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Abstract—Conventional peer-to-peer (P2P) networks do not
provide service differentiation and incentive for users. Therefore,
users can easily obtain information without themselves con-
tributing any information or service to a P2P community. This
leads to the well known free-riding problem. Consequently, most
of the information requests are directed towards a small number
of P2P nodes which are willing to share information or provide
service, causing the “tragedy of the commons.” The aim of this
paper is to provide service differentiation in a P2P network based
on the amount of services each node has provided to the network
community. Since the differentiation is based on nodes’ prior
contributions, the nodes are encouraged to share information/ser-
vices with each other. We first introduce a resource distribution
mechanism for all the information sharing nodes. The mechanism
is distributed in nature, has linear time complexity, and guar-
antees Pareto-optimal resource allocation. Second, we model the
whole resource request/distribution process as a competition game
between the competing nodes. We show that this game has a Nash
equilibrium. To realize the game, we propose a protocol in which
the competing nodes can interact with the information providing
node to reach Nash equilibrium efficiently and dynamically. We
also present a generalized incentive mechanism for nodes having
heterogeneous utility functions. Convergence analysis of the com-
petition game is carried out. Examples are used to illustrate that
the incentive protocol provides service differentiation and can
induce productive resource sharing by rational network nodes.
Lastly, the incentive protocol is adaptive to node arrival and
departure events, and to different forms of network congestion.

Index Terms—Contribution-based service differentiation, game
theory, incentive protocol, peer-to-peer network.

I. INTRODUCTION

THERE HAS BEEN a lot of recent interest in peer-to-peer
(P2P) networks. As evidenced by traffic measurements of

ISPs, a large percentage of existing network traffic is due to
P2P applications [4], [10]. These applications aim to exploit
the cooperative paradigm of information exchange to greatly
increase the accessibility of information to a large population
of network users. Unlike traditional client–server networking,
the P2P paradigm allows individual users (or nodes) to play
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the roles of both server and client at the same time. There-
fore, nodes in a P2P network can assist each other in file
searching, file lookup [14], [15], [18], [20] and file transfer in
an anonymous manner [3]. For file searching, P2P networks
have evolved from a centralized file/directory lookup approach
(e.g., Napster) to a distributed object query approach (e.g.,
Gnutella). Whereas distributed object queries can be effected
by some form of controlled flooding, the new generation of P2P
networks (e.g., Chord and CAN) use the method of consistent
hashing to improve the efficiency of file lookup.

While much current research focuses on improving the
performance of file searching/lookup in P2P networks, some
fundamental and challenging issues remain unanswered about
the basic cooperative paradigm of information exchange. Free
riding and the tragedy of the commons are two such problems.
It is reported in [1] that nearly 70% of P2P users do not share
any file in a P2P community. Instead, these users simply free
ride on other users who share information. Since there are few
users who are willing to share information or provide services
to others, nearly 50% of all file search responses come from
the top 1% of information sharing nodes. Therefore, nodes that
share information and resources are prone to congestion, which
leads to the tragedy of the commons problem [9]. In short,
existing P2P networks do not provide service differentiation;
hence, there is no incentive for users to share information or
provide file transfer services.

More recently, there are some preliminary mechanisms im-
plemented in P2P software that encourage people to share in-
formation. For example, Kazaa [10] considers the “participation
level” of each peer. The participation level is calculated as the
ratio between a peer’s recent uploads and downloads. However,
this ratio is not accumulated over time, and provides differenti-
ation for query requests only. Another P2P system, eMule [4],
establishes a credit system in which credits are exchanged be-
tween any two specific nodes. In allocating its upload resources
to competing requesting peers, an information providing node
gives smaller queueing delays for the peers which have previ-
ously provided more uploads to the information providing node.
No formal analysis of their mechanisms, including fairness for
competing nodes, has been given for Kazaa and eMule.

In this paper, we propose a protocol to provide service
differentiation based on the contribution levels of individual
nodes. Our protocol targets the file transfer process, because
the amount of data transferred per unit time is much higher
than that of object lookup/query. In this context, a node which
offers popular files for sharing and provides more service (via
file upload) to the P2P community will achieve a higher contri-
bution level. As a result, when such a node later asks for a file
transfer, it will be granted a higher utility than competing nodes
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having lower contribution levels. We address the challenges of
incorporating such incentive-compatible resource distribution
in the file transfer process such that we can: 1) encourage
nodes to share information with or provide services for their
peers; 2) achieve fair service differentiation between network
users; and 3) maximize the social welfare [16] or the aggregate
perceived utility of the users. It is important to point out that
our incentive protocol can be adopted by various P2P systems
which use either the distributed query (e.g., Gnutella) or the
consistent hashing approach (e.g., Chord and CAN).

The proposed incentive-compatible resource distribution
mechanism has the following properties:

1. Fairness: Nodes which have contributed more to the P2P
network should gain more resources or achieve higher utility in
the resource sharing.

2. Avoidance of resource wastage: The mechanism will not
assign more resource to a node than it can consume. In case
there is congestion in the communication path, the mechanism
can adapt to the congestion level and re-distribute the resources
accordingly.

3. Adaptability and Scalability: The mechanism can adapt
to dynamic events such as node join/leave. Since the mechanism
runs at each participating node, its performance is scalable as the
size of the P2P network increases.

4. Maximization of individual and social utility: Each node
is motivated to follow the incentive protocol in order to maxi-
mize its own utility in the game. In addition, the resource distri-
bution maximizes the aggregate perceived utility from the point
of view of an information sharing node.

As we will show, the proposed mechanism makes different
requesting users bid for resources, thereby creating a dynamic
competitive game. In order to assure that every node in the P2P
network will follow the mechanism honestly, the dynamic game
created should be strategic-proof and -collusion-proof. The
first property implies that following the proposed mechanism
is the best strategy for each user in the network. The second
property implies that users cannot gain extra resources by coop-
eratively deceiving the system.

A. Related Work

Let us briefly present some related work. In [7], the authors
address one possible mechanism for centralized P2P systems
like Napster. Our work, on the other hand, can be applied to
both centralized and distributed P2P networks. Zhong et al. [21]
discuss shortcomings of micro-payment and reputation systems.
They propose a cheat-proof, credit-based mechanism for mobile
ad hoc networks. However, they do not address how to provide
incentive and service differentiation in the P2P setting. In [6],
the authors discuss the economic behavior of P2P storage net-
works. Our work, on the other hand, focuses on file-transfer and
bandwidth allocation in a P2P network; we use the approach of
mechanism design to create a desirable competition game for the
network. In [11], the authors propose a budget-balance virtual
money exchange mechanism to bring incentive into P2P net-
works. Our work uses a game-theoretic approach, and provides
a stronger solution concept of incentive compatibility. Lastly,
algorithmic mechanism design [13], [17] provides a theoretical
framework for designing incentive mechanisms.

Fig. 1. Illustrating two competing nodes and a source node.

B. Paper Organization

The rest of this paper is organized as follows. In Section II,
we give an overview of the interactions between an information
providing node and other nodes requesting the information. In
Section III, we present the resource distribution mechanism and
its properties. In Section IV, we model the resource distribution
as a dynamic game, and show how it can be applied in a P2P
network. In Section V, we present a generalized mechanism that
handles incentive for nodes with heterogeneous perceived utili-
ties. Convergence analysis of the dynamic game is presented in
Section VI. In Section VII, we present a performance evaluation
of the proposed mechanism and competition game. Section VIII
concludes.

II. INCENTIVE P2P SYSTEM OVERVIEW

Let us provide an overview of our incentive P2P system.
In particular, we illustrate the interactions between different
nodes during the file transfer process. In later sections, we will
formally present the development of the resource distribution
mechanism and its properties.

Each node in our incentive P2P network can play the roles of
a server and a client at the same time. During a file transfer, the
node which performs the service (i.e., uploading files to other
nodes) is called the source node, which is denoted by . Nodes
which request file download from are called the competing
nodes, which are denoted as , where is the
number of competing nodes. Each node in our incentive P2P
network has a contribution value, which indicates how much
service that node has provided to the whole P2P community.
Due to the lack of space, we will not discuss architecture issues
in realizing a scalable and secure contribution value reporting
system. Please refer to [8] for related discussions.

A scenario, in which two competing nodes and re-
quest file download service from the source node , is illus-
trated in Fig. 1. The source node has an upload bandwidth re-
source of (in units of bits/s). From time to time, these com-
peting nodes send messages and (in units of bits/s) to

, telling how much transfer bandwidth they want. Upon
receiving these messages, will use a resource distribution
mechanism (to be presented in Section III) to distribute its band-
width resource based on the values of , , and
the requesting nodes’ contribution values denoted by and

, respectively. As a result, delivers file data to and
with bandwidth and , respectively. However, it

is possible that there is network congestion along the communi-
cation path between to (or ). Therefore, packets may
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Fig. 2. Interaction between competing nodes and a source node.

be lost and the actual received bandwidths at nodes and
are and , respectively.

The message plays two important roles. First, it can be
regarded as a bandwidth bidding message from the perspective
of the competing node . Another usage of is that it is a
confirmation to the source node that has received a cer-
tain amount of service (measured in units of bits/s). Therefore,

can use this message as evidence for updating its contribu-
tion. In general, the message helps the source node to de-
termine the proper bandwidth assignment. If a competing node
is inactive or failed, the source node will assume that the com-
peting node cannot receive any data. Therefore, it will not send
any more packet to the competing node. The source node, on
the other hand, can adjust the bandwidth resource assignment
whenever it receives a bidding message. The justifications for
this adjustment are: 1) a newly arriving competing node may
request a new file download from ; 2) an existing competing
node finishes its file transfer service; and 3) because of net-
work congestion, a competing node replies with different bid-
ding message values during the file download session. To effi-
ciently utilize the bandwidth resource and to improve the
rate of contribution increase for , the source node needs to
adjust its bandwidth distribution among the competing nodes.
Lastly, Fig. 2 illustrates the interactions between the competing
nodes and the source node . At time , the competing node

requests the transfer of a large file , and sends a bidding
message to . After verifying the identity and contribu-
tion level of , uses the resource distribution mechanism to
determine the sending bandwidth , and delivers some data
packets of to based on this rate allocation. After receiving
these data packets, sends another bidding/receipt at
time . then determines a new resource allocation and sends
some additional data packets of file based on . Note that
in this round of the data delivery, some data packets are lost due
to network congestion. Therefore, sends a bidding/receipt

to at time , with . The source node
adjusts the resource allocation and delivers additional data

packets of file to at a lower rate. At time , a new com-
peting node requests a transfer of the file from , and
sends its bidding message . adjusts the resource allo-
cation based on the latest biddings of the two competing nodes

and .

III. RESOURCE DISTRIBUTION MECHANISM

In this section, we discuss how a source node, say , im-
plements a mechanism to distribute its bandwidth resource

(in Mb/s) among all its competing nodes . For ease
of presentation, we start with some simple mechanisms and dis-
cuss their shortcomings. Then we introduce more sophisticated
features so as to provide service differentiation and incentive.

1) Resource Bidding Mechanisms (RBM): The objective of
this mechanism is to avoid resource wastage that would occur
in a naive mechanism that gives each competing node an equal
resource share. Under RBM, every competing node is required
to send a bidding message periodically to . Let be the
bidding message from the competing node at time indi-
cating the maximum bandwidth (in units of bits/s) that can
receive at time . Given all the bidding messages from the com-
peting nodes, has knowledge of the upper bound bandwidth
assignments and will not assign any bandwidth higher than
to at time . Notice that it seems possible for some com-
peting nodes to ask for more bandwidth than they really need;
we will discuss the rational bidding values of competing nodes
in Section IV.

One important property of the RBM mechanism is that it pro-
vides max-min fairness [2]. Suppose is the
bandwidth allocation for all competing nodes within the fea-
sible domains for . Then a feasible
allocation is max-min fair if and only if an increase of within
its domain of feasible allocation must be at the cost of a de-
crease of some , where . In other words, the max-min
allocation gives the competing node with the smallest bidding
value the largest feasible bandwidth while not wasting any re-
source for the source node . One can show that there exists a
unique max-min fair allocation vector , and that it can be ob-
tained by a progressive water filling algorithm. The algorithm
initializes all . It will then increase all competing nodes’
bandwidth allocations at the same rate, until one or several com-
peting nodes hit their limits (i.e., ). When that happens,
the amount of allocated resources for these competing nodes
will not be increased any more. The algorithm will continue
to increase the resources of other competing nodes at the same
rate. The algorithm terminates when all the competing nodes
have hit their limits, or the total resource is fully utilized.
Mathematically, we can express the max-min resource distribu-
tion as follows. Let be competing nodes sorted
in non-decreasing order of . The resource distribution of the
RBM mechanism is

(1)

Fig. 3(a) illustrates the RBM with four competing nodes of
(in units of Mb/s) and the resource band-

width Mb/s. The resource allocation is
(in units of Mb/s), which is depicted as the shaded regions in
the figure. Although the RBM avoids resource wastage, it does
not provide any incentive for nodes to share information. Two
competing nodes with the same bidding values will obtain the
same amount of resource regardless of their actual contributions
to the P2P community.

2) Resource Bidding Mechanism With Incentive (RBM-I): To
provide incentive, this mechanism takes the contribution levels
of competing nodes into account. Let be the contribution
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Fig. 3. Resource distribution mechanisms: (a) RBM; (b) RBM-I; (c) RBM-U;
(d) RBM-IU. The shaded region represents the amount of resource allocation
for individual node.

value of the competing node . This value reflects the amount
of work that has performed, for example, sharing and up-
loading files for other nodes. The contribution value can be
retrieved from a distributed database at the beginning of the file
transfer process, or every time when the source node receives
the bidding message from the competing node .

One can implement the resource bidding mechanism with in-
centive (RBM-I) by enhancing the progressive filling algorithm
as follows. We distribute bandwidth resources to all the com-
peting nodes at the same time but at different rates. In particular,
the competing node will have a resource assignment rate of

. Also, once the assigned resource to reaches its limit of
, will be taken out of the resource distribution. Therefore,

one can view the mechanism as a weighted max-min resource
distribution. Mathematically, we can express the RBM-I as fol-
lows. Let be competing nodes sorted in non-de-
creasing order of . The resource distribution is

(2)

Using the previous example in RBM but now with contri-
butions , the resource allocation is

(in units of Mb/s), which is shown in Fig. 3(b).
One important property of this mechanism is that if two com-
peting nodes have the same bandwidth bidding values and have
not hit their limits, then the assigned bandwidth will be propor-
tional to their contribution values (i.e., and ).

3) Resource Bidding Mechanism With Utility Feature (RBM-
U): This mechanism addresses the efficiency of the resource
allocation from the perspective of the competing nodes’ satis-
faction. Consider two competing nodes and which have

the same contribution values. If the bandwidth resource at the
source node is Mb/s and the two bidding messages are

Mb/s and Mb/s, based on the RBM mech-
anism, they will receive a bandwidth resource of 0.5 Mb/s each.
Although the resource at is efficiently utilized, the degrees of
satisfaction of the two competing nodes are obviously different.
To overcome the problem, we use the concept of utility [16] to
represent the degree of satisfaction of a competing node given a
certain amount of allocated bandwidth.

We first define the family of utility functions we consider in
this paper. Given an allocated bandwidth , the utility of the
node is denoted by . The utility function we consider
in this work satisfies the following three assumptions: 1)
is concave (or the marginal utility is non-increasing

); 2) ; and 3) the utility depends on the ratio
of . In other words, whenever

for any two competing nodes and . The justifica-
tions for the above assumptions are as follows. First, the utility
function is concave, which is often used to represent elastic
traffic such as file transfer [16]. Concavity implies that the mar-
ginal utility is non-increasing as one increases the allocated
bandwidth resource . This captures the physical characteris-
tics of elastic traffic: the utility increases significantly when a
competing node starts receiving service. The increase of utility
becomes less significant when the receiving bandwidth is nearly
saturated. Second, the utility is zero when a competing node is
not allocated any bandwidth. Third, because utility measures the
satisfaction of a competing node, naturally, it is a function of
the fraction of the allocated resource over the bidding resource.
Furthermore, this assumption normalizes the utility of all nodes
so that we can compare the degrees of satisfaction of different
nodes.

The objective of the RBM-U mechanism is to maximize the
social (or aggregate) utility. Formally, we have

s.t. and

It is important to point out that the implication of this max-
imization problem is to allocate resources to the competing
node which currently has the largest marginal utility (i.e.,
largest ). The allocation process starts with
for . It then assigns resources to the node which
has the largest marginal utility and ends when the resource
is used up, or all the competing nodes are fully satisfied with

.
In reality, the utility function of a competing node may not

be known to other nodes. However, after allocating a certain
amount of bandwidth to a competing node, the source node can
infer the perceived utility of the competing node. From now on,
we will use the word “utility” to indicate the “perceived utility”
by the source node. We will discuss how competing nodes can
maximize their underlying true utilities in the next section.

Definition 1: We define the perceived utility of a node, say
, by any source node to be , where is the assigned

bandwidth to node . This is an estimate of the true utility of
node by the source node.
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Let us consider the following form of perceived utility func-
tion which satisfies the above three assumptions:

where

The marginal utility is . Therefore, the RBM-U
mechanism tries to increase the resource allocation of the com-
peting node which has the smallest value of at any time.
Using the previous example of RBM of four competing nodes
with and Mb/s, we use the above per-
ceived utility function, and the resource allocation which max-
imizes the aggregate utility is (in units of
Mb/s). This result is depicted in Fig. 3(c). The figure shows
graphically how the mechanism works. Each competing node,
say , has a lower limit height which is equal to (i.e., the
darkened region). The enhanced progressive filling algorithm
distributes resources first to the competing node that has the
lowest depth since that node has the largest marginal utility at
that point. When the assigned resource to node is equal to
the node’s maximum bidding , node is taken out from the
resource distribution. The algorithm terminates when all nodes
have reached their maximum allocations, or when the resource

is fully utilized.
4) Resource Bidding Mechanism With Incentive and Utility

Feature (RBM-IU): One can view the RBM-IU mechanism as
a generalization of the previously discussed mechanisms. This
mechanism considers both the utilities of competing nodes and
their contribution values. Each competing node, say , has its
contribution value and bidding message . Mathematically,
the RBM-IU performs the following constrained optimization:

s.t.

The RBM-IU mechanism enhances the progressive filling algo-
rithm as follows. 1) We treat the competing node as a bucket
of area and width . 2) The bucket of the competing node

is located at the height ; therefore, the upper limit of
the bucket is at a height of . 3) At any time, the RBM-IU
mechanism gives an additional amount of resource to the com-
peting node’s bucket which currently has the lowest height—in
other words, the bucket which has the largest weighted marginal
utility (i.e., weighted by the contribution value). It is interesting
to observe that when competing nodes have the same contribu-
tion values, the RBM-IU is equivalent to the RBM-U mecha-
nism. The spirit of this mechanism is to increase the amount of
resource of the competing node which has the largest weighted
marginal utility of at a rate of . Fig. 3(d) illus-
trates the RBM-IU mechanism with ,

and Mb/s. The final resource allocation
is (in units of Mb/s). From the figure, one
can observe that the mechanism fills the bucket of at most
up to its area limit of at the resource distribution rate of .
The bucket of at the “resource level” is guar-
anteed to have the marginal utility . The algorithm
terminates when all the competing nodes have reached their re-
source limit, or when the resource is fully utilized.

The RBM-IU mechanism can be expressed by the following
pseudo-code. The source node maintains a sorted list of
competing nodes in ascending order.

RBM-IU Mechanism ()

1. if return ;

2. ; ;

3. ; ;

4. level ;

5. while

6. if

7. level ; ;

8. else if

9. ; level ; ; ;

10. else

11. ; level ; ; ;

12. for (each )

13.

14. return ;

Based on the above code, performs the filling algorithm
when the total bidding is greater than the total available re-
source. In determining the final “resource level”, we have three
cases for the while loop in line 5: 1) When the resource is used
up, the loop ends with the final “resource level” (lines 6–7). 2) If
the next available resource level is at the upper limit (or bid-
ding level) of some competing node, we adjust the remaining
amount of available resource and reduce the filling rate by that
competing node’s contribution value , since we will not give
any more resource to that satisfied competing node (lines 8–9).
3) If the next available resource level is at a lower limit of some
competing node, we adjust the remaining amount of available
resource and increase the filling rate by that competing node’s
contribution value (line 11). The reason is that this competing
node will have the largest weighted marginal utility for its turn
to gain the resource at a rate of . Note that the algorithm has
a linear time complexity of , where is the number of
competing nodes at the source node . Therefore, the resource
distribution can be performed efficiently.

Theorem 1: The RBM-IU mechanism solves the following
constrained optimization problem:

s.t.
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Proof: Let us consider an equivalent constrained optimiza-
tion problem in a standard form as follows:

s.t. and

We have the Lagrangian function

where each is the Lagrangian multiplier associated with the
according “less than” constraint.

For any optimal solution , the Karush–Kuhn–Tucker
(KKT) condition [19] requires that there exists a non-negative
Lagrangian multiplier such that the following conditions are
satisfied:

or if

or if

or if

First, if , the RBM-IU mechanism assigns
for all . By checking the KKT condition, has to

be 0, and for all . Second, if
, the RBM-IU mechanism performs the resource filling at

the level for some , where . It
uses up all the resources so that , and can
be positive. Make , and the KKT condition requires

or if

It is satisfied in all three cases: 1) When , .
This is the case when all nodes get the resource at the final
resource level; so . 2) When ,
node is not filled up because is higher than . Thus,

. 3) When ,
, because the resource level of node

must be less than or equal to the final resource level .
By the strong concavity of the objective function and the lin-

earity of all the constraints, the above KKT condition also guar-
antees that the solution of RBM-IU is an optimal solution for
the constrained optimization problem.

Moreover, the following two important theorems state some
desirable properties of the RBM-IU mechanism.

Theorem 2: For any two competing nodes , the mech-
anism RBM-IU gives the bandwidth assignments and such
that

if (3)

Proof: When , the stated condition is equiv-
alent to

(4)

So initially, node has a lower resource level than node .
Therefore, bucket will hit its capacity faster than . In the final
bandwidth distribution, we have

(5)

When (5) meets the strictly less than condition, we have .
In this case, node is fully satisfied and reaches its maximal
utility value of . Therefore, .
When (5) meets the equality condition, we divide (4) by

, which gives

Remarks: The implication of this theorem is that a competing
node which has the highest contribution per unit of resource
request will receive the highest utility. Therefore, the RBM-IU
provides incentive in a P2P system and balances the utilities
among all the competing nodes.

Theorem 3: The resource allocation is Pareto optimal,
which implies that the resource allocation vector cannot be
improved further without reducing the utility of at least one
competing node.

Proof: There are two cases for terminating the RBM-IU
mechanism. One is when the aggregate bidding .
In this case, and all nodes are equally satisfied. The
second case is when the total resource is fully utilized. In
this case, no matter how efficient our resource allocation is, we
have to decrease the resource of some competing node in order
to improve the utility of another node.

IV. RESOURCE COMPETITION GAME

In the proposed incentive P2P network, each competing node
sends bidding messages to the source node. The source node
then uses the mechanism RBM-IU for bandwidth resource dis-
tribution. The interactions between the competing nodes and the
source node can be described in a game-theoretic framework
[12]. We will explore the solution and some important properties
of this game. Lastly, we discuss how the game can be realized
in a P2P protocol such that it converges to Nash equilibrium.

A. Theoretical Competition Game

We model the resource bidding and distribution processes as
a competition game among all the competing nodes. One basic
postulate in game theory is that the game structure is common
knowledge to all players. In our competition game, we assume
that the total amount of bandwidth resource and all the con-
tribution values ’s are common knowledge. This means that
all nodes know the information, know that their rivals know the
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information, and know that their rivals know that they know the
information, and so on. Also, we only consider the non-trivial
situation of . The competition game can be de-
scribed as follows:

1. All the competing nodes are the players of the game.
2. The bidding message is the strategy of the competing

node . A bidding vector is a strategy
profile where is the number of competing nodes in the game.

3. The mechanism RBM-IU defines the rules and the structure
of the game. We can regard mechanism RBM_IU as a mapping
which has and as input parameters and returns as output.

4. The outcome of the game is the vector which represents
the amount of bandwidth resource each competing node obtains.

5. The objective of each player is to maximize its assigned
bandwidth . We do not explicitly assume the utility function of
each player. However, as long as the utility is a non-decreasing
function in , the objective to maximize is equivalent to
maximizing the player’s underlying true utility.

Lemma 1: The mapping function RBM-IU: is
quasi-concave in each individual’s strategy .

Proof: Consider any strategy profile , where
is any fixed strategy profile (or bidding messages) of players

other than . We regard the resource allocation of as a func-
tion of its bidding value, which is . When we increase
from zero gradually, will also increase monotonically with

. After that, when we continue to increase , the
marginal utility decreases, because the weighted marginal utility

must be among the largest for close to zero. At
some point when the marginal utility is not among the largest, the
bandwidth allocation satisfies and will start to de-
crease monotonically in until . From the single peak
property of , we know that the upper-level contour set is
convex, and therefore the function is quasi-concave in .

Theorem 4: There exists at least one Nash equilibrium in the
competition game.

Proof: Note that the bidding values are finite because
becomes zero when is larger than a certain threshold. Ac-
cordingly, the strategy set is convex and compact. The mecha-
nism represents a continuous function of resource distribution,
and from Lemma 1, it is quasi-concave in each . Therefore, by
[12, Prop. 8.D.3], the game has at least one Nash equilibrium.

Lemma 2: For any player, say , the strategy
implies a resource allocation of

for .
Proof: Let be the least amount of resource which

gives the resource . This out-
come means that the “resource level” of is at a height of

. Any other player, say ,
may report its strategy in two possible cases: 1) When

, we have

. Hence, . 2) When

, we have . Hence,

. As a result,

. So
with amount of resource, we can at least distribute

amount of resource to player , which is
also the bidding value . Therefore, the RBM-IU mechanism

will allocate exactly amount of resource
to player .

Remark: The importance of the above lemma is in guaran-
teeing that a player can gain its fair share of resources during the
competition. Players who have small contribution values will
not suffer from resource starvation. Free riders, however, will
eventually gain zero resource in the competition.

Theorem 5: The strategy profile for
player , where , is a Nash equilibrium..

Proof: The aggregate bidding is , so that
for player , for . From Lemma 2, any

player who insists on gains

. Therefore, regardless of the change of
strategy from , player gains .

Theorem 6: The strategy profile for
player , where , is a unique Nash equilibrium.

Proof: Suppose there exists another Nash equilibrium
, where each player uses strategy and gains

amount of resource. At least one of the players has .
By Lemma 2, independent of the strategies used by the other
players, strategy induces . Because the RBM-IU
mechanism will not assign larger than the bidding , the
first necessary condition for to be a Nash Equilibrium
is . Otherwise, can always get more bandwidth
than any . For the same reason, if , strategy

performs better than and strategy cannot be a Nash
strategy. Therefore, the second necessary condition for
to be a Nash Equilibrium is for each player .

The condition implies that the “resource height”
is , which is constant for all
the players. By the water-filling algorithm, we know that the
initial resource level must also be the same for each player
. Therefore, should only be in the form of

for all , where is some constant. But this cannot be a
Nash equilibrium, because any player can unilaterally change

to be smaller in order to gain . For
example, if any player unilaterally changes its strategy

to be , its bandwidth is increased by

, where .
Another important property of our protocol is that it can avoid

one form of collusion attack.
Definition 2: -collusion occurs when a subset of competing

nodes use strategy profile , and achieve
.

Theorem 7: Assuming that all honest competing nodes use
the Nash equilibrium strategy , the
RBM-IU mechanism at the source node avoids -collusion.

Proof: Suppose some but not all players are dishonest.
When the honest players play their Nash equilibrium strategy

, by Lemma 2, the honest players are
guaranteed to have . Therefore, the aggregate re-
source received by the dishonest players are ,
which cannot exceed what they could have gained in the Nash
equilibrium.

B. Practical Competition Game Protocol

In Section IV-A, we showed that the interactions between the
source node and all its competing nodes can be modeled as a
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competition game, which has a Nash equilibrium solution. This
solution assigns each competing node an amount of resource
proportional to the node’s contribution, efficiently utilizes all
resource at the source node, and also prevents collusion among
a group of competing nodes.

Although the theoretical competition game provides these at-
tractive properties, there are gaps to fill so as to realize the the-
oretical competition game in an actual incentive P2P network.
In particular, one needs to address the following issues:

I1 The information of contribution and the amount of
resource is assumed to be common knowledge. How can
this be implemented in a P2P system?

I2 In real life, a competing node, say , has its maximum
download capacity, say (in units of bits/s). Also, due to in-
termittent network congestions, the actual assigned bandwidth
allocation may be less than the actual received bandwidth

. These two factors will change the Nash equilibrium derived
under the theoretical competition game.

I3 In a dynamic environment like a P2P network, new
competing nodes may arrive and request file download, while
existing competing node may leave due to the termination
of their file transfers. Under these situations, how can the
system reach equilibrium when the number of competing nodes
changes? (More challenges are addressed in [5].)

To address these issues, let us first consider the behavior of
the source node. Based on a given strategy profile and con-
tribution values , the source node carries out the RBM-IU
for bandwidth resource distribution. The justification that the
source node is willing to use this mechanism is that the alloca-
tion result is Pareto optimal (based on Theorem 3). (Although
other Pareto optimal solutions may exist, the source node has no
incentive to switch because the other solutions are not more effi-
cient.) This implies that following the RBM-IU mechanism, the
source node can maximize its contribution value so that it can
enjoy better service for its future file download requests. How-
ever, without perfect information for all the competing nodes,
the game solution may oscillate and induce resource wastage. In
order for the source node to maximize its contribution, it has in-
centive to help the competing nodes reach Nash equilibrium. In
our practical game protocol, the source node will signal a com-
peting node, say , with the value of ,
when initiates its request for file download. This informa-
tion exchange is inexpensive because: 1) the signal is sent only
once for each competing node’s arrival, and 2) the signal value
is computed on the fly and it does not need global information
of all the network nodes’ contribution values. Hence, the issue
I1 is resolved.

For the behavior of the competing nodes, let us see how the
signals sent by the source node may help the game reach its
equilibrium. Suppose that a competing node, say , has a max-
imum download capacity of and a signal variable . Ini-
tially, encodes the signal value sent by the source node; i.e.,

. The competing node sends its
initial bidding message to the source node.
After each round of data transfer, measures , the amount
of bandwidth resource it receives from the source node, and
stores it as the current signal value ; i.e., , To start
the next round of data transfer, sends a new bidding mes-

sage to the source node. This bidding strategy
assumes that the source node uses the RBM-IU mechanism, so
that all the competing nodes reach Nash equilibrium through
feedback on their strategies. In the bidding message, a com-
peting node informs the source node of 1) its download band-
width limit, and 2) whether there is any congestion along the
data transfer path.

The behavior of competing nodes described above is an at-
tempt to resolve the issues of I2 and I3. However, one can show
that using this protocol, the system may not be able to reach
Nash equilibrium. Consider the following illustrative example.
Initially, the source node has resource . There is
one competing node with and . The
source node sends a signal of . Therefore, the ini-
tial bidding message from is and
the resource allocation is (which is a Nash equilib-
rium point). Afterwards, a new competing node arrives with

and . The source node sends a signal
of . Therefore, the initial bidding message from is

. The final resource allocation is
(which is also a Nash equilibrium point). Now a new competing
node arrives with and . The source node
sends a signal of . Therefore, the initial bidding mes-
sage from is . The final resource al-
location is . Note that this equilibrium point is not
a Nash equilibrium since there is some degree of unfairness be-
tween the two homogeneous nodes and , and could
have received a higher bandwidth if had increased its bidding.
Another scenario in which the final resource allocation is not a
Nash equilibrium is when some of the competing nodes experi-
ence network congestion such that . When these nodes
feed back their new biddings for the resource alloca-
tion, some resource at the source node will not be utilized and
may remain idle. This condition persists even if these competing
nodes are relieved from network congestion at a later time. In
other words, they cannot gain back the amount of resource they
could have obtained in the Nash equilibrium. In summary, each
competing node needs to behave more aggressively in order to
get the proper amount of resource and also help the system reach
a new Nash equilibrium efficiently.

To properly resolve issues I2 and I3, we propose the fol-
lowing extension protocol. Each competing node, say , en-
hances its bidding by sending

(6)

where is a small positive constant for all the competing nodes.
The purpose of reporting a slightly larger bidding value is to
explore the possibility of whether there is some idle resource
at the source node. The Nash equilibrium result in the theo-
retical model does not change except that the strategy profile is
changed to be . In case there are idle resources or
temporarily unfair resource allocations in the system, competing
nodes which gain a smaller amount resource can increase their
biddings and push the system to the new Nash equilibrium point.
Hence, their subsequent bidding values will increase. Eventu-
ally, a new equilibrium is reached when each competing node
bids and receives .



986 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 5, OCTOBER 2006

From now on, we will assume that all the competing nodes in
the incentive P2P network send bidding messages according to
(6). Obviously, all competing nodes interacting with the source
node will achieve a different allocation result in equilibrium as
compared with the Nash equilibrium in the theoretical context.
We classify these competing nodes into three categories at equi-
librium. When the bidding is , the competing node re-
ceives , and the allocated resource must be .
This implies that the competing node does not encounter any net-
work congestion. When the bidding is , there are
two cases to consider: 1) There is a bottleneck (with available
bandwidth ) along the path between the competing node and
the source node. Therefore, no matter how large the contribution
value of the competing node or its bidding value, the competing
node can only receive amount of bandwidth resource. So we
have . 2) The competing node com-
petes with other competing nodes for the resource at the source
node. Therefore, the bottleneck is on the source node side. So
we know . Defining the three cate-
gories of competing node at equilibrium to be the sets , ,
and , respectively, we have the following results:

Lemma 3: For any equilibrium of the dynamic game

for all .
Proof: For competing nodes , the bottleneck is

on the source node side. Following the equilibrium condition
and for each competing node in ,

the final “resource allocation level” in the RBM-IU mechanism
should be for all the competing
nodes in .

Lemma 4: For any equilibrium of the dynamic game

for all and .
Proof: Suppose we have a competing node and

. For some competing node , the bottleneck is
at the client side or at an intermediate link. The final resource al-
location level in the RBM-IU mechanism, which is ,
must be higher than or equal to the resource allocation level of
any , which is . Therefore, we have

From the equilibrium condition 1) for
; 2) for ; and

3) for . Therefore, we have

Theorem 8: The dynamic game equilibrium described above
has the bandwidth allocation solution

if
if

if

(7)

In addition, it becomes a Nash equilibrium solution when ap-
proaches zero.

Proof: if and if follow
directly from the equilibrium condition. Since all the competing
nodes in are not saturated, they use up all the remaining
resource . Follow Lemma 3, the
last equation holds.

When approaches zero, the strategy profile in equilibrium
approaches:

if
if

if .

(8)

By Lemma 4, for all and
. Physically, it implies that all have the final

resource “water level” higher than or equal to that of nodes in
. This strategy profile’s solution is a Nash equilibrium:

1) For the competing nodes , they gain the
maximum resource so that there exists no other better strategy
for them to deviate. 2) For the competing nodes , they
will not bid since always less than or equal to
in RBM-IU. If they bid , consider the sub-game when

and the set of competing
nodes is . From Theorem 5, we know that the strategy is
a Nash equilibrium which means that a competing node cannot
become better off by deviating from the strategy.

Remark: Although the equilibria in the dynamic game are
not strictly Nash, they are close to Nash when is small. The
allocation results from these equilibria are the same as the equi-
librium allocations when . Therefore, we can regard the
game as reaching Nash equilibrium if all the players play the
Nash strategy profile.

V. GENERALIZED MECHANISM AND GAME

In the last two sections, we discussed a specific RBM-IU
mechanism and its corresponding resource competition game.
In this section, we generalize the resource distribution mech-
anism with respect to incentive and utility. For incentive, we
give a parametric manipulation of the contribution values
used, so that we can control the degree of incentive provided
in the mechanism. For utility, we explore heterogeneous nodes
which have diverse utility functions (i.e., not necessarily given
by as assumed in Section III).
We will analyze the properties of the competition games cor-
responding to the generalized mechanisms.

A. Generalized Mechanism With Incentive

Recall the mechanism RBM-I in (2). We introduce incentive
by distributing the resource in linear proportion to each com-
peting node’s contribution value . In general, contribution
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values can be weighted by an exponent , and the resource
distribution becomes

(9)

It is easy to observe that when , this mechanism is equiv-
alent to the mechanism RBM-I. On the other hand, when
tends to infinity, this mechanism becomes a strict priority ser-
vice mechanism which serves the requests by their contribution
values in descending order. Generally speaking, the larger the
value of , the higher the amount of the allocated resource this
mechanism provides based on contribution values. Therefore,
the parameter provides some degree of freedom for the mech-
anism designer to balance between incentive and fairness in the
P2P system.

Similarly, by generalizing to , RBM-IU becomes

s.t.

Because the new mechanism linearly weights each contribu-
tion by , the implementation of the new mechanism can be
easily extended by changing the original filling algorithm. In ex-
tending both the RBM-I and the RBM-IU, we make the filling
rate of each competing node to be instead of .

Lastly, this extension maintains the properties of all the
previous theorems and the corresponding resource competition
game. Two generalized versions of previous theorems are as
follows.

Theorem 9: For any two competing nodes , the gen-
eralized RBM-IU assigns the bandwidth and such that

if (10)

Proof: The proof is similar to that of Theorem 2.
Theorem 10: The strategy profile for

player , where , is the unique Nash equilibrium.
Proof: The proof is similar to that of Theorem 6.

B. Generalized Mechanism With Utility

In RBM-IU, we assume a special form of the perceived utility
function: . Although this form can
be reasonable in practice, we would like to consider the more
general situation in which the competing nodes have heteroge-
neous utility functions. We will first design a mechanism for the
general situation, and then discuss the properties of the corre-
sponding competition game (e.g., existence and characterization
of any equilibrium solution).

Similar to RBM-U, our new mechanism tries to maximize
the social utility. As in the context of resource bidding, the (per-
ceived) utility function of node should depend on the bidding

. We design the new mechanism to solve the following dis-
tributed optimization problem:

s.t. and

The utility function of a node, say , is denoted by and
depends on and . Let us consider . We can regard

(with range ) as node ’s “fraction of satisfaction.”
Theorem 11: There exists at least one Nash equilibrium in

the competition game induced by the following mechanism:

s.t. and

where is any concave function for all .
Proof: Consider any strategy profile , where

is any fixed strategy profile (of bidding messages) of all the
players other than . The resource allocation is a function
of ’s bidding value, denoted by . By the constraint

, when for some , may increase for node only
if bids . Again, the mechanism solves the optimization
problem by giving a resource increment to the competing node
which currently has the largest marginal utility. Also, the mar-
ginal utility is decreasing when we
increase . Hence, we need to consider three cases of the func-
tion : 1) The marginal utility of player when
for any (i.e., ) is less than that of any other
player when the resource is used up. We have .
2) The marginal utility when for any (i.e.,

) is always the largest among all the players. We
have . 3) We increase gradually
from zero to infinity. increases from zero when its marginal
utility is among the largest and . After that, when
we continue to increase , the marginal utility decreases and

decreases until . When we have for some
, we have . From the single peak

property of , we know that the upper-level contour set is
convex. Therefore, the function is quasi-concave in . By sim-
ilar arguments used in Theorem 4, we know that there exists at
least one Nash Equilibrium in the competition game.

Theorem 12: Suppose and is a Nash equilibrium in
Theorem 11. For any , , we have

Proof: Assume for
some , . Therefore, ,
which implies that the marginal utility of player is higher than
that of player . Therefore, the resource distribution mechanism
can increase the aggregate utility by shifting some resource from
player to player . So the mechanism does not solve the max-
imization of the aggregate utility. We have a contradiction.

Remarks: The implication of this theorem is that the bidding
of each player in equilibrium should be proportional to their
marginal utility (or shadow price) at that equilibrium point.
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Fig. 4. Convergence illustration where N = 2,W = 10, and � = 0:5.

VI. CONVERGENCE ANALYSIS

In this section, we investigate the convergence of the prac-
tical competition game described in Section IV. We show that
by using a small positive value of , the solutions of the practical
game converges to a neighborhood of the Nash equilibrium in the
theoretical competition game. Without loss of generality, we as-
sume that all competing nodes have the same contribution values.
We will also focus on the non-trivial case when the aggregate de-
mand is larger than the resource bandwidth, i.e., .

We start from a simple example shown in Fig. 4. There are two
competing nodes and a source node with bandwidth resource

Mb/s. Suppose at some moment the resource alloca-
tion is at point A (6,4). Each competing node sends a bidding
value , where . We have the new bidding at
point B (9,6). The shaded area in the figure is the feasible region
for the new allocation, which physically implies that: 1) each
competing node’s allocation will be non-negative and no larger
than its bidding value, and 2) the aggregate allocation will not
exceed the total bandwidth resource .

The mechanism progressively moves the resource allocation
from the origin to point C (0,3), giving the bandwidth resource
to the competing nodes offering smaller bidding values. After
that, the mechanism shares the bandwidth resource evenly until
the second competing node reaches its bidding value at point D
(3,6). The mechanism then completes the allocation process at
point E (4,6). Therefore, the allocation result oscillates between
points A and E near the equilibrium point (5,5). We can imagine
that the smaller the value of , the shorter the corresponding
convergence diameter.

Also, notice that by choosing an initial condition according
to the value , we can achieve the Nash equilibrium solution.
In Fig. 5, the initial allocation is at point A (6,6,3.3) and the
following bidding is at point B (10,5). This bidding pair leads
the two players to reach the Nash equilibrium solution D (5,5).

Theorem 13: For two players with bidding ,
the allocation solution converges to the neighborhood of
equilibrium point , where

for
Proof: We define

for

Fig. 5. Convergence illustration where N = 2,W = 10 and � = 0:5.

and

Without loss of generality, we assume at
some time . Hence, we have

and
. Consequently, we gain the

resource allocation at time as follows:
1. If , then

and .
2. If , then

and
.

In the first case, . In the second
case, when ,
we have ; otherwise, . Therefore,

only if for all . It is
easy to show that we also have

One can easily extend this theorem to cover more than two com-
peting nodes.

VII. NUMERICAL EXAMPLES

In this section, we present numerical results to illustrate the
performance and the incentive property of our resource distri-
bution protocol. In particular, we show that our protocol can
properly adapt to dynamic join/leave of competing nodes, and
to various conditions of network congestion.

Example A (Incentive Resource Distribution): We consider
a source node with resource Mb/s. There are four
competing nodes to . Their maximum download band-
widths are (in Mb/s). The arrival times of

, , , and are and s, respec-
tively. Unless stated otherwise, the propagation delay between
a competing node and the source node is one second and
all the competing nodes use in (6). We consider three
scenarios, each using different contribution values for the four
competing nodes. In A.1, we have ; in
A.2, we have ; in A.3, we have

. Fig. 6 illustrates the instantaneous band-
width allocation for all the competing nodes for .
One can make the following observations:
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Fig. 6. Instantaneous bandwidth allocations: (a) ~C = [100;100;100;100]; (b) ~C = [400;300;200;100]; (c) ~C = [400;100;200;300].

For , the resource is evenly shared by and
since they have the same contribution values. When all the

four competing nodes are present ), each node
will get a resource amount Mb/s.

Fig. 6(b) shows that the bandwidth assignment is propor-
tional to the contribution value of a competing node. When all
four competing nodes are present , the resource
allocation vector is (Mb/s). Hence,
RBM-IU provides service differentiation, such that nodes have
incentive to share information and to provide services.

Fig. 6(c) shows that the protocol will not waste any resource
at the source node. Given , the resource
distribution should be (Mb/s). But since
the maximum download bandwidth of is Mb/s
only, the remaining resource (0.1 Mb/s) will be distributed pro-
portionally to , and . The final resource distribution is

(Mb/s).
In summary, these examples show that the RBM-IU can pro-

vide incentive service differentiation and will efficiently utilize
resources at the source node.

Example B (Adaptivity to Dynamic Join/Leave of Competing
Nodes): We consider a source node with resource

Mb/s. There are four competing nodes to with contri-
butions and maximum download band-
widths (in Mb/s). There is a propagation
delay of one second between a competing node and the source
node.

We consider two scenarios of arrival and departure patterns:
B.1: arrives and departs at and , arrives
and departs at and , arrives and departs at

and , and arrives and departs at and
. B.2: arrives and departs at and ,

arrives and departs at and , arrives and
departs at and , and arrives and departs
at and . Fig. 7 illustrates the instantaneous
bandwidth allocation for time . One can make the
following observations:

The protocol can assign the proper amount of resource to
competing nodes without wastage. For example, for time

, Fig. 7(a) shows that obtains 0.5 Mb/s (since this
is its maximum download bandwidth). But for the same time
period, Fig. 7(b) shows that can get 2.0 Mb/s, its maximum
download bandwidth and the full resource of the source node.

Both Fig. 7(a) and (b) show that the protocol can fully uti-
lize the source resources. For example, for period ,

Fig. 7. Instantaneous bandwidth allocations for arrival and departure patterns.
(a) B.1; (b) B.2.

the source node distributes the resource proportionally to the
contribution values of the competing nodes. The assignment is
independent of the number of competing nodes and their arrival
patterns.

The protocol can reach the same equilibrium point, inde-
pendent of the arrival and departure sequences of B.1 or B.2.
For example, consider the time period . The re-
source distribution for both cases is (in
Mb/s), which is also the Nash equilibrium point.

In summary, these examples show that the protocol is adap-
tive to the arrival and departure sequence, and it provides ser-
vice differentiation to different competing nodes having dif-
ferent contribution values.

Example C (Adaptivity to Network Congestion): We consider
one source node with resource Mb/s. At time
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Fig. 8. Instantaneous bandwidth allocations for four competing nodes; conges-
tion occurs at t = [30; 40] and t = [50;60].

, there are four competing nodes to in the system.
These nodes have contribution values
and maximum download bandwidths of (in
Mb/s). There is a propagation delay of one second from each
competing node to the source node. In this example, we consider
the dynamic congestion situation. In particular, congestion oc-
curs along the communication path between and the source
node . Congestion occurs twice, at times and

. During the congestion, the available bandwidth
along the communication path is reduced to 400 kb/s.

Fig. 8 illustrates the instantaneous bandwidth allocation of all
four competing nodes for time . One can make the
following observations:

At time , the system starts at Nash equilibrium with a
resource allocation of (in Mb/s).

Between time (or ), since there isnet-
work congestion, the competing node receives less transfer
bandwidth from the source node. Other competing nodes to

can discover this idle bandwidth resource of 0.4 Mb/s via their
bidding messages. The source node will distribute this ex-
cessive bandwidth resource to the other three competing nodes
proportionally to their contribution values. New Nash equilibria
are reached ( and ).

When the congestion disappears, the competing node
can gain back its proper resource amount of Mb/s.
Also, the new Nash equilibrium can be quickly reached and the
final resource allocation is Mb/s.

In summary, this example shows that the protocol is adaptive
to network congestion. During network congestion, the resource
at the source node will not be wasted but rather distributed pro-
portionally to other competing nodes.

Example D (Relationship Between the Step Size and the
Equilibrium Allocation): We consider one source node with
resource Mb/s. At time , there are four com-
peting nodes to in the system, but node leaves the
system at time 30. These nodes have contribution values

and maximum download bandwidths of
(in Mb/s). There is a propagation delay of one

second from each competing node to the source node.
We consider four scenarios, each using different step size

values for the four competing nodes. In D.1, we have

Fig. 9. Instantaneous bandwidth allocations: (a) ~� = [0:01; 0:01;0:01;0:01];
(b) ~� = [0:1;0:1;0:1;0:1]; (c) ~� = [0:01;0:01;0:1;0:01]; (d) ~� =
[0:1;0:1;0:01;0:1].

; in D.2, we have ;
in D.3, we have ; in D.4, we have

. Fig. 9 illustrates the instantaneous band-
width allocation for all the competing nodes for .
One can make the following observations:

In Fig. 9(a) and (b), all competing nodes have the same
value of (0.01 or 0.1). They show the same equilibrium allo-
cation for , and after leaves the system. The dif-
ference in these two scenarios is that from the time leaves
the system, it takes around 50 seconds to reach the new equi-
librium in (a), but 5 seconds in (b). It is intuitive that a larger
value enables faster convergence to the new equilibrium point.

Fig. 9(c) shows the scenario when all competing nodes have
value 0.01 except node , which has . From ,

node gains its resource much faster than and , and
gains even more resource than it gains in equilibrium from time
35 to 80. On the other hand, by comparing Fig. 9(c) with (a), we
find that both the original equilibrium and the new equilibrium
are different. Node gains less resource in (c) than in (a). The-
oretically, when all the competing nodes have the same value,
the actual equilibrium should coincide with the theoretical Nash
equilibrium. But a larger value achieves less resource in actual
equilibrium.

Fig. 9(d) shows the opposite of the previous experiment,
when now has a smaller value than the other competing
nodes. In this case, node reaches its new equilibrium slower,
but gains more resource than in the theoretical Nash equilibrium.

In summary, these examples show that affects both the equi-
librium solution and the rate of convergence to the equilibrium.
In general, the larger the value of , the faster the convergence to
the new equilibrium, but with less resource gained at the equi-
librium point.

VIII. CONCLUSION

In this paper, we have presented a framework for building
incentive P2P networks. The framework consists of the resource
allocation mechanism RBM-IU and a network protocol for
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competing nodes to reach equilibria of the competition game
induced by RBM-IU. Our solution is efficient: 1) RBM-IU can
be implemented by a linear time algorithm; 2) the feedback
bidding messages used by the competing nodes are simple; and
3) RBM-IU achieves Pareto-optimality allocation results. The
robustness of the solution is evidenced by the fact that all the
competing nodes can reach the equilibrium solutions of the
competition game. The justification for the source node to use
our protocol is its guarantee of the Pareto optimality. On the
other hand, competing nodes are motivated to use the protocol
because it guarantees Nash equilibrium. We show that the
protocol can be extended to heterogeneous nodes with different
utility functions. Convergence analysis is carried out to show
the existence of the Nash equilibrium. Lastly, we also show that
the protocol is adaptive to various nodes arrival and departure
events, as well as in different forms of network congestion.
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