)a (qvp)) - {—OO otherwise

3

and the best-match function returns an i, maximizing sct.

3.3 Mobile Social Networks

Here we consider a scenario where a user in a social network wants to identify
nearby users who share common interests. Now the resources and providers are
just the set R of all users (and the customer is one of the users as well), and the
value of each “resource” (i.e., user) is that user’s location and set of interests.

We assume that each user knows only about its own location and interests.
Thus for each r € R we define v = (¢,, H,), where ¢, is the location of user r,
and H, is the set of that user’s interests (perhaps represented as a bit-vector).
The customer’s input consists of (¢, H, §) where £ is the location of the customer,
H is the set of interests she wants a potential match to share, and ¢ is the distance
radius in which she wants to search. We consider a few alternatives for what the
customer wants as output.

Find all close matches. In this formulation, the customer wants to find all
users within distance d who share interests H. We may then define
1if HC H.and |(, — €| <§
0 otherwise

)

Score ((r, ¢y, Hy), (¢, H,6)) = {

and the best-match function returns the set of all r such that sc] = 1.
Find closest match. Here the customer wants to find the closet user who
matches her interests. Now, define

|, — ¢ if HC H, and |[¢, — 4| < §
00 otherwise

Score ((r, ¢y, Hy,), (¢, H,6)) = {

The best-match function returns an r minimizing sc;.
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Fig. 3. Running times in a LAN.

Find best resource. Now the customer would like to obtain the resource within
radius ¢ that shares as many interests as possible. We thus define

H.NH|if |4, — ¢ <6
—00 otherwise

)

Score ((¢r, H,), (¢, H,6)) = {

and the best-match function returns » maximizing sc;..

3.4 Boolean-Circuit Constructions

We construct appropriate boolean circuits solving each of the problems described
above. Since XOR gates are essentially “free” to evaluate in the GMW protocol,
whereas evaluating each AND gate requires cryptographic computations, we
aimed to minimize the number of AND gates in the circuits. Due to lack of
space, descriptions of our circuits are given in the full version [10].

4 Performance Evaluation

We evaluate the performance of our implementation in both a local-
area network (LAN) and a wide-area network (using PlanetLab, see
http://www.planet-lab.org/), and compare it to existing systems for secure
MPC. In our experiments we consider only the P2P content-distribution prob-
lem formulated in Section 3.1 with 16-bit integer representation (i.e., £ = 16),
but since circuits for the other two problems are similar (in terms of both circuit
depth and the number of AND gates), we expect the results to be similar for those
problems as well. We let GMW refer to our implemented protocol for this problem,
obtained by applying our GMW implementation to the circuit (described in the
full version [10]). All reported measurements are based on averages over 10 runs
of the experiment in question.

4.1 Local-Area Network

Our first set of experiments is performed in a cluster consisting of multiple Linux
host nodes, each containing two Intel Xeon 2.80GHz CPUs and 4GB RAM. We
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Fig. 4. Total bytes transferred among all nodes.

use one host per participant in the protocol, so an experiment with n providers
involves an (n + 1)-party multi-party computation on n + 1 host machines. We
set up our experiments so the customer chooses half the resources offered by
each provider to be “of interest”. Note that the client’s inputs do not affect
performance, since the same underlying circuit is evaluated regardless of the
customer’s input; indeed, if performance were affected by the customer’s input
then the protocol could not be secure.

We ran experiments using from 3 to 13 host nodes, and 100 to 5,000 resources.
(This represents the aggregate offered by all providers.) For this problem, the
number of AND gates being evaluated depends on the number of resources only
(it is independent of the number of nodes), and ranges from about 5,500 AND
gates (for 100 resources) to roughly 305,000 AND gates (for 5,000 resources).
The running time is plotted in Figure 3(a), and the total bandwidth (between
all parties) is shown in Figure 4(a).

For a fixed number of resources, the bandwidth grows quadratically with the
number of nodes; this is because each pair of parties communicates for every
AND gate being evaluated. The running time scales linearly with the number of
nodes since all nodes work in parallel, and the work per node increases in direct
proportion to the number of other nodes with which it communicates. Although
difficult to see from the plots, for a fixed number of parties the running time
and bandwidth increase roughly linearly in the number of resources k; this is
because the size of the circuit grows roughly linearly in k (actually, it grows as
klog k but the logarithmic term is difficult to detect).

We also measured the marginal time to evaluate a single AND gate (i.e.,
the time required to evaluate one additional AND gate, once the number of
AND gates is large). We use marginal time because there is a fixed cost for the
initial oblivious transfers performed by the parties, but then oblivious-transfer
extension is used to get additional OTs at much lower cost (see Section 2.2).
The marginal cost per AND gate ranged from 50 ps (for 3 parties) to 340 us
(for 13 parties).

Comparison to existing work. We applied other existing implementations of
secure MPC to the same problem. Unfortunately, despite contacting the authors
we were unable to get a working implementation using FairplayMP [3] since
we found that it did not support providing users with multiple inputs, and it



would crash (when parties were provided with a single input) on inputs more
than 16 bits long.* We were able to compare our protocol with implementations
in (the semi-honest version of) VIFF [11] and SEPIA [7]. We ran both VIFF
and SEPIA over insecure (i.e., non-SSL-protected) channels even though private
channels would be needed to ensure security against an eavesdropping adversary
for those protocols. (In contrast, for GMW a secure channel is not needed if only one
party learns the output; when multiple parties learn the output, only the final-
round messages need to be encrypted.) In SEPIA, parties provide their inputs
to “privacy peers” that run a secure-computation protocol on their behalf; when
we refer to “nodes” in SEPIA we mean the number of privacy peers.

In contrast to GMW, VIFF and SEPIA utilize arithmetic circuits where each
wire carries an element of a large field F (with log |F| = 64 in each case), and
gates perform addition or multiplication in IF. (Similar to the GMW case, addition is
essentially “for free” whereas multiplication is “expensive”.) The boolean circuit
we used for GMW is easily adapted for VIFF/SEPIA as follows (see the full version
of this paper [10] for further details):

— Boolean values can be represented as elements of F. Boolean operations
can be performed as AND(a,b) = ab and XOR(a,b) = a + b — 2ab (where
computations are in F), so long as a,b € {0,1}. (Note, however, that both
operations involve a multiplication in F.)

— (-bit integers can be represented as elements of I, since |F| > 2¢ for the value
of ¢ we use. Because of this, addition and subtraction gates are now trivial to
implement since they correspond exactly to addition and subtraction over F.

— VIFF and SEPIA already provide circuits for performing comparisons.

In Figures 3(b) and 3(c) (resp., Figures 4(b) and 4(c)) we compare GMW’s
running time (resp., bandwidth utilization) to that of VIFF and SEPTA. Since
the running times of VIFF and SEPIA are comparatively long, we only ran
experiments with up to 400 resources and up to 9 nodes. In those ranges of the
parameters, GMW completes in under 20 seconds while VIFF and SEPIA take
an order of magnitude longer; the relative performance of GMW becomes even
better as the number of resources is increased. The results demonstrate that
our implementation scales significantly better, and is more efficient, than prior
implementations. Recall also that GMW withstands a larger number of corruptions
than either VIFF or SEPIA.

4.2 Wide-Area Network

We explored the effects of communication latency by running our implemen-
tation of the GME protocol in a wide-area network (WAN) using PlanetLab
(http://www.planet-lab.org/). In the PlanetLab settings we explored, the

4 We did compare the performance of GMW to FairplayMP for 5-party computation of
a “toy” circuit consisting of a depth-d full binary tree of AND gates. With d = 12,
GMW ran about 20 times faster than FairplayMP. FairplayMP crashes on circuits with
d > 12, whereas GMW ran on circuits up to d = 23 (about 8 million gates).
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Fig. 5. Running times in PlanetLab.

maximum round trip time (RTT) was more than 200 ms. The test nodes in
PlanetLab have various hardware specs; the least powerful node had two Intel
Core2Duo 2.33GHz CPUs and 2.0GB memory, while the most powerful node
had four Intel Xeon 2.83GHz CPUs and 3.7GB memory.

Figure 5 shows that GMW’s running time increases by 17-64% relative to the
time required on a LAN. (The bandwidth usage is identical whether running
over a LAN or a WAN.) We also observed more variability in the running time
over PlanetLab than in a LAN, which is not surprising. As we increase the
number of participating nodes, the running time increases linearly (as in the
LAN) even though nodes’ configurations are not homogeneous; this suggests
that performance is mostly affected by communication latency. GMW maintains
stable performance regardless of network conditions and heterogeneous hard-
ware configurations, consistently outperforming VIFF and SEPIA as shown in
Figures 5(b) and 5(c).

5 Conclusions

We have shown an implementation of the GMW protocol for secure multi-party
computation. OQur implementation is distinguished from existing implementa-
tions of multi-party computation in two important ways: (1) Our implementa-
tion supports boolean circuits, rather than arithmetic circuits as in [11,7], and
(2) it provides security against a semi-honest adversary corrupting any number
of parties, rather than requiring an honest majority as in [3, 11, 7]. We have also
shown that our implementation outperforms previous work [11,7], at least for
certain classes of problems that are more amenable to being solved using boolean
circuits rather than arithmetic circuits. Finally, our work shows the feasibility
of applying generic secure multi-party computation to realistic networking prob-
lems where privacy is required.
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