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Abstract

We consider a cluster of heterogeneous servers, modell @g1 first-come first-serve queues with different
processing speeds. A dispatcher that assigns jobs to the servers takes as input only the size of the arriving job and
the overall job-size distribution. This general model captures the behavior of a variety of real systems, such as web
server clusters. Our goal is to identify assignment strategies that the dispatcher can perform to minimize expected
completion time and waiting time. We show that there exist optimal strategies that are deterministic, fixing the server
to which jobs of particular sizes are always sent. We prove that the optimal strategy for systems with identical servers
assigns a non-overlapping interval range of job sizes to each server. We then prove that when server processing
speeds differ, it is necessary to assign each server a distinct set of intervals of job sizes in order to minimize expected
waiting or response times.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Many systems that can process multiple jobs in parallel fall into a class of systems that are commonly
referred to adispatching systems. A simple illustration of a model for these systems is depictdedgnl
In a dispatching system, jobs arrive afigpatcher, which must immediately decide the server to which
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the job is assigned. Each server has a separate queue in which it stores jobs that it was assigned by tt
dispatcher, and a separate processor that processes its assigned jobs. We refer to the decision proce
used by the dispatcher to assign jobs to various servers alspheching strategy, or simply strategy
for short. The choice of strategy depends upon the information available to the dispatcher when it makes
a selection (e.g., size of the received job, number of jobs waiting in each of the servers) and upon the
optimization goal of the system.

In this paper, we investigakeate-free, size-aware dispatching strategies féabmogeneous andhetero-
geneous systems that minimize expected waiting time and completion time of arriving fodxg-free
means that the dispatcher uses neither the current status of the queues, nor the past history of assig
ments when deciding where to place an arriving job. This assumption is traditionally @aliedn the
literature.Size-aware means that the dispatcher uses the size of the arriving job (i.prdhessing time
that this job requires from the server) and the overall job-size distribution as input to select the server
to which the job is sent. &omogeneous system is one in which all servers are configured identically,
otherwise the system igterogeneous. Arich class of systems are best modeled as state-free, size-aware
dispatching systems. Some examples are:

o Web delivery systems. Web providers commonly cluster a set of servers together to serve requests. A
simple way to assign jobs to servers is to distribute contents to multiple servers (e.g., put HTML files
on one server and image files on another), using different host names in corresponding URLs. The
system is naturally state-free and there is no explicit dispatcher. Since the size of each file is known in
advance, it is possible to find a better way to distribute files to servers so that the expecting response
time of the entire system is reduced.

® Routing in content distribution networks. Load-balanced routing allows an intermediate node to assign
an arriving data chunk to any of several outgoing paths. A controlling “pushback” mechanism that
informs upstream nodes of current downstream load, while useful, is difficult to implement efficiently
in practice. However, a local, static dispatching strategy based on long-term statistics is very useful
and easily implemented for such systems.

e Database systems with multiple servers. There are usually many different access paths to retrieve
data in a database system. Modern database management systems estimate the processing time |
each access path to make a good choice. With multiple servers, this decision can be performed by the
dispatcher where the dispatcher uses the estimated processing time to choose a server for the actu
data retrieval.

State-free, size-aware dispatchers are interesting and important because of the ease with which th
dispatcher can be implemented. Dispatchers that utilize additional state (history of arriving jobs, or the
current states of the queues) can likely outperform their static counterparts as long as the information
used (such as the current state of the queues) is not significantly d¢ld@jetHowever, it is unclear
whether the expected gains in performance are worth the added complexity in implementation.

The paper proves several important results about the optimality of a variety of strategies that attempt
to minimize job waiting and completion times for first-come first-serve (FCFS) queues. An important
class of deterministic strategies we consideriat@val-based strategies, where each server is assigned
all jobs whose processing times fall within a distinct, continuous interval of processing times.

We show the following results in this paper: (1) When the dispatch system is comprised of a set of
homogeneous servers, then there is in fact an interval-based strategy that is optimal amongst all stati
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strategies. (2) When the system is comprised of a set of heterogeneous servers, then there need no
exist an interval-based strategy that is optimal. (3) A simple generalization of the class of interval-based
strategies that usesred intervals produces a class of strategies that does in fact contain an optimal
static strategy for a system comprised of a set of heterogeneous servers. In addition, we also focus on
identifying the best or optimal strategy within the class of interval-based strategies. In heterogeneous
settings, the optimal strategy must select not only the boundaries of the intervals, but must also determine
the mapping of intervals to the (heterogeneous) servers. While we have not yet identified an optimal
strategy, we show through experimentation using a variety of traditional job size distributions that an
optimal strategy depends heavily on the job size distribution.

1.1. Related work

If a shared queue is used and the dispatcher follows the first-come first-serve order and assigns jobs
to servers whenever they are idle, then the system is a traditddn@d/s or M/ G /s queueing system.
The homogeneous?/M/s system is well studied and can be found in many textbooks,[4lgOn
the other hand, there are only approximations of the mean response time for homogkfi€ous
systemd7]. With separate queues and exponential service times, Wifs&rand Ephremides et al.
[6] analyze optimal dynamic strategies. Exponential service times are often assumed in the study of
the heterogeneous servers. With separate heterogeneous queues and exponential service times, Cho
and Kohler[3] compare three dynamic strategies with the random strategy. With the random static
strategy, Buzen and Chdg] give the optimal load partitioning for general services. Ni and Hwang
[11] analyze the optimal load partitioning for multiple classes of exponential service times.[Blorst
considers the generalized case in which the weighted sum of the mean waiting times for multiple classes
of generally distributed jobs is minimized. Haj§& considers two heterogeneous queues where the
jobs departing from one queue may be sent to the other with a certain probability. Tantawi and Towsley
[14] study a static decentralized probabilistic strategy where each queue can transfer some jobs to other
queues with a communication delay. The size-interval strategy is proposed and studied by Harchol-
Balter et al.[9,5]. Oida et al. numerically study the size-interval strategy with a finite set of jobs and
show that the performance of size-interval strategy is close to the solution of the corresponding optimal
deterministic problem under heavy traffic for homogenefdi® and two-queue heterogenedls]
systems.

The rest of the paper is organized as follows. In SecBave formulate the problem. In Sectiéh
we analyze the optimal size-aware strategies. In Sedtiva show some numerical results of the mean
waiting times for three different classes of job-size distributions, and study the best mapping of size
intervals. In Sectio® we give proofs for optimality. Finally we conclude in Secti@n

2. Preliminaries and problem formulation

To initiate our study oftate-free, size-aware strategies for paralléleterogeneous servers withveparate
gueues, we first introduce the notation we will use throughout the remainder of the paper.

The capacity of a queue is the maximal amount of processing that can be performed in a unit of time
by the server associated with that queue. This is a formal measure of the processing speed. We denote
by the random variabl# the size of a job (the service time in a queue of unit capacity), ang(byits
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cumulative distribution function (CDF). For a queue of capacjtthe service time of a job of sizZéis
X/c. The arrival rate of jobs to the entire system (of all queues) is denotedTe waiting and response
times are denoted by random variablésndT, respectively. The latter is also known as the completion
time.

Theload is defined to bep = AE[X] = A/, whereu = 1/E[X] is the average departure rate of jobs
from a queue with unit capacity. Load measures the average amount of processing that can be done i
a unit of time. We assume that the load for a queue in the steady state does not exceed its capacity
i.e., p < c. We letw = AE[X?]. This quantity is important and heavily used in the rest of the paper —
it measures the performance of a first-come first-serve queue. We callsitichel-order load, in the
sense thap = AE[X] is the (first-order) load, and the arrival rate= » E[ X°] can be considered as the
zeroth-order load.

2.1. Dispatching system model

Let us now define the class of dispatching strategies upon which we focus in this paper. We assume tha
there are: parallel queues in the system and the capacity oftthgueue ig;. Without loss of generality,
we assume that the sum of the capacities is 1,}¥.,,¢; =1. If ¢; =1/nforalli=1,...,n, the
system isiomogeneous, otherwise it iSieterogeneous. A stochastic, size-aware, static strategy, or simply
a static strategy, only uses the size of a job to select the queue that processes that job. The queue to
which a job of a given size is assigned may be selected either deterministically (using the size of the
job) or at random (without considering the size of the job). Such strategiesiargree: neither history
records, current states of the queues, nor sequence numbers of the arrivals are used by these types
strategies.

We assume that jobs in a single queue are serviced in the first-come first-serve (FCFS) order. We alsc
assume the arrivals of jobs are Poisson and job sizes are independent, identically-distributed (1ID). Note
that each of the queues is modeled ad&iG /1-FCFS queue, although the job size distribution for each
gueue can differ from the distribution of the aggregate queueing system.

We denote by the random variahlg the size of a job assigned to thih queue, and its CDF by
Fi(x). Note thath = >"7_; A;, wherej,; is the arrival rate of théth queue. We then have;_; A; Fi(x) =
AF(x). Note that functiort F'(-) sufficiently describes both the Poisson arrival process and the job-size
distribution:A F(x) is the arrival rate of jobs whose sizes are shorter than or equahtence its derivative
Af (x) is thedensity function of the arrival rate for job sizex. A static strategy, therefore, is equivalent to
an algorithm that divides functionF (x) (or A f(x)) to a sum o parts, i.e.y ", A, F;(x) (or >4 A; f(x),
respectively), each of which is assigned to a queue. The performance of the system is evaluated by the
mean response time Of main waiting time on the per-job basis.

We denote the service time of tit queue byX; that isX; /c;. Also, we let random variabl® be the
overall service time of the entire system. Taking expectations per job, we get

pgg =y B g XL 25 &)

i=1 i=1 Ci A i=1 Ci

wherep; = A;E[X;] is the load of theth queue. We refer to the vectigr;]”_,; (such thap = >"7_, p;) as
load partitioning, which indicates the portion of the total load that each queue is assigned. The overall
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Fig. 1. A dispatcher assigns jobs to multiple queues with different processing speeds.

mean waiting time and the overall mean response time are, respectively,

1 n
E[W] = > AEIW], ()
i=1
1Z N
E[T] = 3> AE[T] = E[W] + E[X], 3)
i=1

whereE[W;]andE[T;] are the mean waiting time and the mean response time dfthaeue, respectively.
ForasingleV/ G /1-FCFS queue, the mean waiting time is (scaled from the Pollaczek-Khintchine formula

[4])
AE[X?]  w
2c(c—p)  2c(c—p)’

wherew = AE[X?]. From (2) and (4) the mean waiting time for a heterogeneous system using a static
strategy is

E[W =) %
i=1

E[W] = 4)

ME[X?]
2ci(ci — pi)

2=k ®

wherew; = A;E[X?] is the second-order load of tlith queue.

2.2. Specific static strategies

Several particular static strategies are discussed throughout the rest of this paper. Here, we classify
these strategies:

e Random strategy. Under the random strategy, jobs are assigned tittgueue with a fixed probability
pi,»independent ofjob size. The random strategy is a static strategy suéi(iat F(x)andir; = p;A.
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o Size-interval (SI) strategy. With an Sl strategy, job sizes are divided intdistinct, contiguous intervals,
separated by — 1 thresholds. Jobs in each size interval are assigned to a single queue. We denote by
¢, j=1,...,n—1these thresholds, and lgt= 0 andg, = co. Theith queue gets all the jobs that
have sizes betweel,;)—1 andé,,;), wherem(-) is a one-to-one mapping fromqueues onta size-
intervals, i.e., £2(1), m(2), ..., m(n)) is a permutation of (12, ..., n). The mappingn(-) indicates
how to map size intervals to queues.

Assuming continuous job-size distributions, with the SI strategy, we have

gm(i) Sm(i)
ri = MFEnw) — Fénp-1]1,  pi= k/é xdF(x), o= k/é x*dF(x).
m(i)—1 m(i)—1
The Sl strategy was proposed by Harchol-Balter ef%gb] (called as SITA-V in[5] and SITA-E
for the case that each queue receives equal amount of9ad he optimality of the Sl strategy for
homogeneous systems is discussed in Seétion
o Nested size-interval (NSI) strategy. \We propose this strategy in order to generalize the Sl strategy.

Definition 1. Suppose the minimum and maximum job sizes assigned idtlhjeeue are denoted 559)
andéfl), respectively. A static strategy is a nested-size-interval (NSI) strategy if, for each pair of queues,
say theith andjth queues, either of the following is satisfied:

0] gl.(o) < 550) < 551) < sl.(l) (the range of thgth queue is nested in the range of tttequeue),
(i) & < £® <& < £ (the range of théth queue is nested in the range of jtrequeue),
iy &0 < 9 or £” > £ (non-overlapping ranges).

In other words, the intervals of job sizes assigned to one queue either fall inside the intervals assignec
to another queue, or all sizes assigned to one queue are shorter than the sizes assigned to the other que
The optimality of the NSI strategy for heterogeneous systems is discussed in Section

We can see that, if case (iii) is satisfied for all pairs of queues and neither case (i) nor case (ii) happens,
the static strategy is an Sl strategy, hence an Sl strategy is a special case of the NSI strategies. Sometim
only one of cases (i) and (ii) never happens. The following definition imposes additional rules to prohibit
either case (i) or case (ii), or both, for each pair of queues, in order to make an NSI strategy more restricted
and specific.

Definition 2. We say the jth queue can be nested in the ith queue if cases (i) andiefimtion lare the
only allowable cases. We call this asymmetric and transitive relation a nesting relation, dengted by
By symmetry, relatiori < j is defined if cases (ii) and (iii) iDefinition 1are the only allowable cases.
If neither j < i nori < j is defined for the NSI strategy, case (iii) Definition 1is the only allowable
case.

Fig. 2shows a set of nesting relatioqst < B, A < C, B < D, C < D} and depicts three valid NSI
strategies that assign interval ranges of job sizes to queues. Note that rdlatidn is implied due to
transitivity. In the topmost assignment, jobs assigned to gaeue nested within jobs assigned to queue
D. Jobs assigned to queBandC are also nested within jobs assigned to queLia the middle example,
jobs assigned ta are nested withiB, whose jobs are nested withih Jobs assigned to queGeare also
nested withinD. The bottom example shows an SI strategy.
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job size

[ o | alpls | c | b
A, B, and C fill in gaps of D

o | sfafs [pfc v
A, B, Cfill in gaps of D; A fills in the gap of B

L » | 8 [ ¢ [0

Each queue gets a single interval: no gaps
Fig. 2. Three examples of size interval allocations given by an NSI strategy restricted by a set of relations shown in the graph.

3. Optimal static strategies

We optimize within the class of static strategi€éheorem 3states that the optimal static strategy is
always an Sl strategy for homogeneous systems.

Theorem 3. The optimal static strategy for a homogeneous system of FCFS queues is an SI strategy,
with respect to both the mean waiting time and the mean response time.

Harchol-Balter et a[9] provide an intuitive explanation for why under the Sl strategy the mean response
time is small: this strategy drastically reduces the variability of job sizes for each queue. Similarly, the
optimality of the Sl strategy stated theorem 3might be intuitively explained as follows. Within all
static strategies, strict thresholding might be the best way to divide the original arrival prdda3nto
n arrival processes with smallest possible job-size variability for each queue. Thus, with an optimal load
partitioning, the Sl strategy might be optimal in the entire class of static strategies. Unfortunately, this
explanation is unsatisfactory, since the result does not hold for heterogeneous systems. Here is a countel
example.

Example 4. Consider the scenario that jobs have only three different possible sizesf, x, = 1 and
x3 = 1/6, where O< 6 < 1, and the loads of the three kinds of jobs are respectpgly — 2., andp,
wherep, is a small amount of load such that < p — ¢», wherec; is the capacity of the faster one of
two queues.

We have not defined Sl strategy for discrete distributions. However, A discrete distribution can be
approximated by a series of continuous distributions, for example the one illustrafégl B(a). The
limit of such series is illustrated iRig. 3(b) — we consider this limit strategy is still an Sl strategy.

There are two cases (mappings) for the Sl strategy: the slower queue gets either (i) all jobs of size
6 or (ii) all jobs of size Y6 (since we always have, < p —co < prandp. < p—c2 < p —c1 < p2).
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Fig. 3. The job-size assignment of an Sl strategy for (a) continuous and (b) discrete distributions. The job-size assignment of an
NSI strategy (it is not an Sl strategy), for (c) discrete and (d) continuous distributions. Shaded areas are assigned to the slowe
queue.

Table 1

Optimal waiting times for the job-size distribution in Example 4

1 E[WSI]* E[wNSI]* E[WR]*

0.5 9.189 (0.45) 9.25 (0.4512) 9.25 (0.45)

0.4 9.081 (0.3549) 9.101 (0.3561) 9.137 (0.3551)
0.3 8.743 (0.2601) 8.728 (0.2614) 8.784 (0.2606)
0.2 8.111 (0.1662) 8.077 (0.1676) 8.136 (0.1669)

Fig. 3(b) shows the case (i). In either case, a portion of jobs of size 1 are also assigned to this slower
queue by random splitting.

Consider an alternative static strategy that assigns only a portion of jobs of size 1 to the slower queue,
as illustrated irFig. 3(c). Thisis in fact an NSl strategy but not an Sl strategy, since it can be approximated
by a series of continuous distributions for example the one illustratedyirs(d).

Letd = 0.5,p. = 0.05,p = 0.9. The followingTable lcompares the optim@[ W]'s for the Sl strategy,
the alternate NSI strategy and the random strategy. Values in parentheses are optimal load partitionings
namelyp;. Note that we assumg + c; = 1 andps + pj = p.

As we can see iTable ] the alternative NSI strategy is betterif is small (forc; = 0.2 and 0.3).

This shows that, with certain job size distributions and arrival rates, the optimal static strategy will never
be an Sl strategy for some heterogeneous systems.

Generalizing Sl strategies to restricted NSI strategies, we can find a set of static strategies that contain:
the optimal static strategy.

Theorem 5. For a heterogeneous system of FCFS queues, the optimal static strategies (with respect
to the mean waiting time) is an NSI strategy where a slower queue can be nested in a faster queue (cf.
Definition 2).

Let us provide an intuitive explanation for why the optimal Sl strategy is probably not an optimal
static strategy for heterogeneous systems. To improve performance, all queues desire variability of jobs
as small as possible. However, the variabilities of jobs for different queues are correlated to each other, sc
we have to balance their desires. In a homogeneous system, their desires are equally strong, whereas
a heterogeneous system, a slower queue has a stronger desire for less job variability than a faster queu
since the job variability has a stronger effect in deteriorating the performance on a slower queue than on
a faster queue. As the difference between capacities of two queues increases, the desire for a small jo
variability from the slower queue gets stronger. When the capacity difference becomes large enough, the
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slower queue gets priority over a faster queue in choosing job sizes. As sh&im Bfb) and (c), the
alternative NSI strategy offers the slower queue a size variability of zero, whereas the Sl strategy does not.
In short, the optimal static strategy is a strategy that discriminates against the faster queue by assigning
a better interval to the slower queue.

By now, the optimal static strategies for homogeneous and heterogeneous systems are identified but
not proved — we delay the proof @heorems 3 and & Sections.

4. Mapping of size intervals

Although the optimal Sl strategy is not always an optimal static strategy, it is simpler than the general
case of the NSI strategy. Therefore in this section we restrict our study within the set of Sl strategies in
a heterogeneous system. The Sl strategy has been shown to outperform the random strategy by several
orders of magnitude when the job-size distribution is a heavy-tailed distribution, bounded Pareto in
particular, for homogeneous systef®3. In this section, we first show some numerical results of Si
strategies for heterogeneous systems, with some particular job-size distributions. These results show
that the mapping of size intervals to the queues, or simplyridyging, significantly affects the mean
waiting time, and demonstrate that the problem of finding the best mapping is probably very difficult for
general distributions. Then we present a class of distributions that are mapping-invariant for two-queue
systems.

Three kinds of distributions are used in this section:

Bounded Pareto distribution. A bounded-Pareto distribution has a power-law tail. The CDFig =
[k~ — x7*]/[x~* — n~%], wherek is the lower bound of the random variable ani$ the upper bound.

We set the ratia)/« to a fixed value (1Hby default) and then choosecasuch thatE[ X] = 1/u.

Log-normal distribution. A random variableX has a log-normal distribution if log is Gaussian
distributed. Its CDF is (12)[1 + erf((Inx — m)/(s+/2))], wherem ands are the mean and deviation of the
Gaussian logX, respectively, and etff = (2//7) [y e dr. We choose am such thatE[X] = 1/u.

Weibull distribution. A random variablé has a Weibull distribution iiX“ is exponential. Its CDF is
1 — exp(—pBx*), wherex > 0. It degenerates to an exponential distribution whea 1. We choose #
such thatE[X] = 1/u.

Each of the above has one paramedes{anda respectively) that controls its variability: from heavy-
tailed distributions to approximately deterministic. Also, the coefficient of variation is a monotonic
function of the control parameter for each kind of the distributions.

4.1. Numerical results

We show numerical results of heterogeneous systems under the Sl strategy for the above-mentioned
three classes of distributions. We shall see that, for heterogeneous queues, the mapping of size intervals
to queues, namely(-), greatly affects the waiting time of the Sl strategy. Two particular mappings are of
special interest: the ascending mapping and the descending mapping. With the ascending (descending)
mapping, the queues are mapped in the ascending (descending) order of their capacities: the slowest
(fastest) queue gets the first size interval containing shortest jobs. In other words, with < --- < ¢,,
the ascending mapping mean§) = i and the descending mapping meai($) =n — i + 1, wherel =
1,2,...,n.Inasystem of two queues, the ascending and descending mappings are the only two mappings.
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Fig. 4. Two heterogeneous queues using Sl strategies of two different mappings, with bounded-Pareto distributed job sizes. (a
b) The optimal mean waiting times as functions of the capacity of the first queue. (c) The ratio of optimal mean waiting times
between the ascending and descending mappings, as functions of the capacity of the slower queue.

Without loss of generality, IeE[X] = 1/u = 1. The numerical results iRigs. 4—6show how the
optimal mean waiting timé&[WS']* changes as the capacity of the first queue changes, for a two-queue
system atp = 0.8. In Figs. 4(a) and (b), 5(a) and (b) and 6, ffielimensions are the capacity of the
first queue, and th&-dimensions are the mean waiting time. Since we require a unit total capacity, i.e.,
c1 + ¢ = 1, the difference of mean waiting times between the two mappings can be seen by comparing
each curve with its reflex over, = 0.5 (clearly the smaller waiting time is better). In order to show this
difference, in Figs. 4(c) and 5(c) we plot the ratio of the optimal mean waiting time under the descending
mapping,E[ WS"P]*, to that under the ascending mappivS"A]*, as functions of the capacity of the
slower queue (so the range of exis is [Q 0.5]). Figs. 4—6@are for bounded Pareto job-size distributions,
Weibull job-size distributions, and log-normal job-size distributions, respectively.

As we can see in these figures, the descending mapping is better for bounded-Pareto distributions
whereas the ascending mapping is better for Weibull distributions (and for the exponential job-size
distribution since it is a special case of Weibull distributions). Similar results can be observed with other
load values. For the log-normal distributions, interestingly, the two mappings are equally good. The
difference between two mappings is on the magnitude of computational errors.

If the variability of job sizes becomes large (corresponding to a sa)albr bounded-Pareto and
Weibull, the difference between optimal mean waiting times of the two mappings becomes very sensitive
toc;. So in reality if we have a heterogeneous system under the Sl strategy, the mapping of size intervals
must be taken into account.

Fig. 7 shows the best mapping of size intervals for the system with three heterogeneous queues anc
exponential service times, at= 0.8. InFig. 7, theX-dimension is the capacity of the slowest queue, with

e Waibull, p=0.8, g=1 T T 7 20 T T T T 2 T T T T T T T
350| P H Weibull, p=0.8, p=1 ‘<.—. Weibull, p=0.8, p=1 K
/ L 1.8} =0.3 0.2 E
3001 - 15 4 @ 0.4
2501 1 =04 515- ]
=3 = e w 1=0.5
= 200} 1 =10} .
ERES =0.15 H E T4E; =08 i
— . 0 -
1007. 02 ..+ T B pooe q1 =12k =08 |
]| el » =10 o D e 3
0 it T L e T 0 L 1 L L 1 T SR TR N~ . N L £
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.050.1 0.150.2 0.250.3 0.350.4 0450.5
(a) ¢4 (b) ¢ © ¢

Fig. 5. With Weibull distributed job-sizes (dfig. 4).
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Fig. 6. The optimal mean waiting time as functions of the capacity of the first queue, for two heterogeneous queues using Sl
strategy. The job size distribution is log-normal.

a range of (00.33), and ther-dimension is the capacity of the second to the slowest queue, with a range
of (0, 0.5). The coordinates of each point indicate a combination of three capacities (sum to one). The
mark of a point represents the best mapping for the corresponding capacity combination. There are six
different mappings but we can see only two kinds of marks in the figure: if the slowest queue has a small
capacity (less than about 0.12), the ascending mapping (1-2-3) is best; if the slowest queue has a larget
capacity (more than 0.16), the best mapping is (2—1-3), i.e., the slowest queue gets the middle-sized jobs
whereas the fastest queue still gets the longest jobs.

From these figures we can see that the best mapping is distribution-dependent, either for heavy-tailed
distributions or for distributions close to a deterministic value. FFagn 7 we notice that, for exponential
distributions, the best mapping depends on the capacity of the slowest queue. In fact, all these job size
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Fig. 7. The best mapping for different capacity combinations for three heterogeneous queues using Sl strategy, with exponentially
distributed job sizes.
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distributions we studied here are somewhat “regular”; we believe the problem of finding the optimal
mapping for a general distribution is a hard problem, analytically and computationally.

4.2. Mapping-invariant distributions

It can be observed iRig. 6that the mean waiting times for log-normal job-size distributions seem to
be invariant to the mapping of size intervals in a two-queue system. In fact, this is not a coincidence; we
have the following proposition.

Proposition 6. For a heterogeneous system with two queues, if the partial load p(x) = A [g t dF(t)
satisfies p(x) = p — p(¥/x) for some positive r, then the optimal mean waiting time is independent of
the mapping of queue. Only load partitioning affects the mean waiting time.

Proof. Leté be the threshold used in the ascending mappingagady,/& be the one used in descending
mapping. Lety;, p;, w; be the corresponding quantities under the ascending mapping; apid »; be

those under the descending mapping. Clearly we pave p(§) = p — p(&') = p, and similarlyp, = p].

In other words, load partitioning is symmetric for two mappings of queues. Suppose the distribution is
continuous. Taking the derivatives on both sidep@f) = p — p(¥/x) (note thatp(x) = A [5 tdF (7)),

we getf(x) = (¥2/x* f(¥/x), where f(x) = dF(x)/dx is the probability density function (PDF). Then

we have

e Lo 2 (2)o2) =3 [ e

Similarly we get\, = /. Due to symmetry, we get; = yA; andw, = ¢A5. Then

1 2. Ao 1 2 () (Wa)
E[WSHA] = — D @i L (w) — E[WS'D],
2n i cilci—pi) 20 cilei — pj)

for any& and the corresponding. Therefore their optimums are also same.]

Both the log-normal distribution and the job-size distributiofeample 4satisfyp(x) = p — p(¥/x)
and hence is mapping-invariant in two-queue systems.

5. Proofs on the optimal static strategies

We have shown the main results in Sectibhut delayed the proofs to this section. In this section,
we proveTheorems 3 and &nd show another proposition that helps seek the optimal NSI strategy. For
each of the proofs, first we show that the corresponding theorem holds for systems with two queues,
and then extend the result to systems with multiple queues. We use natatiod/[c;(c; — p;)] tO
simplify the equations in the rest of this section. Note that{hythe mean waiting time of a static
strategy isE[WS] = [YI_; aihiw;] /(21). Job size distributions are assumed to be continuous. For discrete
distributions, we can always argue by continuous approximations.
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First we need the following lemma that shows an inequality between the three quahtjtigsand
w;, if an Sl strategy is used:

Lemma 7. Let X; and X; be two job size distributions and A;, p;, and w; (A;, pj, and w;) be the
corresponding arrival rate, load and second-order load of X; (X ;), respectively. If X; < & < X holds,
then Ai/p; > Aj/pjand w;i/p; < wj/p;. If Pr[X; < X;] > O,then X;/p;i > Aj/pjand w;/p; < w;j/p;.

Proof. Let Fi(-) and F;(-) be the CDFs ofX; and X ;, respectively. Clearly we havg;(§) =1 and
F;(¢) = 0. Then,

hi _ O fg ARG fgdF() 1 ALTARG) 4 6)
pi A fExdF(x) T EfEdF(x) £ ASTxdE(x)  p;

Similarly,w;/p; <& < w;/p;.IfPr[X; < X;] > 0,i.e., eitherPif; < £] > OorPr[X; > & > 0O, orboth,
holds, then at least one of two inequalitieg@) strictly holds, i.e.A;/p; > A;/p;. Similarly, under the
same condition we have;/p; < w;/p;. [

For systems with two queues, consider two actions to improve the mean waiting time: transferring
some load from one queue to the other, or swapping loads between two queues. (Here by saying load
transferring or swapping, we actually mean to transfer or to swap the jobs that constitute the specified
load.)

Load transferring. We transfer some jobs from the second queue to the first queue. Let the arrival rate,
the load, and the second-order load of transferred job&’heAp, and Aw, respectively. They can be
either all positive or all negative (the latter case means we are actually transferring jobs from the first
gueue to the second queue). If we assume that the number of transferred jobs are very small, the change
of the mean waiting time due to transferring can be approximated by computing partial derivatives of
E[WS] in (5) with respect to., p, andw, i.e.,

1
A(E[W®]) = 5{[%%1 — a2h2] Aw + [@1w1 — aawa] Ak + [c1a5hw1 — coaghowa] Ap). (7)

Load swapping. We swap some load between two queues.Aiep;, andw;, i = 1, 2, be the arrival
rate, the load, and the second-order load thatapped from theith queue to the other, and let, of,
andw! be the corresponding quantities thatain in theith queue. Then we have

2LE[WS] = aadiwr + azhowz = aa (M) 4+ A)(@] + @}) + a2y + 25) (@) + )
= 2.E[W®] — (a1 + @2)[ — A3l @} — 03] + [@1h1 — azh][w] — w3]
+[21 = A3l — a2w7], (8)
where E[WS] = [a1(M] + A9 (@] + @5) + aa(M] + A5)(w] + @5)]/(21) is the mean waiting time after
the swap of loads.

Proof. (Theorem 3 For load swapping, we let] be the load of the jobs abowein the first queue,

for someg, and letp? be the load of jobs belo in the second queue, as illustrated by shaded areas
in Fig. 8@). Até =0, pj = p1 > 0= p3, while at = oo, p] = 0 < p2 = p5. Quantitiesp] andp} are
continuous, monotonically decreasing and increasing functior§s mfspectively, so they must meet
somewhere. We can find&such thato] = p3. Assuming so, byemma 7 we getij < 15 andwf >
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Density of arrival rate
Density of arrival rate
=

(a) g X (job size) (b) g £, x(job size)

Fig. 8. The density function of arrivabsf(x) (dashed curve) is the sum of two functionsfi(x) andx, f>(x) (solid curves),
assigned to two queues. (a) After swapping jobs with equal loads between two queues (differently shaded areas), an Sl strateg
is obtained. (b) After swapping jobs with equal arrival rates and loads, an NSl strategy is obtained.

Then we consider four conditions:

1. If bothairi > ap)y andaiwr < arw, are satisfied, froni8), we have
E[WS] > E[W®] = E[W®, )

sincer] < A5 andw] > 3. Note that, after load swapping, the static strategy becomes an SI strategy.
If, before the swapping, the static strategy is not yet an Sl strategy, the inequ@jsinictly holds,
since we have both] < 15 andwj > w5 by Lemma 7

2. Ifbothair; < ap)r andaiw; > aow, are satisfied, we can swap the first queue and the second queue,
then case 1 is satisfied.

3. If both a141 < ao)r and 1wy < arwy are satisfied, by(7), as long as; < ¢, we can continu-
ously transfer jobs from the second queue to the first queue, with any job-size distribution, such
that A(E[W9]) < 0, i.e. the mean waiting time is strictly improving, until eithefi, > as), or
a1w1 > aowo is satisfied. (Note that1by < axb, if 0 < ay < ar and 0< by < by.)

4. If bothaih, > apro andaiwy > aiw; are satisfied, by7), as long ag; > c¢p, we can transfer jobs
of any sizes from first queue to the second to improve the mean waiting time strictly, until either
a1h1 < asho Oraiw1 < asws IS satisfied.

Note that for homogeneous queues we hayve- c,. Then one of the four conditions is satisfied.
If either Conditions 3 or 4 is satisfied, we can improve the mean waiting time by continuously trans-
ferring some jobs from one queue to the other until either Conditions 1 or 2 is satisfied. If Condition
2 is satisfied we can swap two queues so that Condition 1 is satisfied. If Condition 1 is satisfied, we
can swap portions of loads of two queues as illustrateHign 8@a). After load swapping, the static
strategy becomes an Sl strategy, and the mean waiting time is decreased (strictly if it is not an Sl
strategy before swapping). In short, for any non-SI static strategy, we can always find an Sl strategy
with a smaller mean waiting time. Hence the optimal static strategy for two equal queues is an Sl
strategy.

The result can by extended taqueues by pairwise using the process described above to improve the
mean waiting time, until the static strategy converges to an Sl strategy. Since for a homogeneous systen
E[X] is invariant, this result also applies to mean response tinig.
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Now we look atTheorem 5We need to prove a series of lemmas as follows:

Lemma 8. Suppose g(t) is a monotonic positive function in interval [a, b]. For interval (a1, b1) such
thata < a1 < by < bandb — a = 2(by — a1), suppose g(t) satisfies fabll g(r)de = [ g(r)dr + fbbl g(r) dr.

Then [, dt/g(t) < [;dt/g(0) + [y, di/g(2).
Proof. The proof uses the convexity of functiofdfor x > 0. Let

1 [g(bl) — X X 8(01)}
g(b1) — gla1) L gla1) gb) 1’

be a linear function such tha(g(a1)) = 1/¢(a1) andh(g(b1)) = 1/g(b1). By the convexity of 1x and
monotonicity of g(-), we haveh(g(r)) > 1/g(¢) for ¢ € [a1 b1] and h(g(?)) < 1/g(¢) for ¢ € [a, a;] U
[b1, b]. Then

/a 20 = / h(g(®))dt = o (/ 10 dt) + B(b1 — az)

because of the linearity @f(-). Similarly (note thab — a = 2(by — ay))

ar d b d
| o /bg(i)—/ heO)dr + / h(g(t))dt—a( / g(t)dz>+ﬁ<bl—a1)

With two inequalities above, we complete the prooftefnma 8 O

h(x) =ax+ B =

Lemma 9. Suppose two thresholds, &1 and &, 0 < &1 < &, divide the job sizes into three size intervals,
such that p» = p1 + p3 = p/2,where p; is load of the ith interval. Then, Ay < A1+ A3 if w2 = w1 + w3,
whereas wy < w1 + w3 if Ap = A1 + A3, where A; and w; are the arrival rate and the second-order load
of the ith interval, respectively, fori = 1, 2, 3.

Proof. Let p(x) := A [y tdF(r), and letx(r) := p~X(r) be the inverse function gf(x). Assumety =
andéz = oo. Then we have, for =1, 2, 3,

& &1 ri dr &i i
= [ dF(x) = / = dp(x) = / & = [ xdp) = / () dr,
&1 &1 X ri-1 x(r) &1 ri-1

wherer; = p(&;), in particularyg = 0 andrsz = p.

Supposev,; = w1 + ws. Leta =rg=0,a1 = r1, by = rp, b = r3 = 00, andg(-) = x(), which is an
increasing function. Usingemma 8we geti, < A; + A3. Supposing., = A; + A3z and using.emma 8
again withg(-) = 1/x(-), we getw, < w1 +w3. 0O

Proof. (Theorem $Again, first we consider two queues. Without loss of generality, we assurme-;.
Hence ther; > ¢, part of Condition 4 in the proof dfheorem 3o longer holds. However, we show that
the following replacement of the Condition 4 holds:

4. If bothayd1 > ap)y andaywi > apw, are satisfied, we can find a NSI strategy, where the first queue
can be nested in the second queue, i.e, 2, provides a lower mean waiting time than the original
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static strategy.

Suppose there are two threshofdandé, such thag, < &,. Now we swap load between two queues.
Let p] be the load of the jobs belogy and abové, in the first queue, ang;, be the load of jobs between
&, and§, in the second queue, as illustrated by the shaded ardaig.ir®(b). We swap two loads, if
both p] = p5 andij = 15 are satisfied. Then, byemma 9 we havew; > 5. Then, from(8) we get
E[WS] = E[WS] = E[WNS']. Note that after swapping, the static strategy becomes an NSl strategy where
the first (slower) queue can be nested inthe second (faster) queue, i.e., the slower queue gets the innerranc
For completing the claim in Condition 4t remains to show that there are actually sggtandég,
satisfyingp] = p5 andA] = AS. First let§, = 0 and find&, such thato] = p3. This can be done in the
same way as in the proof dheorem 3 At this time, 1] < A5 due toLemma 7 Now we shift§, to the
right on the real axis and also shijt to the right accordingly such that = p5. This can also be done
until £, goes to infinity. At§, = co we havei] > 1] because of once agairemma 7 Then before,
approaches infinity, there must be a valuepfind the corresponding, such that bothp; = p5 and
A3 = A5 are satisfied, due to continuity of all these quantities. Hence the claim in Condii®trde.
With Conditions 1, 2, 3, and’din the same way as the argument in the prooffb&orem 3it is
proved that, for any static strategy, there is an NSI strategy that improves the mean waiting time, for
two heterogeneous queues. Note again that an Sl strategy is a special case of NSI strategies. With thi
NSI strategy, the slower queue can be nested in the faster queue, by the claim of Condiiodaing
pairwise load transferring and swapping, this results can be extended to multiple queues. Hence we hav
Theorem5 0O

We can see that the key elements of these proofs are the two measures,mamely.; ands2 .= o;w;,
for the ith queue, as shown in Conditions 1-4 andFbr each pair of queues, generally we have two
scenarios:

() One queue has a greatdrwhereas the other has a grea@rConditions 1 and 2). In this case,
pairwise swapping of equal amounts of loads, as illustratédgn8(a), improves the mean waiting
time.

(i) One queue, sa¥, gets both a greatet and a greatef2 than the other queue, say(Conditions 3
and Condition 4 or . In this case,

(ii-a) if the capacity ofX is greater than or equal to that Bf we can transfer some load fra¥nto Y in
order to improve the mean waiting time;

(ii-b) if the capacity ofX is strictly less than that df, load transferring cannot guarantee an improvement
in the mean waiting time. The NSI strategy can be used to improve the mean waiting time: we add
a nesting relation betweenandy, i.e., X < Y, and do load swapping as illustratedrig. 8b).

From the proof offheorem Swe can observe that Conditiohdbes not actually assume eitler> ¢,
or ¢; < ¢3 (in Condition 4 we do have such assumption). Hence if Condition 3 is satisfied, alternatively,
we can swap two queues so that Conditidis4satisfied, i.e., we can find a better NSI strategy totally
without load transferring. In other words, we can merge case (ii-a) to case (ii-b) and then replace the case
(ii) above with a different operation:
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(ii") One queue, sa¥, gets both greates and greater? than the other queue, s&y The NSI strategy
can be used to improve the mean waiting time: we add a nesting relation beXiaahy, i.e.,
X < Y, and do load swapping as illustratedriy. 8(b).

Clearly, due to Condition 3, the mean waiting time of this NSI strategy cannot be optixa ot
slower thany. However, it can be optimal given that the load assigned to each queue cannot be changed.
We summarize this observation with the following proposition. (Note that the mean service time is fixed
if the load partitioning is fixed: cf(1), and therefore the result also applies to mean response time.)

Proposition 10. For a heterogeneous system with FCFS queues, if the load partitioning is fixed, the
optimal static strategy (for mean waiting time and mean response time) is an NSI strategy with a set of
nesting relations. A relation X < Y is added to this set if A and S2 of X are both greater than those of Y.

The difference betweefheorem SandProposition 10ds that they use a different set of relations. In
Theorem 5 a slower queue can be nested in a faster queue whereBsyposition 10a queue with
both greaterA and greater? can be nested in the other. Moreov@rpposition 1Qrequires fixed load
partitioning. The implication oProposition 10s two-fold. First, for fixed load partitioning, in particular
the proportional load partitioning (whepe = pc;), we can still find an optimal NSI strategy to minimize
mean waiting and response times. Note that the proportional load partitioning is safe (it does not overload
any of the queues as long as< 1) in the case that the load of the entire systgms hard to estimate.
Second, for an NSI strategy, fewer the number of nesting relations is, more simple and approachable the
NSI strategy would be. ITheorem Swe assume there is a nesting relation for each pair of queues of
unequal capacities. However, by load transferring Rraposition 10we can get an NSI strategy where
a nesting relation exists only if the slower queue has both grelaterds2. In other words, some nesting
relations can be eliminated so that it becomes easier to search for the optimal static strategy. It is not
always possible to remove all the relations, though, as in the cd&Seaofiple 4 but if one manages to do
so, the optimal static strategy degenerates to an Sl strategy, and the problem is then simplified to finding
the best mapping and the optimal load partitionipg/L ;.

6. Conclusion

In this paper, we investigate parallel queueing systems with separate heterogeneous queues, using
stochastic, size-aware, static strategies. For first-come first-serve (FCFS) queues, we prove that there is
a size-interval strategy that optimizes mean response and waiting times withinrallstrategies, if
the system is homogeneous, whereas a counter-example is found for a heterogeneous system. Then w
prove that there is a nested size-interval based strategy that optimizes a heterogeneous system. We als
study the effects of the mapping of size intervals on the mean waiting time with three kinds of job-size
distributions, and show that the best mapping is hard to determine.
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