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Abstract

We consider a cluster of heterogeneous servers, modeled asM/G/1 first-come first-serve queues with different
processing speeds. A dispatcher that assigns jobs to the servers takes as input only the size of the arriving job and
the overall job-size distribution. This general model captures the behavior of a variety of real systems, such as web
server clusters. Our goal is to identify assignment strategies that the dispatcher can perform to minimize expected
completion time and waiting time. We show that there exist optimal strategies that are deterministic, fixing the server
to which jobs of particular sizes are always sent. We prove that the optimal strategy for systems with identical servers
assigns a non-overlapping interval range of job sizes to each server. We then prove that when server processing
speeds differ, it is necessary to assign each server a distinct set of intervals of job sizes in order to minimize expected
waiting or response times.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Many systems that can process multiple jobs in parallel fall into a class of systems that are commonly
referred to asdispatching systems. A simple illustration of a model for these systems is depicted inFig. 1.
In a dispatching system, jobs arrive at adispatcher, which must immediately decide the server to which
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the job is assigned. Each server has a separate queue in which it stores jobs that it was assigned by the
dispatcher, and a separate processor that processes its assigned jobs. We refer to the decision process
used by the dispatcher to assign jobs to various servers as thedispatching strategy, or simply strategy
for short. The choice of strategy depends upon the information available to the dispatcher when it makes
a selection (e.g., size of the received job, number of jobs waiting in each of the servers) and upon the
optimization goal of the system.

In this paper, we investigatestate-free, size-aware dispatching strategies forhomogeneous andhetero-
geneous systems that minimize expected waiting time and completion time of arriving jobs.State-free
means that the dispatcher uses neither the current status of the queues, nor the past history of assign-
ments when deciding where to place an arriving job. This assumption is traditionally calledstatic in the
literature.Size-aware means that the dispatcher uses the size of the arriving job (i.e. theprocessing time
that this job requires from the server) and the overall job-size distribution as input to select the server
to which the job is sent. Ahomogeneous system is one in which all servers are configured identically,
otherwise the system isheterogeneous. A rich class of systems are best modeled as state-free, size-aware
dispatching systems. Some examples are:

• Web delivery systems. Web providers commonly cluster a set of servers together to serve requests. A
simple way to assign jobs to servers is to distribute contents to multiple servers (e.g., put HTML files
on one server and image files on another), using different host names in corresponding URLs. The
system is naturally state-free and there is no explicit dispatcher. Since the size of each file is known in
advance, it is possible to find a better way to distribute files to servers so that the expecting response
time of the entire system is reduced.

• Routing in content distribution networks. Load-balanced routing allows an intermediate node to assign
an arriving data chunk to any of several outgoing paths. A controlling “pushback” mechanism that
informs upstream nodes of current downstream load, while useful, is difficult to implement efficiently
in practice. However, a local, static dispatching strategy based on long-term statistics is very useful
and easily implemented for such systems.

• Database systems with multiple servers. There are usually many different access paths to retrieve
data in a database system. Modern database management systems estimate the processing time for
each access path to make a good choice. With multiple servers, this decision can be performed by the
dispatcher where the dispatcher uses the estimated processing time to choose a server for the actual
data retrieval.

State-free, size-aware dispatchers are interesting and important because of the ease with which the
dispatcher can be implemented. Dispatchers that utilize additional state (history of arriving jobs, or the
current states of the queues) can likely outperform their static counterparts as long as the information
used (such as the current state of the queues) is not significantly delayed[10]. However, it is unclear
whether the expected gains in performance are worth the added complexity in implementation.

The paper proves several important results about the optimality of a variety of strategies that attempt
to minimize job waiting and completion times for first-come first-serve (FCFS) queues. An important
class of deterministic strategies we consider areinterval-based strategies, where each server is assigned
all jobs whose processing times fall within a distinct, continuous interval of processing times.

We show the following results in this paper: (1) When the dispatch system is comprised of a set of
homogeneous servers, then there is in fact an interval-based strategy that is optimal amongst all static
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strategies. (2) When the system is comprised of a set of heterogeneous servers, then there need not
exist an interval-based strategy that is optimal. (3) A simple generalization of the class of interval-based
strategies that usesnested intervals produces a class of strategies that does in fact contain an optimal
static strategy for a system comprised of a set of heterogeneous servers. In addition, we also focus on
identifying the best or optimal strategy within the class of interval-based strategies. In heterogeneous
settings, the optimal strategy must select not only the boundaries of the intervals, but must also determine
the mapping of intervals to the (heterogeneous) servers. While we have not yet identified an optimal
strategy, we show through experimentation using a variety of traditional job size distributions that an
optimal strategy depends heavily on the job size distribution.

1.1. Related work

If a shared queue is used and the dispatcher follows the first-come first-serve order and assigns jobs
to servers whenever they are idle, then the system is a traditionalM/M/s orM/G/s queueing system.
The homogeneousM/M/s system is well studied and can be found in many textbooks, e.g.[4]. On
the other hand, there are only approximations of the mean response time for homogeneousM/G/s

systems[7]. With separate queues and exponential service times, Winston[15] and Ephremides et al.
[6] analyze optimal dynamic strategies. Exponential service times are often assumed in the study of
the heterogeneous servers. With separate heterogeneous queues and exponential service times, Chow
and Kohler[3] compare three dynamic strategies with the random strategy. With the random static
strategy, Buzen and Chen[2] give the optimal load partitioning for general services. Ni and Hwang
[11] analyze the optimal load partitioning for multiple classes of exponential service times. Borst[1]
considers the generalized case in which the weighted sum of the mean waiting times for multiple classes
of generally distributed jobs is minimized. Hajek[8] considers two heterogeneous queues where the
jobs departing from one queue may be sent to the other with a certain probability. Tantawi and Towsley
[14] study a static decentralized probabilistic strategy where each queue can transfer some jobs to other
queues with a communication delay. The size-interval strategy is proposed and studied by Harchol-
Balter et al.[9,5]. Oida et al. numerically study the size-interval strategy with a finite set of jobs and
show that the performance of size-interval strategy is close to the solution of the corresponding optimal
deterministic problem under heavy traffic for homogeneous[12] and two-queue heterogeneous[13]
systems.

The rest of the paper is organized as follows. In Section2 we formulate the problem. In Section3
we analyze the optimal size-aware strategies. In Section4 we show some numerical results of the mean
waiting times for three different classes of job-size distributions, and study the best mapping of size
intervals. In Section5 we give proofs for optimality. Finally we conclude in Section6.

2. Preliminaries and problem formulation

To initiate our study ofstate-free, size-aware strategies for parallelheterogeneous servers withseparate
queues, we first introduce the notation we will use throughout the remainder of the paper.

Thecapacity of a queue is the maximal amount of processing that can be performed in a unit of time
by the server associated with that queue. This is a formal measure of the processing speed. We denote
by the random variableX the size of a job (the service time in a queue of unit capacity), and byF (x) its
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cumulative distribution function (CDF). For a queue of capacityc, the service time of a job of sizeX is
X/c. The arrival rate of jobs to the entire system (of all queues) is denoted byλ. The waiting and response
times are denoted by random variablesW andT, respectively. The latter is also known as the completion
time.

Theload is defined to beρ = λE[X] = λ/µ, whereµ = 1/E[X] is the average departure rate of jobs
from a queue with unit capacity. Load measures the average amount of processing that can be done in
a unit of time. We assume that the load for a queue in the steady state does not exceed its capacity,
i.e., ρ < c. We letω = λE[X2]. This quantity is important and heavily used in the rest of the paper –
it measures the performance of a first-come first-serve queue. We call it thesecond-order load, in the
sense thatρ = λE[X] is the (first-order) load, and the arrival rateλ = λE[X0] can be considered as the
zeroth-order load.

2.1. Dispatching system model

Let us now define the class of dispatching strategies upon which we focus in this paper. We assume that
there aren parallel queues in the system and the capacity of theith queue isci. Without loss of generality,
we assume that the sum of the capacities is 1, i.e.,

∑n
i=1 ci = 1. If ci = 1/n for all i = 1, . . . , n, the

system ishomogeneous, otherwise it isheterogeneous. A stochastic, size-aware, static strategy, or simply
a static strategy, only uses the size of a job to select the queue that processes that job. The queue to
which a job of a given size is assigned may be selected either deterministically (using the size of the
job) or at random (without considering the size of the job). Such strategies arestate-free: neither history
records, current states of the queues, nor sequence numbers of the arrivals are used by these types of
strategies.

We assume that jobs in a single queue are serviced in the first-come first-serve (FCFS) order. We also
assume the arrivals of jobs are Poisson and job sizes are independent, identically-distributed (IID). Note
that each of the queues is modeled as anM/G/1-FCFS queue, although the job size distribution for each
queue can differ from the distribution of the aggregate queueing system.

We denote by the random variableXi the size of a job assigned to theith queue, and its CDF by
Fi(x). Note thatλ = ∑n

i=1 λi, whereλi is the arrival rate of theith queue. We then have
∑n
i=1 λiFi(x) =

λF (x). Note that functionλF (·) sufficiently describes both the Poisson arrival process and the job-size
distribution:λF (x) is the arrival rate of jobs whose sizes are shorter than or equal tox. Hence its derivative
λf (x) is thedensity function of the arrival rate for job sizex. A static strategy, therefore, is equivalent to
an algorithm that divides functionλF (x) (orλf (x)) to a sum ofn parts, i.e.,

∑n
i=1 λiFi(x) (or

∑n
i=1 λif (x),

respectively), each of which is assigned to a queue. The performance of the system is evaluated by the
mean response time or main waiting time on the per-job basis.

We denote the service time of theith queue byX̂i that isXi/ci. Also, we let random variablêX be the
overall service time of the entire system. Taking expectations per job, we get

E[X̂] =
n∑
i=1

λiE[X̂i]

λ
= 1

λ

n∑
i=1

λiE[Xi]

ci
= 1

λ

n∑
i=1

ρi

ci
, (1)

whereρi = λiE[Xi] is the load of theith queue. We refer to the vector[ρi]ni=1 (such thatρ = ∑n
i=1 ρi) as

load partitioning, which indicates the portion of the total load that each queue is assigned. The overall
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Fig. 1. A dispatcher assigns jobs to multiple queues with different processing speeds.

mean waiting time and the overall mean response time are, respectively,

E[W ] = 1

λ

n∑
i=1

λiE[Wi], (2)

E[T ] = 1

λ

n∑
i=1

λiE[Ti] = E[W ] + E[X̂], (3)

whereE[Wi] andE[Ti] are the mean waiting time and the mean response time of theith queue, respectively.
For a singleM/G/1-FCFS queue, the mean waiting time is (scaled from the Pollaczek-Khintchine formula
[4])

E[W ] = λE[X2]

2c(c − ρ)
= ω

2c(c − ρ)
, (4)

whereω = λE[X2]. From(2) and (4), the mean waiting time for a heterogeneous system using a static
strategy is

E[Ws] =
n∑
i=1

λi

λ

[
λiE[X2

i ]

2ci(ci − ρi)

]
= 1

2λ

n∑
i=1

[
λiωi

ci(ci − ρi)

]
, (5)

whereωi = λiE[X2
i ] is the second-order load of theith queue.

2.2. Specific static strategies

Several particular static strategies are discussed throughout the rest of this paper. Here, we classify
these strategies:

• Random strategy. Under the random strategy, jobs are assigned to theith queue with a fixed probability
pi, independent of job size. The random strategy is a static strategy such thatFi(x) = F (x) andλi = piλ.
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• Size-interval (SI) strategy. With an SI strategy, job sizes are divided inton distinct, contiguous intervals,
separated byn− 1 thresholds. Jobs in each size interval are assigned to a single queue. We denote by
ξj, j = 1, . . . , n− 1 these thresholds, and letξ0 = 0 andξn = ∞. Theith queue gets all the jobs that
have sizes betweenξm(i)−1 andξm(i), wherem(·) is a one-to-one mapping fromn queues onton size-
intervals, i.e., (m(1),m(2), . . . , m(n)) is a permutation of (1,2, . . . , n). The mappingm(·) indicates
how to map size intervals to queues.

Assuming continuous job-size distributions, with the SI strategy, we have

λi = λ[F (ξm(i)) − F (ξm(i)−1)], ρi = λ

∫ ξm(i)

ξm(i)−1

x dF (x), ωi = λ

∫ ξm(i)

ξm(i)−1

x2 dF (x).

The SI strategy was proposed by Harchol-Balter et al.[9,5] (called as SITA-V in[5] and SITA-E
for the case that each queue receives equal amount of load[9]). The optimality of the SI strategy for
homogeneous systems is discussed in Section3.

• Nested size-interval (NSI) strategy. We propose this strategy in order to generalize the SI strategy.

Definition 1. Suppose the minimum and maximum job sizes assigned to theith queue are denoted byξ(0)
i

andξ(1)
i , respectively. A static strategy is a nested-size-interval (NSI) strategy if, for each pair of queues,

say theith andjth queues, either of the following is satisfied:

(i) ξ(0)
i < ξ

(0)
j ≤ ξ

(1)
j < ξ

(1)
i (the range of thejth queue is nested in the range of theith queue),

(ii) ξ(0)
j < ξ

(0)
i ≤ ξ

(1)
i < ξ

(1)
j (the range of theith queue is nested in the range of thejth queue),

(iii) ξ
(1)
j ≤ ξ

(0)
i or ξ(0)

j ≥ ξ
(1)
i (non-overlapping ranges).

In other words, the intervals of job sizes assigned to one queue either fall inside the intervals assigned
to another queue, or all sizes assigned to one queue are shorter than the sizes assigned to the other queue.
The optimality of the NSI strategy for heterogeneous systems is discussed in Section3.

We can see that, if case (iii) is satisfied for all pairs of queues and neither case (i) nor case (ii) happens,
the static strategy is an SI strategy, hence an SI strategy is a special case of the NSI strategies. Sometimes
only one of cases (i) and (ii) never happens. The following definition imposes additional rules to prohibit
either case (i) or case (ii), or both, for each pair of queues, in order to make an NSI strategy more restricted
and specific.

Definition 2. We say the jth queue can be nested in the ith queue if cases (i) and (iii) inDefinition 1are the
only allowable cases. We call this asymmetric and transitive relation a nesting relation, denoted byj ≺ i.
By symmetry, relationi ≺ j is defined if cases (ii) and (iii) inDefinition 1are the only allowable cases.
If neitherj ≺ i nor i ≺ j is defined for the NSI strategy, case (iii) inDefinition 1 is the only allowable
case.

Fig. 2 shows a set of nesting relations:{A ≺ B,A ≺ C,B ≺ D,C ≺ D} and depicts three valid NSI
strategies that assign interval ranges of job sizes to queues. Note that relationA ≺ D is implied due to
transitivity. In the topmost assignment, jobs assigned to queueA are nested within jobs assigned to queue
D. Jobs assigned to queueB andC are also nested within jobs assigned to queueD. In the middle example,
jobs assigned toA are nested withinB, whose jobs are nested withinD. Jobs assigned to queueC are also
nested withinD. The bottom example shows an SI strategy.
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Fig. 2. Three examples of size interval allocations given by an NSI strategy restricted by a set of relations shown in the graph.

3. Optimal static strategies

We optimize within the class of static strategies.Theorem 3states that the optimal static strategy is
always an SI strategy for homogeneous systems.

Theorem 3. The optimal static strategy for a homogeneous system of FCFS queues is an SI strategy,
with respect to both the mean waiting time and the mean response time.

Harchol-Balter et al.[9] provide an intuitive explanation for why under the SI strategy the mean response
time is small: this strategy drastically reduces the variability of job sizes for each queue. Similarly, the
optimality of the SI strategy stated inTheorem 3might be intuitively explained as follows. Within all
static strategies, strict thresholding might be the best way to divide the original arrival processλF (x) into
n arrival processes with smallest possible job-size variability for each queue. Thus, with an optimal load
partitioning, the SI strategy might be optimal in the entire class of static strategies. Unfortunately, this
explanation is unsatisfactory, since the result does not hold for heterogeneous systems. Here is a counter
example.

Example 4. Consider the scenario that jobs have only three different possible sizes:x1 = θ, x2 = 1 and
x3 = 1/θ, where 0< θ < 1, and the loads of the three kinds of jobs are respectivelyρε, ρ − 2ρε, andρε,
whereρε is a small amount of load such thatρε < ρ − c2, wherec2 is the capacity of the faster one of
two queues.

We have not defined SI strategy for discrete distributions. However, A discrete distribution can be
approximated by a series of continuous distributions, for example the one illustrated inFig. 3(a). The
limit of such series is illustrated inFig. 3(b) – we consider this limit strategy is still an SI strategy.

There are two cases (mappings) for the SI strategy: the slower queue gets either (i) all jobs of size
θ or (ii) all jobs of size 1/θ (since we always haveρε < ρ − c2 < ρ1 andρε < ρ − c2 ≤ ρ − c1 < ρ2).
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Fig. 3. The job-size assignment of an SI strategy for (a) continuous and (b) discrete distributions. The job-size assignment of an
NSI strategy (it is not an SI strategy), for (c) discrete and (d) continuous distributions. Shaded areas are assigned to the slower
queue.

Table 1
Optimal waiting times for the job-size distribution in Example 4

c1 E[WSI]∗ E[WNSI]∗ E[WR]∗

0.5 9.189 (0.45) 9.25 (0.4512) 9.25 (0.45)
0.4 9.081 (0.3549) 9.101 (0.3561) 9.137 (0.3551)
0.3 8.743 (0.2601) 8.728 (0.2614) 8.784 (0.2606)
0.2 8.111 (0.1662) 8.077 (0.1676) 8.136 (0.1669)

Fig. 3(b) shows the case (i). In either case, a portion of jobs of size 1 are also assigned to this slower
queue by random splitting.

Consider an alternative static strategy that assigns only a portion of jobs of size 1 to the slower queue,
as illustrated inFig. 3(c). This is in fact an NSI strategy but not an SI strategy, since it can be approximated
by a series of continuous distributions for example the one illustrated inFig. 3(d).

Letθ = 0.5,ρε = 0.05,ρ = 0.9. The followingTable 1compares the optimalE[W ]’s for the SI strategy,
the alternate NSI strategy and the random strategy. Values in parentheses are optimal load partitionings,
namelyρ∗

1. Note that we assumec1 + c2 = 1 andρ∗
2 + ρ∗

1 = ρ.
As we can see inTable 1, the alternative NSI strategy is better ifc1 is small (forc1 = 0.2 and 0.3).

This shows that, with certain job size distributions and arrival rates, the optimal static strategy will never
be an SI strategy for some heterogeneous systems.

Generalizing SI strategies to restricted NSI strategies, we can find a set of static strategies that contains
the optimal static strategy.

Theorem 5. For a heterogeneous system of FCFS queues, the optimal static strategies (with respect
to the mean waiting time) is an NSI strategy where a slower queue can be nested in a faster queue (cf.
Definition 2).

Let us provide an intuitive explanation for why the optimal SI strategy is probably not an optimal
static strategy for heterogeneous systems. To improve performance, all queues desire variability of jobs
as small as possible. However, the variabilities of jobs for different queues are correlated to each other, so
we have to balance their desires. In a homogeneous system, their desires are equally strong, whereas in
a heterogeneous system, a slower queue has a stronger desire for less job variability than a faster queue,
since the job variability has a stronger effect in deteriorating the performance on a slower queue than on
a faster queue. As the difference between capacities of two queues increases, the desire for a small job
variability from the slower queue gets stronger. When the capacity difference becomes large enough, the
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slower queue gets priority over a faster queue in choosing job sizes. As shown inFig. 3(b) and (c), the
alternative NSI strategy offers the slower queue a size variability of zero, whereas the SI strategy does not.
In short, the optimal static strategy is a strategy that discriminates against the faster queue by assigning
a better interval to the slower queue.

By now, the optimal static strategies for homogeneous and heterogeneous systems are identified but
not proved – we delay the proof ofTheorems 3 and 5to Section5.

4. Mapping of size intervals

Although the optimal SI strategy is not always an optimal static strategy, it is simpler than the general
case of the NSI strategy. Therefore in this section we restrict our study within the set of SI strategies in
a heterogeneous system. The SI strategy has been shown to outperform the random strategy by several
orders of magnitude when the job-size distribution is a heavy-tailed distribution, bounded Pareto in
particular, for homogeneous systems[9]. In this section, we first show some numerical results of SI
strategies for heterogeneous systems, with some particular job-size distributions. These results show
that the mapping of size intervals to the queues, or simply themapping, significantly affects the mean
waiting time, and demonstrate that the problem of finding the best mapping is probably very difficult for
general distributions. Then we present a class of distributions that are mapping-invariant for two-queue
systems.

Three kinds of distributions are used in this section:
Bounded Pareto distribution. A bounded-Pareto distribution has a power-law tail. The CDF isF (x) =

[κ−α − x−α]/[κ−α − η−α], whereκ is the lower bound of the random variable andη is the upper bound.
We set the ratioη/κ to a fixed value (104 by default) and then choose aκ such thatE[X] = 1/µ.

Log-normal distribution. A random variableX has a log-normal distribution if logX is Gaussian
distributed. Its CDF is (1/2)[1 + erf((lnx−m)/(s

√
2))], wherem ands are the mean and deviation of the

Gaussian logX, respectively, and erf(x) = (2/
√
π)
∫ x

0 e−τ2
dτ. We choose anm such thatE[X] = 1/µ.

Weibull distribution. A random variableX has a Weibull distribution ifXα is exponential. Its CDF is
1 − exp(−βxα), whereα ≥ 0. It degenerates to an exponential distribution whenα = 1. We choose aβ
such thatE[X] = 1/µ.

Each of the above has one parameter (α, s, andα respectively) that controls its variability: from heavy-
tailed distributions to approximately deterministic. Also, the coefficient of variation is a monotonic
function of the control parameter for each kind of the distributions.

4.1. Numerical results

We show numerical results of heterogeneous systems under the SI strategy for the above-mentioned
three classes of distributions. We shall see that, for heterogeneous queues, the mapping of size intervals
to queues, namelym(·), greatly affects the waiting time of the SI strategy. Two particular mappings are of
special interest: the ascending mapping and the descending mapping. With the ascending (descending)
mapping, the queues are mapped in the ascending (descending) order of their capacities: the slowest
(fastest) queue gets the first size interval containing shortest jobs. In other words, withc1 ≤ c2 ≤ · · · ≤ cn,
the ascending mapping meansm(i) = i and the descending mapping meansm(i) = n− i+ 1, wherei =
1,2, . . . , n. In a system of two queues, the ascending and descending mappings are the only two mappings.
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Fig. 4. Two heterogeneous queues using SI strategies of two different mappings, with bounded-Pareto distributed job sizes. (a,
b) The optimal mean waiting times as functions of the capacity of the first queue. (c) The ratio of optimal mean waiting times
between the ascending and descending mappings, as functions of the capacity of the slower queue.

Without loss of generality, letE[X] = 1/µ = 1. The numerical results inFigs. 4–6show how the
optimal mean waiting timeE[WSI]∗ changes as the capacity of the first queue changes, for a two-queue
system atρ = 0.8. In Figs. 4(a) and (b), 5(a) and (b) and 6, theX-dimensions are the capacity of the
first queue, and theY-dimensions are the mean waiting time. Since we require a unit total capacity, i.e.,
c1 + c2 = 1, the difference of mean waiting times between the two mappings can be seen by comparing
each curve with its reflex overc1 = 0.5 (clearly the smaller waiting time is better). In order to show this
difference, in Figs. 4(c) and 5(c) we plot the ratio of the optimal mean waiting time under the descending
mapping,E[WSI-D]∗, to that under the ascending mapping,E[WSI-A]∗, as functions of the capacity of the
slower queue (so the range of theX-axis is [0,0.5]).Figs. 4–6are for bounded Pareto job-size distributions,
Weibull job-size distributions, and log-normal job-size distributions, respectively.

As we can see in these figures, the descending mapping is better for bounded-Pareto distributions,
whereas the ascending mapping is better for Weibull distributions (and for the exponential job-size
distribution since it is a special case of Weibull distributions). Similar results can be observed with other
load values. For the log-normal distributions, interestingly, the two mappings are equally good. The
difference between two mappings is on the magnitude of computational errors.

If the variability of job sizes becomes large (corresponding to a smallα) for bounded-Pareto and
Weibull, the difference between optimal mean waiting times of the two mappings becomes very sensitive
to c1. So in reality if we have a heterogeneous system under the SI strategy, the mapping of size intervals
must be taken into account.

Fig. 7 shows the best mapping of size intervals for the system with three heterogeneous queues and
exponential service times, atρ = 0.8. InFig. 7, theX-dimension is the capacity of the slowest queue, with

Fig. 5. With Weibull distributed job-sizes (cf.Fig. 4).
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Fig. 6. The optimal mean waiting time as functions of the capacity of the first queue, for two heterogeneous queues using SI
strategy. The job size distribution is log-normal.

a range of (0,0.33), and theY-dimension is the capacity of the second to the slowest queue, with a range
of (0,0.5). The coordinates of each point indicate a combination of three capacities (sum to one). The
mark of a point represents the best mapping for the corresponding capacity combination. There are six
different mappings but we can see only two kinds of marks in the figure: if the slowest queue has a small
capacity (less than about 0.12), the ascending mapping (1–2–3) is best; if the slowest queue has a larger
capacity (more than 0.16), the best mapping is (2–1–3), i.e., the slowest queue gets the middle-sized jobs
whereas the fastest queue still gets the longest jobs.

From these figures we can see that the best mapping is distribution-dependent, either for heavy-tailed
distributions or for distributions close to a deterministic value. FromFig. 7we notice that, for exponential
distributions, the best mapping depends on the capacity of the slowest queue. In fact, all these job size

Fig. 7. The best mapping for different capacity combinations for three heterogeneous queues using SI strategy, with exponentially
distributed job sizes.
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distributions we studied here are somewhat “regular”; we believe the problem of finding the optimal
mapping for a general distribution is a hard problem, analytically and computationally.

4.2. Mapping-invariant distributions

It can be observed inFig. 6 that the mean waiting times for log-normal job-size distributions seem to
be invariant to the mapping of size intervals in a two-queue system. In fact, this is not a coincidence; we
have the following proposition.

Proposition 6. For a heterogeneous system with two queues, if the partial load ρ(x) = λ
∫ x

0 t dF (t)
satisfies ρ(x) = ρ − ρ(ψ/x) for some positive ψ, then the optimal mean waiting time is independent of
the mapping of queue. Only load partitioning affects the mean waiting time.

Proof. Let ξ be the threshold used in the ascending mapping andξ′ = ψ/ξ be the one used in descending
mapping. Letλi, ρi, ωi be the corresponding quantities under the ascending mapping andλ′

i, ρ
′
i, ω

′
i be

those under the descending mapping. Clearly we haveρ1 = ρ(ξ) = ρ − ρ(ξ′) = ρ′
2 and similarlyρ2 = ρ′

1.
In other words, load partitioning is symmetric for two mappings of queues. Suppose the distribution is
continuous. Taking the derivatives on both sides ofρ(x) = ρ − ρ(ψ/x) (note thatρ(x) = λ

∫ x
0 t dF (t)),

we getf (x) = (ψ2/x4)f (ψ/x), wheref (x) = dF (x)/dx is the probability density function (PDF). Then
we have

λ1 = λ

∫ ξ

0

ψ2

x4
f

(
ψ

x

)
dx = −λ

∫ ξ

0

ψ

x2
f

(
ψ

x

)
d
(
ψ

x

)
= λ

ψ

∫ ∞

ξ′
y2f (y) dy = ω′

1

ψ
.

Similarly we getλ′
2 = ω′

2/ψ. Due to symmetry, we getω1 = ψλ′
1 andω2 = ψλ′

2. Then

E[WSI-A] = 1

2λ

2∑
i=1

λiωi

ci(ci − ρi)
= 1

2λ

2∑
i=1

(
ω′
i

ψ

)
(ψλ′

i)

ci(ci − ρ′
i)

= E[WSI-D],

for anyξ and the correspondingξ′. Therefore their optimums are also same.�

Both the log-normal distribution and the job-size distribution inExample 4satisfyρ(x) = ρ − ρ(ψ/x)
and hence is mapping-invariant in two-queue systems.

5. Proofs on the optimal static strategies

We have shown the main results in Section3 but delayed the proofs to this section. In this section,
we proveTheorems 3 and 5and show another proposition that helps seek the optimal NSI strategy. For
each of the proofs, first we show that the corresponding theorem holds for systems with two queues,
and then extend the result to systems with multiple queues. We use notationαi = 1/[ci(ci − ρi)] to
simplify the equations in the rest of this section. Note that by(5) the mean waiting time of a static
strategy isE[WS] = [∑n

i=1 αiλiωi
]
/(2λ). Job size distributions are assumed to be continuous. For discrete

distributions, we can always argue by continuous approximations.
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First we need the following lemma that shows an inequality between the three quantities,λi, ρi, and
ωi, if an SI strategy is used:

Lemma 7. Let Xi and Xj be two job size distributions and λi, ρi, and ωi (λj, ρj, and ωj) be the
corresponding arrival rate, load and second-order load of Xi (Xj), respectively. If Xi ≤ ξ ≤ Xj holds,
then λi/ρi ≥ λj/ρj and ωi/ρi ≤ ωj/ρj. If Pr[Xi < Xj] > 0, then λi/ρi > λj/ρj and ωi/ρi < ωj/ρj.

Proof. Let Fi(·) andFj(·) be the CDFs ofXi andXj, respectively. Clearly we haveFi(ξ) = 1 and
Fj(ξ) = 0. Then,

λi

ρi
= λ

∫ ξ
0 dFi(x)

λ
∫ ξ

0 x dFi(x)
≥

∫ ξ
0 dFi(x)

ξ
∫ ξ

0 dFi(x)
= 1

ξ
≥ λ

∫∞
ξ dFi(x)

λ
∫∞
ξ x dFi(x)

= λj

ρj
. (6)

Similarly,ωi/ρi ≤ ξ ≤ ωj/ρj. If Pr[Xi < Xj] > 0, i.e., either Pr[Xi < ξ] > 0 or Pr[Xj > ξ] > 0, or both,
holds, then at least one of two inequalities in(6) strictly holds, i.e.,λi/ρi > λj/ρj. Similarly, under the
same condition we haveωi/ρi < ωj/ρj. �

For systems with two queues, consider two actions to improve the mean waiting time: transferring
some load from one queue to the other, or swapping loads between two queues. (Here by saying load
transferring or swapping, we actually mean to transfer or to swap the jobs that constitute the specified
load.)

Load transferring. We transfer some jobs from the second queue to the first queue. Let the arrival rate,
the load, and the second-order load of transferred jobs be�λ, �ρ, and�ω, respectively. They can be
either all positive or all negative (the latter case means we are actually transferring jobs from the first
queue to the second queue). If we assume that the number of transferred jobs are very small, the change
of the mean waiting time due to transferring can be approximated by computing partial derivatives of
E[WS] in (5) with respect toλ, ρ, andω, i.e.,

�(E[WS]) = 1

2λ
{[α1λ1 − α2λ2]�ω + [α1ω1 − α2ω2]�λ+ [c1α

2
1λ1ω1 − c2α

2
2λ2ω2]�ρ}. (7)

Load swapping. We swap some load between two queues. Letλsi , ρ
s
i , andωsi , i = 1,2, be the arrival

rate, the load, and the second-order load that areswapped from theith queue to the other, and letλri , ρ
r
i ,

andωri be the corresponding quantities thatremain in theith queue. Then we have

2λE[WS] = α1λ1ω1 + α2λ2ω2 = α1(λ
r
1 + λs1)(ω

r
1 + ωs1) + α2(λr2 + λs2)(ωr2 + ωs2)

= 2λE[W̃S′
] − (α1 + α2)[λs1 − λs2][ωs1 − ωs2] + [α1λ1 − α2λ2][ωs1 − ωs2]

+ [λs1 − λs2][α1ω1 − α2ω2], (8)

whereE[W̃S′
] = [α1(λr1 + λs2)(ωr1 + ωs2) + α2(λs1 + λr2)(ωs1 + ωr2)]/(2λ) is the mean waiting time after

the swap of loads.

Proof. (Theorem 3) For load swapping, we letρs1 be the load of the jobs aboveξ in the first queue,
for someξ, and letρs2 be the load of jobs belowξ in the second queue, as illustrated by shaded areas
in Fig. 8(a). At ξ = 0, ρs1 = ρ1 > 0 = ρs2, while atξ = ∞, ρs1 = 0< ρ2 = ρs2. Quantitiesρs1 andρs2 are
continuous, monotonically decreasing and increasing functions ofξ, respectively, so they must meet
somewhere. We can find aξ such thatρs1 = ρs2. Assuming so, byLemma 7, we getλs1 ≤ λs2 andωs1 ≥
ωs2.
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Fig. 8. The density function of arrivalsλf (x) (dashed curve) is the sum of two functions,λ1f1(x) andλ2f2(x) (solid curves),
assigned to two queues. (a) After swapping jobs with equal loads between two queues (differently shaded areas), an SI strategy
is obtained. (b) After swapping jobs with equal arrival rates and loads, an NSI strategy is obtained.

Then we consider four conditions:

1. If bothα1λ1 ≥ α2λ2 andα1ω1 ≤ α2ω2 are satisfied, from(8), we have

E[WS] ≥ E[W̃S′
] = E[W̃SI], (9)

sinceλs1 ≤ λs2 andωs1 ≥ ωs2. Note that, after load swapping, the static strategy becomes an SI strategy.
If, before the swapping, the static strategy is not yet an SI strategy, the inequality in(9) strictly holds,
since we have bothλs1 < λs2 andωs1 > ωs2 by Lemma 7.

2. If bothα1λ1 ≤ α2λ2 andα1ω1 ≥ α2ω2 are satisfied, we can swap the first queue and the second queue,
then case 1 is satisfied.

3. If both α1λ1 < α2λ2 and α1ω1 < α2ω2 are satisfied, by(7), as long asc1 ≤ c2, we can continu-
ously transfer jobs from the second queue to the first queue, with any job-size distribution, such
that�(E[WS]) < 0, i.e. the mean waiting time is strictly improving, until eitherα1λ1 ≥ α2λ2 or
α1ω1 ≥ α2ω2 is satisfied. (Note thata1b1 ≤ a2b2 if 0 ≤ a1 ≤ a2 and 0≤ b1 ≤ b2.)

4. If bothα1λ1 > α2λ2 andα1ω1 > α1ω1 are satisfied, by(7), as long asc1 ≥ c2, we can transfer jobs
of any sizes from first queue to the second to improve the mean waiting time strictly, until either
α1λ1 ≤ α2λ2 or α1ω1 ≤ α2ω2 is satisfied.

Note that for homogeneous queues we havec1 = c2. Then one of the four conditions is satisfied.
If either Conditions 3 or 4 is satisfied, we can improve the mean waiting time by continuously trans-
ferring some jobs from one queue to the other until either Conditions 1 or 2 is satisfied. If Condition
2 is satisfied we can swap two queues so that Condition 1 is satisfied. If Condition 1 is satisfied, we
can swap portions of loads of two queues as illustrated inFig. 8(a). After load swapping, the static
strategy becomes an SI strategy, and the mean waiting time is decreased (strictly if it is not an SI
strategy before swapping). In short, for any non-SI static strategy, we can always find an SI strategy
with a smaller mean waiting time. Hence the optimal static strategy for two equal queues is an SI
strategy.

The result can by extended ton queues by pairwise using the process described above to improve the
mean waiting time, until the static strategy converges to an SI strategy. Since for a homogeneous system
E[X̂] is invariant, this result also applies to mean response time.�
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Now we look atTheorem 5. We need to prove a series of lemmas as follows:

Lemma 8. Suppose g(t) is a monotonic positive function in interval [a, b]. For interval (a1, b1) such
that a ≤ a1 < b1 ≤ b and b− a = 2(b1 − a1), suppose g(t) satisfies

∫ b1
a1
g(t) dt = ∫ a1

a g(t) dt + ∫ b
b1
g(t) dt.

Then
∫ b1
a1

dt/g(t) ≤ ∫ a1
a dt/g(t) + ∫ b

b1
dt/g(t).

Proof. The proof uses the convexity of function 1/x for x > 0. Let

h(x) = αx+ β ≡ 1

g(b1) − g(a1)

[
g(b1) − x

g(a1)
+ x− g(a1)

g(b1)

]
,

be a linear function such thath(g(a1)) = 1/g(a1) andh(g(b1)) = 1/g(b1). By the convexity of 1/x and
monotonicity ofg(·), we haveh(g(t)) ≥ 1/g(t) for t ∈ [a1,b1] and h(g(t)) ≤ 1/g(t) for t ∈ [a, a1] ∪
[b1, b]. Then

∫ b1

a1

dt

g(t)
≤
∫ b1

a1

h(g(t)) dt = α

(∫ b1

a1

g(t) dt

)
+ β(b1 − a1)

because of the linearity ofh(·). Similarly (note thatb− a = 2(b1 − a1))

∫ a1

a

dt

g(t)
+
∫ b

b1

dt

g(t)
≥
∫ a1

a

h(g(t)) dt +
∫ b

b1

h(g(t)) dt = α

(∫ b1

a1

g(t) dt

)
+ β(b1 − a1).

With two inequalities above, we complete the proof ofLemma 8. �
Lemma 9. Suppose two thresholds, ξ1 and ξ2, 0 ≤ ξ1 < ξ2, divide the job sizes into three size intervals,
such that ρ2 = ρ1 + ρ3 = ρ/2, where ρi is load of the ith interval. Then, λ2 ≤ λ1 + λ3 if ω2 = ω1 + ω3,
whereas ω2 ≤ ω1 + ω3 if λ2 = λ1 + λ3, where λi and ωi are the arrival rate and the second-order load
of the ith interval, respectively, for i = 1,2,3.

Proof. Let ρ(x) := λ
∫ x

0 t dF (t), and letx(r) := ρ−1(r) be the inverse function ofρ(x). Assumeξ0 = 0
andξ3 = ∞. Then we have, fori = 1,2,3,

λi = λ

∫ ξi

ξi−1

dF (x) =
∫ ξi

ξi−1

1

x
dρ(x) =

∫ ri

ri−1

dr

x(r)
, ωi =

∫ ξi

ξi−1

x dρ(x) =
∫ ri

ri−1

x(r) dr,

whereri = ρ(ξi), in particular,r0 = 0 andr3 = ρ.
Supposeω2 = ω1 + ω3. Let a = r0 = 0, a1 = r1, b1 = r2, b = r3 = ∞, andg(·) = x(·), which is an

increasing function. UsingLemma 8we getλ2 ≤ λ1 + λ3. Supposingλ2 = λ1 + λ3 and usingLemma 8
again withg(·) = 1/x(·), we getω2 ≤ ω1 + ω3. �
Proof. (Theorem 5) Again, first we consider two queues. Without loss of generality, we assumec1 < c2.
Hence thec1 ≥ c2 part of Condition 4 in the proof ofTheorem 3no longer holds. However, we show that
the following replacement of the Condition 4 holds:

4′. If bothα1λ1 > α2λ2 andα1ω1 > α2ω2 are satisfied, we can find a NSI strategy, where the first queue
can be nested in the second queue, i.e., 1≺ 2, provides a lower mean waiting time than the original
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static strategy.

Suppose there are two thresholdsξa andξb such thatξa < ξb. Now we swap load between two queues.
Let ρs1 be the load of the jobs belowξa and aboveξb in the first queue, andρs2 be the load of jobs between
ξa andξb in the second queue, as illustrated by the shaded areas inFig. 8(b). We swap two loads, if
bothρs1 = ρs2 andλs1 = λs2 are satisfied. Then, byLemma 9, we haveωs1 ≥ ωs2. Then, from(8) we get
E[WS] ≥ E[WS′

] = E[W̃NSI]. Note that after swapping, the static strategy becomes an NSI strategy where
the first (slower) queue can be nested in the second (faster) queue, i.e., the slower queue gets the inner range.

For completing the claim in Condition 4′, it remains to show that there are actually suchξa andξb
satisfyingρs1 = ρs2 andλs1 = λs2. First letξa = 0 and findξb such thatρs1 = ρs2. This can be done in the
same way as in the proof ofTheorem 3. At this time,λs1 ≤ λs2 due toLemma 7. Now we shiftξa to the
right on the real axis and also shiftξb to the right accordingly such thatρs1 = ρs2. This can also be done
until ξb goes to infinity. Atξb = ∞ we haveλs1 ≥ λs1 because of once againLemma 7. Then beforeξb
approaches infinity, there must be a value ofξa and the correspondingξb such that bothρs1 = ρs2 and
λs1 = λs2 are satisfied, due to continuity of all these quantities. Hence the claim in Condition 4′ is true.

With Conditions 1, 2, 3, and 4′, in the same way as the argument in the proof ofTheorem 3, it is
proved that, for any static strategy, there is an NSI strategy that improves the mean waiting time, for
two heterogeneous queues. Note again that an SI strategy is a special case of NSI strategies. With this
NSI strategy, the slower queue can be nested in the faster queue, by the claim of Condition 4′. By doing
pairwise load transferring and swapping, this results can be extended to multiple queues. Hence we have
Theorem 5. �

We can see that the key elements of these proofs are the two measures, namelyΛ := αiλi andΩ := αiωi,
for the ith queue, as shown in Conditions 1–4 and 4′. For each pair of queues, generally we have two
scenarios:

(i) One queue has a greaterΛ whereas the other has a greaterΩ (Conditions 1 and 2). In this case,
pairwise swapping of equal amounts of loads, as illustrated inFig. 8(a), improves the mean waiting
time.

(ii) One queue, sayX, gets both a greaterΛ and a greaterΩ than the other queue, sayY (Conditions 3
and Condition 4 or 4′). In this case,

(ii-a) if the capacity ofX is greater than or equal to that ofY, we can transfer some load fromX to Y in
order to improve the mean waiting time;

(ii-b) if the capacity ofX is strictly less than that ofY, load transferring cannot guarantee an improvement
in the mean waiting time. The NSI strategy can be used to improve the mean waiting time: we add
a nesting relation betweenX andY, i.e.,X ≺ Y , and do load swapping as illustrated inFig. 8(b).

From the proof ofTheorem 5, we can observe that Condition 4′ does not actually assume eitherc1 ≥ c2

or c1 < c2 (in Condition 4 we do have such assumption). Hence if Condition 3 is satisfied, alternatively,
we can swap two queues so that Condition 4′ is satisfied, i.e., we can find a better NSI strategy totally
without load transferring. In other words, we can merge case (ii-a) to case (ii-b) and then replace the case
(ii) above with a different operation:
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(ii ′) One queue, sayX, gets both greaterΛ and greaterΩ than the other queue, sayY. The NSI strategy
can be used to improve the mean waiting time: we add a nesting relation betweenX andY, i.e.,
X ≺ Y , and do load swapping as illustrated inFig. 8(b).

Clearly, due to Condition 3, the mean waiting time of this NSI strategy cannot be optimal ifX is not
slower thanY. However, it can be optimal given that the load assigned to each queue cannot be changed.
We summarize this observation with the following proposition. (Note that the mean service time is fixed
if the load partitioning is fixed: cf.(1), and therefore the result also applies to mean response time.)

Proposition 10. For a heterogeneous system with FCFS queues, if the load partitioning is fixed, the
optimal static strategy (for mean waiting time and mean response time) is an NSI strategy with a set of
nesting relations. A relation X ≺ Y is added to this set if Λ and Ω of X are both greater than those of Y.

The difference betweenTheorem 5andProposition 10is that they use a different set of relations. In
Theorem 5, a slower queue can be nested in a faster queue whereas, inProposition 10, a queue with
both greaterΛ and greaterΩ can be nested in the other. Moreover,Proposition 10requires fixed load
partitioning. The implication ofProposition 10is two-fold. First, for fixed load partitioning, in particular
the proportional load partitioning (whereρi = ρci), we can still find an optimal NSI strategy to minimize
mean waiting and response times. Note that the proportional load partitioning is safe (it does not overload
any of the queues as long asρ < 1) in the case that the load of the entire system,ρ, is hard to estimate.
Second, for an NSI strategy, fewer the number of nesting relations is, more simple and approachable the
NSI strategy would be. InTheorem 5, we assume there is a nesting relation for each pair of queues of
unequal capacities. However, by load transferring andProposition 10, we can get an NSI strategy where
a nesting relation exists only if the slower queue has both greaterΛ andΩ. In other words, some nesting
relations can be eliminated so that it becomes easier to search for the optimal static strategy. It is not
always possible to remove all the relations, though, as in the case ofExample 4; but if one manages to do
so, the optimal static strategy degenerates to an SI strategy, and the problem is then simplified to finding
the best mapping and the optimal load partitioning [ρi]ni=1.

6. Conclusion

In this paper, we investigate parallel queueing systems with separate heterogeneous queues, using
stochastic, size-aware, static strategies. For first-come first-serve (FCFS) queues, we prove that there is
a size-interval strategy that optimizes mean response and waiting times within allstatic strategies, if
the system is homogeneous, whereas a counter-example is found for a heterogeneous system. Then we
prove that there is a nested size-interval based strategy that optimizes a heterogeneous system. We also
study the effects of the mapping of size intervals on the mean waiting time with three kinds of job-size
distributions, and show that the best mapping is hard to determine.
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