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We study the problem of aggregate querying over sensor
networks where the network topology is continuously evolv-
ing. We develop scalable data aggregation techniques that re-
main efficient and accurate even as nodes move, join or leave
the network. We present a novel distributed algorithm called
CountTorrent, that enables fast estimation of certain classes
of aggregate queries such as COUNT and SUM. CountTor-
rent does not require a static routing infrastructure, is eas-
ily implemented in a distributed setting, and can be used to
inform all network nodes of the aggregate query result, in-
stead of just the query initiator as is done in traditional query
aggregation schemes. We evaluate its robustness and accu-
racy compared to previous aggregation approaches through
simulations of dynamic and mobile sensor network environ-
ments and experiments on micaz motes. We show that in net-
works where the nodes are stationary, CountTorrent can pro-
vide 100% accurate aggregate results even in the presence of
lossy links. In mobile sensor networks where the nodes con-
stantly move and hence the network topology changes con-
tinuously, CountTorrent provides a close (within 10− 20%)
estimate of the accurate aggregate query value to all nodes in
the network at all times.

Categories and Subject Descriptors
C.2.2 [COMPUTER-COMMUNICATION NET-

WORKS]: Network Protocols; C.4 [PERFORMANCE
OF SYSTEMS]: [Fault tolerance]

General Terms
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1 Introduction
Sensor nodes can measure specific details about their en-

vironment. Nonetheless, resource constraints often require
that these results be summarized en route to sink points that
further process the data. One popular form of summarization
is the aggregate [28,29,34,35]: a single or small set of values
that summarize the distributed set measurements. In com-
puting query aggregates instead of individual sensor data,
the sensor network becomes a virtual (distributed) database
over which SQL-type queries are initiated and distributed
across the network [28]. A virtual spanning tree rooted at
the query initiator node is formed and acts as a routing tree.
Each sensor node then combines its own data with the re-
sults received from its child nodes and sends it to its parent,
until eventually the desired aggregate reaches the query ini-
tiator node. This in-network aggregation technique is very
effective and energy-efficient for distributive and algebraic
aggregates [28] such as MIN, MAX, COUNT, and AVG.

However, the accuracy of the estimate computed via the
tree-based approaches degrades rapidly in networks that
are highly susceptible to node failures or rapid topology
changes. For instance, a single node failure can result in a
whole subtree of aggregate data being lost with the error in-
creasing for failed nodes closer to the root. To overcome
these shortcomings, solutions based on multi-path routing
[5, 28] improve estimate accuracy by minimizing the impact
of isolated failures.

In mobile sensor networks, the devices may not have prior
knowledge of the network topology which itself may change
rapidly as nodes move. Additionally, the devices may run
out of power or have intermittent connectivity which makes
it impractical to aggregate even duplicate-insensitive aggre-
gates, especially since it becomes difficult to maintain the
same spanning tree topology for the duration of the query.
Aggregation techniques [21, 31], such as ones based on the
Sketches [25] method provide approximate results in dy-
namic and faulty sensor networks but incur higher variance
in the accuracy of results than the techniques proposed in this
paper.

In this paper, we propose CountTorrent, a robust and
scalable mechanism to accurately estimate both duplicate-
sensitive and duplicate-insensitive aggregate queries in dy-
namic and mobile sensor networks. While our presenta-
tion here is geared toward sensor networks, the scheme is
generic enough in nature that it can be applied to other en-



vironments that need a distributed computation of distribu-
tive queries such as COUNT, SUM, or AVG with a few ad-
justments. We define distributive queries [18] as follows:
Let p1 and p2 be two disjoint populations of sensor nodes.
Let f (p) be the aggregate query result over the sensor nodes
belonging to population p. Then a query is distributive if
f (p1 ∪ p2) = f ′( f (p1), f (p2)), i.e. if the aggregate over a
population can be obtained as a function of the aggregates
over two disjoint subsets of the population. One obvious ag-
gregate query which is not distributive is MEDIAN.

CountTorrent is most easily described in two phases. The
first phase is a distributed process that assigns unique labels
to all nodes in the network. During the second phase, neigh-
boring nodes in the network continually swap information
consisting of labels and aggregates. This swapping process
can be thought of as a torrent since it bears several resem-
blances to the swapping process in BitTorrent [17]: nodes
exchange information with any neighbor that can use its in-
formation. Hence, information flows across all existing links
in the network, moving simultaneously from every node to
all its neighbors as long as the node has useful informa-
tion to provide to the neighbor. As the information moves
in these random directions through the network, it is aggre-
gated, with the labeling scheme from the first phase ensuring
that all values are counted once and only once within an ag-
gregate as it moves and grows through the network. Since a
node sends information to a neighbor only when it is useful
for the neighbor (reminiscent of BitTorrent), CountTorrent
avoids excessive bandwidth usage while still being robust to
network failures and providing close-to-accurate query ag-
gregates.

Since the aggregation process flows in all directions, it is
fault-oblivious in the sense that the estimate is robust in the
presence of most link and node failures. In the presence of
link failures, CountTorrent computes an accurate query ag-
gregate as long as the network remains connected. In the
presence of node failures, CountTorrent’s computed aggre-
gate contains values from all nodes that survive to initiate
the second phase and whose value is contained in some ag-
gregate that reaches other surviving nodes. Furthermore, in
settings where the aggregate is to be revised continually, we
show how the labeling can be adjusted to reflect changes in
topology, such that failed nodes’ values become excluded
from the aggregate, and late joining nodes’ values can be
incorporated into the estimate.

Our contributions can be summarized as follows:

• We propose CountTorrent, a generic distributed query
aggregation scheme suitable for faulty as well as mo-
bile sensor networks. In contrast to many previously
proposed aggregation methods, CountTorrent can make
the aggregate results available at all nodes instead of
just the query initiator.

• Through simulations and experiments we show that
CountTorrent can compute 100% accurate query aggre-
gates for stationary networks, even with lossy links, as
long as the network remains connected. Furthermore, as
nodes join and leave the network, the aggregate value
can be updated so that it converges to the aggregate

matching the current network configuration.

• We show that in a mobile sensor network where the
nodes constantly move thereby continually changing
the network topology, CountTorrent can provide a query
estimate within 10 − 20% of the accurate aggregate
value to all nodes in the network at all times.

• We compare CountTorrent with a plain vanilla, tree-
based aggregation scheme, TAG [28], and with an ap-
proximate aggregation scheme based on Sketches [21].
We show that CountTorrent can provide exact query ag-
gregates even in networks with lossy links at the ex-
pense of slightly more bandwidth utilization whereas
TAG and Sketches can have high variance in the com-
puted aggregates.

The remainder of the paper is organized as follows: Sec-
tions 2, 3 and 4 describe the CountTorrent algorithm and pro-
pose heuristics to optimize it for dynamic and mobile net-
works. In Sections 5, 6 and 7 we present simulation and
experiment results to demonstrate the efficacy of the proto-
col and compare it with traditional query aggregation tech-
niques. Section 8 describes previous related work. We con-
clude in Section 9.

2 The CountTorrent Protocol
We propose two variants of CountTorrent: Static Count-

Torrent is used for one-shot query aggregation in an unreli-
able, evolving network. In the case that nodes are joining or
leaving, we consider an estimate to be accurate as long as it
includes readings from all nodes who were joined to the net-
work prior to the initiation of the query, and were still part of
the network when the query is completed, i.e., readings from
late joiners and early leavers may or may not be contained.
Dynamic CountTorrent is used to produce a continually up-
dated estimate as the network evolves. The estimate at time t
is considered accurate when it includes readings from nodes
that are alive at time t. When a measured value changes at
a node, the aggregate estimate at all nodes becomes inaccu-
rate instantaneously and then steadily converges to its correct
value. In Section 3 we describe these two variants in detail
whereas in this section we only discuss the main idea behind
CountTorrent common to both variants.

2.1 Assumptions and Definitions
For ease of explanation, in this and the following sec-

tions we describe the main idea behind CountTorrent assum-
ing that a SUM aggregate is being computed. CountTor-
rent is trivially adapted to compute other query aggregates
as well. Additionally, in this section we make several as-
sumptions about the network within which CountTorrent is
implemented. The network consists of N sensor nodes con-
nected in an arbitrary topology - N need not be known by any
of the nodes (in fact, CountTorrent’s initial motivation was to
COUNT the value of N). Nodes are only aware of their im-
mediate neighbors, to whom they can directly transmit. For
now we assume that transmissions, even if broadcast within
their local environment, are intended for a particular desti-
nation. Later in the paper, we show how CountTorrent can
further leverage off of a broadcast medium. We also assume
for now that this communication is bi-directional and reli-
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Figure 1. A sample 5 node sensor network. The solid lines
represent that the two nodes are in communication range
and can exchange data. The tuples in parenthesis repre-
sent the node’s label and measured value respectively. A
dashed arrow goes from a node which assigned the label
for the node at the other end of the arrow.

able, and deal with the particulars of more realistic (lossy)
transmission mediums later in the paper. Neighbors are said
to be connected by an edge or link. Finally, we number each
node with a unique value from 1 to N. These numbers are
only to facilitate our description in the paper. CountTorrent’s
implementation does not use these numbers, and hence does
not require their existence.

A sample network is depicted in Figure 1. The solid
edges signify that the two nodes are within the communi-
cation range and hence can exchange data with each other.
We will refer back to Figure 1 and explain it fully over the
next few sections.

Each sensor node i is assumed to have what we call a mea-
sured value, vi, which represents, for example, the reading
that the sensor node has taken of its environment. The objec-
tive of SUM is to compute the sum of all measured values in
the network, i.e., ∑N

i=1 vi. We assume that the measured val-
ues change slowly with respect to the time it takes to initiate
and complete a query. If the measured value is expected to
change rapidly, then there is little motivation for a snapshot
reading (and hence little motivation for Static CountTorrent),
although in certain cases, for example, if the measured val-
ues change in a monotonic fashion, it may be possible to
update the aggregates as fast as the values change. While the
accuracy of Dynamic CountTorrent’s estimate due to rapid
time-varying measured values is an interesting problem, it is
beyond the scope of this paper.

The CountTorrent Protocol has two mechanisms that each
node implements in two different phases. The first phase
implements a distributed label assignment mechanism. The
second phase implements a data forwarding and combining
phase. While the first phase’s mechanism is needed to imple-
ment the second, we feel that the core idea that distinguishes
CountTorrent from previous work lies mostly in the second
phase’s mechanism, and hence we present this mechanism
first.

2.2 Data Combining Mechanism
Let us assume that each sensor node i has a measured

value of vi. CountTorrent’s first phase assigns a label, si,
to each node, i, where the label is a binary string consist-
ing of 0’s and 1’s, such as 00111010. Let φ̂(s) denote
the string s with its last character removed. For example,
φ̂(0110) = 011 and φ̂(101100) = 10110. Furthermore, let
φi(s) be the i length prefix of s and φ(s) be the set of all (dif-
ferent length) prefixes of s. For example, φ3(011010) = 011
and φ(011010) = {ε,0,01,011,0110,01101,011010}.

Merging: We say that two labels x and y can be merged
if they have the same length � and differ only in their last bit
(i.e., x �= y and φ̂(x) = φ̂(y)). The result of a merge is the
common prefix, φ̂(x). For example, 01101 and 01100 can be
merged to form 0110. On the other hand, 01101 and 01111
cannot be merged since φ̂(01101) �= φ̂(01111).

In the first phase, the labels are assigned to the N nodes
such that the labels satisfy the following properties:

• For any 2 nodes, i and j, si and s j are neither the same
nor is either one a substring of the other, i.e. s i /∈ φ(s j)
and s j /∈ φ(si).

• All N labels can be merged pairwise and recursively to
yield ε, the empty string.

We emphasize that the labels assigned to the various
nodes need not be of the same length.

Figure 1 shows a sample sensor network with the labels
satisfying the above properties assigned to each node. Note
that 001 and 000 merge to 00, which merges with 01 to form
0, while 10 and 11 merge to form 1, which can be merged
with 0 to yield ε. We now discuss how the specific properties
of labels assigned to nodes are leveraged to obtain a query
aggregate in a distributed manner.

Each node i is aware of its own label si and the measured
value vi. Furthermore, in the CountTorrent protocol, each
node maintains a buffer we call the prefix buffer that stores
label-value tuples. Initially node i ′s prefix buffer contains
only the tuple (si,vi) as shown in Figure 1. Thereafter, nodes
choose a random tuple from this buffer and send it to a neigh-
bor. Whenever node i receives a new tuple, it stores and
subsequently attempts to consolidate the tuples in its prefix
buffer according to the following algorithm:

• When node i receives a tuple (snew,q) from another
node, this tuple is compared with the existing tuples in
its local prefix buffer. Consider a tuple (sold , p) already
present in the prefix buffer:

– If the binary strings sold and snew can be merged,
then a new tuple (scombined , p + q) is added to the
node’s prefix buffer, and the tuples . If sold = x0
and snew = x1, then scombined = x. The tuples
(sold , p) and (snew,q) are discarded.

– If sold ∈ φ(snew), then (snew,q) is discarded.

– If snew ∈ φ(sold), then (sold , p) is discarded.

• The updated tuple (if any) is now recursively compared
to other tuples in the prefix buffer until no two tuples
can be merged any further. The consolidation process
stops at this point.
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Figure 2. Label Consolidation at node i after node i re-
ceives the tuple (0100,3).

To illustrate the above algorithm, consider node i has a
prefix buffer containing three tuples as shown in Figure 2.
Node i receives the tuple (0100,3) and the consolidation pro-
cess merges tuples in two steps as illustrated. When the con-
solidation process completes, two tuples remain in the prefix
buffer.

It is worth noting that the tuple (s,v) is intended to repre-
sent the sum of values over all nodes where s is a prefix of
the node’s labels, i.e., v = ∑i:s∈φ(si) vi. Hence, it can easily be
inferred that if all the N tuples with the initial labels and the
respective measured values are available at a single node, the
consolidation process will yield a single tuple (ε,V ) where
ε is the empty string and V = ∑N

i=1 vi, is the desired SUM
query aggregate.
2.2.1 Data Forwarding Mechanism

In the above section we have described how a node incor-
porates an arriving tuple into its prefix buffer. Another im-
portant part of the protocol is the decision of how and when
nodes exchange tuples. In CountTorrent, a node can receive
tuples from any of its neighbors. In the context of the net-
work shown in Figure 1, a node can receive tuples from any
node connected to it via a solid line. It is this aspect of Count-
Torrent that makes the mechanism robust to mobility and to
link and node failures. Rather than follow specific routes, tu-
ples are passed to any neighbor who might be able to utilize
it. Hence, tuples propagate through the network in a manner
reminiscent of how file chunks are exchanged by nodes in
the BitTorrent P2P file sharing protocol.

It is also worth noting that even though a tuple can only
be merged with exactly one other tuple, the merging does not
have to occur at either of the nodes which generated the tu-
ples. Since there can be many copies of these tuples in the
network, the merging can happen at some other node that
subsequently received these two tuples and has them simul-
taneously stored in its prefix buffer.

Later, in Section 3.3.1, we discuss that the rate of conver-
gence of the CountTorrent computation can be improved by
having nodes select the destination of a tuple based on the
labels of its neighbors. However, it is the ability to forward
tuples along any link that greatly enhances the robustness of
the protocol.

An added benefit of the forwarding and combining pro-
cess is that all nodes participate in this process. This means
that over time, the tuples stored in every network node’s pre-

fix buffer will contain shorter and shorter labels, and eventu-
ally converge to contain only the label, ε. At this point, every
node will have computed the aggregate.

2.3 Label Assignment
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Figure 3. An example APT. Each of the 5 nodes is as-
signed a label corresponding to a leaf node. The SUM
aggregate is computed by recursively adding up the tree
in a distributed manner

The above process gives the idea that if the labels are cho-
sen carefully and the tuples merged as described, an aggre-
gate SUM value for the whole network can be computed in
a completely distributed manner. Clearly, these binary labels
can be arranged on a (not necessarily balanced) binary tree.
For example, consider the binary tree depicted in Figure 3.
To ensure that the labels assigned to the N sensor nodes sat-
isfy the properties mentioned in Section 2.2, we need them
to be chosen such that when arranged within a binary tree,
the labels satisfy the following additional conditions:

1. For each node i, the corresponding label s i corresponds
to a leaf vertex in the binary tree.

2. For any 2 nodes, i and j, si and s j are neither the same
nor is any one a descendant of the other in the tree.

3. Each leaf vertex in the tree is assigned to exactly one
node, i.e. the number of leaf vertices in the tree is N,
the same as the number of nodes in the network.

We refer to this tree view that is formed by the labels as-
signed to the nodes as the Abstract Prefix Tree (APT). Figure
3 depicts the APT representation of the network presented
in Figure 1. The values inside the circles are the aggregates
of the measured values that correspond to prefix obtained by
traversing to that circle from the top of the tree. The above
properties ensure that the node labeling scheme provides la-
bels to nodes such that all N nodes’ tuples can be merged
recursively to yield a single tuple (ε,V ) where V = ∑N

i=1 vi,
the desired query aggregate.

In a real network, prefix buffers may be finite, such that
nodes must sometimes discard tuples. As long as this discard
process is done in such a way that no label is “lost” from the
network (i.e., if a tuple is dropped, then its label or a tu-
ple containing the prefix of the label must exist elsewhere),
and as long as tuples that do not merge continue to visit new
nodes, the aggregation process is guaranteed to complete,
eventually yielding the tuple (ε,V ) at all nodes.



Note that the sensor nodes need not know the total number
of nodes in the network nor any other information about the
specific topology of the network. The only information re-
quired is local, i.e. about the existence of neighboring nodes
and a way to exchange data amongst them.

Label Assignment Algorithm: Labels are assigned to
sensor nodes in CountTorrent by a distributed process by
having a labeled node communicate with a neighbor who has
not yet been labeled as follows: Suppose that two nodes, i
and j are neighbors, and that i has been assigned a label s i
of length �, while j has not yet been assigned a label. Via a
communication exchange between i and j, i “splits” its label
into two different labels of length � + 1 where the �-length
prefix of these two labels is si. i reassigns itself one of these
two �+ 1-length labels, and assigns to j the other one. For
instance, if i’s label is initially 0110, i can reassign itself la-
bel 01100, and assign to j label 01101. We say that j’s label
is derived from i’s label.
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Figure 4. An example abstract host hierarchy tree. A new
node h4 joins the network and becomes a child of node h2.
Node h2 splits its labels and assigns a new one to node h4.
h2 is now the parent of node h4 in the hierarchy tree

An alternate way to view the assigned labels as a tree is
what we call the Abstract Host Hierarchy Tree or AHHT for
short, which contains a vertex for each of the sensor nodes,
and an edge from i to j indicates that j’s label was derived
from i’s label. These visual abstractions of the labeling pro-
cess will be useful in Section 3, where we discuss how Dy-
namic CountTorrent adapts the node labellings as nodes join,
leave, or move within the network. Figure 4 shows how the
APT and AHHT representations in the network get updated
when a previously unlabeled node h4 is assigned a label by
h2.

It can be shown via induction that this assignment process
maintains the desired structure of labellings when viewed as
an APT. In particular, whenever a label is “split”, the re-

sulting labels can always be merged to reform the label be-
fore splitting. Hence, recursively, there exists a sequence of
merges across labels assigned to nodes that will result in the
prefix ε.

It is possible that a node j that has not yet been assigned
a label has two or more neighbors with different labels. We
note that j can choose to derive its label from any one of
these neighbors. Any decision generates a labeling with the
properties required by the second phase. Hence j could
choose to split the label with the first neighbor who offers
it a label, or it could wait for several neighbors to offer la-
bels and choose the shortest label in an effort to more evenly
balance the length of labels, and hence, the depth of the APT.

We can view all N sensor nodes to be arranged in a hier-
archy tree to facilitate label assignment. Figure 1 shows the
AHHT overlaid on a network of sensor nodes. The dashed
arrows represent a parent-to-child relationship in the AHHT.
Initially the root node is assigned a label of ε. Any node can
assign a label to any of its children nodes. For node i with
a label of si to assign a label to node j, node i splits its own
label si into si0 and si1 and assigns one of them to node j. In
this way, all nodes are assigned labels such that they satisfy
the properties of Section 2.2 and 2.3.

3 CountTorrent Variants
We propose two variants of CountTorrent. Static Count-

Torrent is suitable for quick one-shot query aggregation. It
aims to provide the best possible estimate of the aggregate
even if nodes move or fail during the process. On the other
hand, Dynamic CountTorrent is meant for continuous query
aggregation in the sense that as nodes move, leave or join,
they update the data structures such that the query aggregate
should reflect the current network configuration at all times.
We now describe these two flavors of CountTorrent in detail.

3.1 Initiating CountTorrent
One bootstrapping issue to be resolved is to determine

who should initiate the CountTorrent process, i.e., which
node should be assigned the label ε? The answer is that any
node that wishes to compute an aggregate and does not ob-
serve an ongoing CountTorrent running can be the initiator.
In fact, even if there is an existing CountTorrent in progress,
nodes could initiate independent processes (where the root
of the process can be at different or the same nodes) to gen-
erate multiple simultaneous estimates. All that is required
is to convert the prior mentioned tuples stored in the prefix
buffer to 3-tuples, (x,s,v), where the additional component
of the tuple, x, is a unique identifier assigned by the initia-
tor of that instance of the CountTorrent to distinguish it from
other instances. If nodes themselves have unique identifiers,
then x could simply be that identifier (assuming each node
initiates a single CountTorrent at a time). If not, it is suf-
ficient to choose x at random from a large enough uniform
distribution such that collisions are extremely unlikely. If b
bits are used for these identifiers and a fraction f of the N
nodes were to simultaneously initiate CountTorrents, no ID
collisions occur at all with probability ∏N

i=1(1− i/2b). For
instance, if f = 0.1, N = 106, and b = 40, no ID collisions
occur with probability greater than 0.98.



3.2 Static CountTorrent
Static CountTorrent is used for snapshot query aggrega-

tion in sensor networks reminiscent of previous query aggre-
gation approaches such as TAG [28]. In this setting, one of
the sensor nodes acts as a query initiator, assigning itself the
empty label, ε and initiates the first phase by contacting a
neighbor, offering to split its ε label. The remaining Labels
are assigned to child nodes by parent nodes as the tree is be-
ing constructed as discussed in Section 2.3. Each node then
creates a tuple (si,vi) where si is its label and vi the mea-
sured value. The second phase is the data combining phase
as discussed in Section 2.2 where these tuples are merged in
a distributed manner to get the final aggregate value.

Note that once a node and all of its immediate neighbors
have been assigned labels, the node’s label will no longer
change. Hence, it can immediately enter the second phase
and start attempting to merge tuples. No merging can take
place until the node has a neighbor who is also in the second
phase.

If there are no failures during the snapshot query aggre-
gation, all the tuples can be merged to obtain a single tu-
ple (ε,V ) where V is the accurate query aggregate value. In
case of node or link failures during the aggregation process,
CountTorrent’s estimate is computed using values from all
active nodes as well as values from a subset of failed nodes
prior to their failure. This may be due to two reasons:

1. Some nodes died before being assigned labels: In this
case, the remaining alive nodes can still merge the tu-
ples in a distributed manner to get (ε,V ′) but V ′ will
be smaller than the sum of the measured values of the
nodes alive at the start of the query.

2. Some nodes died after being assigned labels and their
labels were lost: In this case, the nodes will not be able
to merge all tuples into a tuple with an empty label.
Each node will have a number of tuples which cannot
be merged further. These could be merged into a single
tuple if certain missing tuples were available. In such a
situation the best estimate of the aggregate is obtained
by assuming some default value for the missing tuples.
For example, in case of a COUNT query, the missing
tuples can be assumed to have a measured value of 1.
This is done after a timeout period in which no tuples
in a node’s prefix buffer get merged. A final query es-
timate can thus be computed even if tuples cannot be
merged further.

A combination of the above two kinds of failures can also
be dealt with similarly. In either case, for most queries,
Static CountTorrent computes (assuming non-negative mea-
sured values) an estimated aggregate whose value is less than
or equal to the actual aggregate (for MAX, COUNT etc.) or
always greater than or equal (for MIN) to the original ac-
curate aggregate value. Hence, a simple scheme to obtain a
better estimate at the cost of more bandwidth and storage at
the nodes is to run multiple Static CountTorrent protocols si-
multaneously, preferably with different query initiator nodes.
When the final estimates are obtained, the maximum (or min-
imum) of the estimates can be chosen as the best estimate.

3.3 Dynamic CountTorrent
Dynamic CountTorrent is suitable for sensor networks

where nodes move, leave or join frequently. As the net-
work topology changes, CountTorrent updates the labels for
the alive nodes so that they satisfy the properties described
in Section 2.2. In addition to a prefix buffer and keeping
track of one’s parent and children, another data structure
which we call the tuple cache is maintained at every node
in this dynamic version. An estimate of the query aggregate
is available at every node at all times and hence it can be
acquired just by querying the nearest sensor node. As the
network topology changes, Dynamic CountTorrent updates
the labellings in the background to always have a good esti-
mate of the aggregate available at all nodes. If the network
topology eventually stabilizes, the estimate converges to the
accurate aggregate value.

We now describe how Dynamic CountTorrent handles
node joins, node leaves and mobile nodes.

3.3.1 Node Join and Label Assignment
As described in Section 2.3, the sensor nodes are arranged

in a virtual hierarchy by means of an AHHT. When a new
node i joins the network, it finds a node j which is already
part of the network and asks to be assigned a new label. Node
j then becomes the parent of node i in the AHHT and as-
signs it a label. In this way the AHHT representation in the
network is updated locally for a node join. Typically, node
i picks j as the neighbor which can assign it the smallest
length label. This simple heuristic helps keep the AHHT bal-
anced. There can be certain unavoidable scenarios though,
for example when nodes are placed in a collinear fashion and
each node can communicate only with its immediate neigh-
bors, that the labels can be O(n) in length and the AHHT is
highly unbalanced.

When a new node joins the network, apart from assign-
ing it a label, the query aggregate has to be updated to ac-
count for the measured value of the new node. In order to
consistently propagate this information throughout the net-
work and accurately update the data structures at each node,
the tuple cache is used. This cache contains tuples associ-
ated with the node’s children nodes in the AHHT as well as
for its own label. For example, if node i has 3 child nodes,
it maintains a cache containing 4 tuples, one each for the 3
child nodes and one for its own label. The tuples for the child
nodes have labels which were initially assigned to the child
nodes, even though the children nodes’ labels may change
later when they themselves assign labels to new nodes.

Using the cache at each node, the propagation of informa-
tion when a new node joins works as follows:

1. When node i gets a new label si and creates the tuple
(si,vi), it updates its cache and sends this tuple to its
parent node.

2. When node j(parent) receives a tuple (si,vi), where si
is the label associated with one of its child nodes, it
checks its cache to see if the measured value for the la-
bel si as stored in its cache has changed. If so, the node
updates the cache and deletes all tuples from its local
prefix buffer which are in conflict with this new infor-
mation (i.e. whose labels are substrings of si). After



updating its cache and the local prefix buffer, the node
then computes the tuple associated with the label sorig

j ,
the label assigned to it by its parent when node j joined
the network. This can be easily computed by merging
together the tuples present in its cache. This is so be-
cause even when node j becomes the parent of a new
node, it splits its label and the tuples associated with
both the new labels are stored in its cache in lieu of the
tuple containing node j ′s previous label. Hence at any
given time, the tuples in node j ′s cache can be merged
to obtain the tuple corresponding to the label originally
assigned to node j. Node j now sends this tuple to its
parent and this update process continues recursively.

3.3.2 Node Leaving the Network
When a node i leaves the network, the CountTorrent pro-

tocol again needs to adapt to this changed circumstance and
adjust the network view of APT and AHHT in order to up-
date the aggregate value and let it propagate to all nodes.
There are two sets of nodes in the network which are imme-
diately affected, the parent of i and the children of i. The
parent of i simply removes i from its list of children and up-
dates the cache and the local prefix buffer. This involves
updating the cache by setting the value associated with node
i′s label to 0. Update notifications are then sent recursively
up the tree just as is done in case of a node joining the net-
work. The label associated with the departed node is kept
at the parent as part of a floating tuple and can be assigned
when new nodes join the network.

The children of the departed node probe the remaining
nodes in the neighborhood and ask for new labels to be as-
signed. A node j whose parent leaves the network has to
find a new parent node and possibly get a new label. This
new label s′j then replaces the old label s j in the cache and
the prefix buffer. In fact, any labels in the cache or the prefix
buffer which start with s j get s′j substituted for s j. The la-
bels of any nodes which are descendants of this node in the
AHHT have also to be updated. Therefore, node j initiates
a label substitution and asks its children to modify all labels
which begin with s j by substituting s′j for s j . This substitu-
tion is done recursively until all descendant nodes of j have
the updated tuples.

3.3.3 CountTorrent for Mobile Networks
In a wireless mobile sensor network, nodes dynamically

move in and out of range of other nodes. If there are no
node failures and no new nodes joining the network, the la-
bels assigned to the mobile nodes can remain the same and
the distributed data combining protocol still gets the query
aggregate by merging tuples. On the other hand, if there are
node leaves and joins in the mobile network, the labels for
the alive nodes need to be updated so that they satisfy the
properties listed in Section 2.2. This is accomplished as fol-
lows. If node i is the parent of node j and nodes i and j move
out of communication range:

• Node i assumes that node j left the network and updates
its cache and prefix buffer accordingly.

• Node j on the other hand, assumes that the node i has
left the network and finds another node as parent and

updates its cache and prefix buffer accordingly.
In both cases, local data structures at the nodes are up-

dated as was discussed in the previous subsections. In this
way, CountTorrent can compute and continuously provide
query aggregates in a mobile sensor network, albeit with a
more frequent update of data structures at the sensor nodes.

4 CountTorrent Heuristics
In the CountTorrent protocol, individual nodes maintain

a number of tuples along with their associated count values
in a prefix buffer of limited size. Each node chooses a ran-
dom neighbor and picks a random tuple from its buffer to
send to this neighbor. For very large networks and when the
buffer at each node is small, the consolidation of tuples can
take a very long time. This is because with tuples flowing
in random directions, the arrival of duplicate tuples and tu-
ples that cannot immediately be merged occurs with greater
frequency.

We propose two heuristics to expedite the CountTorrent
consolidation process. The first heuristic called Intelligent
Selection is a way for a node to avoid sending redundant tu-
ples to a neighbor. The second heuristic which we call Pre-
ferred Diffusion allows for the CountTorrent protocol to con-
verge very fast if there aren’t any failures in the network and
allows the convergence rate to degrade gracefully as failures
occur.
4.1 Intelligent Selection

To limit transmission of duplicate tuples, a node can in-
telligently guess which tuples from its pool of tuples does a
neighbor already have. This can be determined from the tu-
ples sent and received from that neighbor in the past. Each
node thus keeps track of a set of tuples that each of its neigh-
bors is supposed to have. There are two simple rules to up-
date this set:

• When node i receives a tuple containing label s from
neighbor j, node i can deduce that in future, j is un-
likely to require any tuple with label including s and
all its descendants (any label starting with s). So i can
include all these tuples in the set which we call X i

j.

• When node i sends a tuple with label s′ to neighbor j, i
can again include s′ and all its descendants in the set X i

j

since node j now already has the tuple with label s ′.
The set Xi

j need not be maintained as a whole but can be
efficiently stored by keeping track of only the labels which
do not have any ancestors in the set, i.e. if label s is stored
in the set, there is no need to store any labels of which s is
a prefix. By maintaining this set, when node i needs to send
a tuple to node j, it can check this set to determine which
tuples it should not send. Node i then picks a random label s ′′
from its buffer such that it is not contained in X i

j. Of course,
node j might already have received s ′′ from another of its
neighbors but this strategy minimizes the possibility of node
i sending duplicate or redundant tuples to its neighbors.

Apart from maintaining a set representing a node’s view
of which tuples a neighbor might already have, the tuples
themselves can be prioritized. Hence, tuples belonging to the
subtree corresponding to a node’s own label are sent earlier
than other tuples. As far as storage is concerned, set X i

j can



be stored in the same manner as a prefix buffer since X i
j also

contains tuples which are merged the same way as in a prefix
buffer. The unused memory at a node can be used for storing
these sets. Even if the storage of X i

j is limited, it does not
affect the accuracy of the protocol but might decrease the
convergence rate.

4.2 Preferred Diffusion
Using Intelligent Selection, a node can minimize the pos-

sibility of sending duplicate and redundant tuples to its
neighbors. A node sends tuples to one of its random neigh-
bors at time intervals according to a predefined distribution.
When there are many failures in the network or when nodes
are mobile, this randomization helps the CountTorrent pro-
tocol to converge despite the failures and every surviving
node gets the final query aggregate. On the other hand, when
there are negligible failures or when the nodes are relatively
stationary, the randomization unnecessarily slows down the
convergence. It is much faster to compute the aggregate
along links forming the AHHT, as labels can be merged im-
mediately. The best of both worlds would be to have a pro-
tocol which seamlessly moves from one that propagates in-
formation along the links of the AHHT (when available) and
using the other links as “backups” to increase resilience to
a completely distributed protocol as the network becomes
more and more dynamic. This is the objective of the Pre-
ferred Diffusion heuristic.

We define parent(i) as the node which is the parent of
node i in the AHHT. and children(i) as the set of nodes
which have i as their parent. When node i has to send a tuple
to one of its neighbors, it does so as follows:

1. If node j = parent(i) is not alive, goto step 2. Else
select a tuple to send to j (possibly using Intelligent
Selection). If there is such a tuple, send to j and stop. If
no such tuple is there in the buffer, goto step 2.

2. Randomize the list children(i). For each node j in
children(i), select a tuple to send to j. If there is such a
tuple, send it to j and stop. If no such tuple is there for
any of the nodes in children(i), goto step 3.

3. Randomize the list of remaining neighbors. Again, for
each node in the list, select a tuple to send. If there is
such a tuple, send it to the corresponding node and stop.

The above algorithm orders the neighbors of a node such
that the node always sends a tuple to its parent in the hier-
archy tree if it has a useful tuple to send. If not, the node
tries to send to one of its child nodes in the hierarchy tree
and finally to the remaining neighbors.

4.3 How Intelligent Selection and Preferred
Diffusion Work Together

In case there are no failures, Preferred Diffusion results
in all nodes sending their tuples first to their parents so that
the root node of the AHHT gets all the tuples and is able
to quickly calculate the final count value which then perco-
lates down to the children nodes as nodes start sending this
final value to neighbors which are their children nodes in the
hierarchy tree.

Another way to look at it is that Preferred Diffusion cou-
pled with Intelligent Selection results in each node prefer-

entially sending the tuples from its own subtree towards the
root node. This results in the root node being able to com-
pute the final aggregate value which is then sent back down
the tree towards the rest of the nodes. Hence, the two heuris-
tics coupled together result in all nodes acquiring the final
query aggregate value in O(h) time where h is the height of
the AHHT. This is as good as previous spanning tree based
aggregation techniques.

5 Experimental Evaluation of CountTorrent
We simulate CountTorrent in various sensor network sce-

narios and assess its performance in terms of efficiency, ac-
curacy and cost (in terms of bandwidth utilized and time
taken). We also compare CountTorrent with traditional query
aggregation schemes in sensor networks using a homegrown
C simulator and the TAG simulator of [28]. In Section 5.1
we describe our simulation setup and in Section 6 and 7 we
present simulation and experimental results for various sce-
narios.

5.1 Simulation Setup
We compare CountTorrent with previous query aggre-

gation schemes for sensor networks using our homegrown
C simulator. The simulator can simulate various network
topologies in a sensor network. By default, each sensor node
has a fixed range and can communicate with any other node
in that range, the time taken for a packet sent by a node to
reach another node in its range is chosen uniformly randomly
from the interval (τmin,τmax). For the simulations and ex-
periments in the following sections, we use τmin = 0.9s and
τmax = 1.1s unless otherwise stated.

We use the TAG simulator [28] modified in [21] for sim-
ulating previous methods of query aggregation in sensor net-
works. In all these strategies, each node has one or more
parents which are closer to the root and each node aggre-
gates results received from its children nodes and sends it to
one or more of its parent nodes. Ultimately, the overall query
aggregate can be computed at the root (query initiator node)
of the spanning tree.

We simulate 3 previous approaches to query aggregation
using the TAG simulator. TAG1 is the plain vanilla aggrega-
tion strategy where each node sends its aggregate to a single
parent. In TAG2 on the other hand, each sensor node sends
a fraction of its aggregate to each of its multiple parents such
that the fractions sum to the whole aggregate. Any node
within the communication range and which is closer to the
root node is considered a parent for this purpose. SKETCH
[21] uses the Sketches [25] approach to query aggregation.

In all simulations, we show the average over 100 runs.
Furthermore, we use a fixed prefix buffer size of 10 at all
nodes. We found that increasing the buffer size beyond this
does not affect the performance significantly, although we do
not show the results for that due to lack of space.

5.1.1 Stationary nodes
For simulating stationary nodes, we position nodes ran-

domly in an area. Each node can communicate with all oth-
ers within a fixed distance of it and with packet delivery
times chosen randomly from (τmin,τmax). Nodes leave and
join the network randomly so for a particular sensor node,



the number of nodes in range increases or decreases as more
nodes join or leave respectively.
5.1.2 Mobile nodes

For simulating mobile nodes, we use one of the most
widely used mobility models, the Random Waypoint Bor-
der model [26]. In this model, the sensor nodes move in a
rectangular area. There are multiple “waypoints” along the
border of the grid. Each node picks a waypoint and moves
in a straight line towards it at a certain speed. We pick the
speed randomly from vmax/2,vmax. Once a node reaches the
waypoint, it randomly picks another waypoint and a new
speed and moves towards the newly chosen waypoint. In
this way the nodes move in and out of range of each other
and hence the network topology changes continuously. Ran-
dom Waypoint Border Model has certain well studied defi-
ciencies, such as the initial-placement problem, but we think
it is sufficient for the purposes of evaluating CountTorrent.

6 Experimental Results
In this section, we evaluate the performance of CountTor-

rent and compare it with previous approaches to query ag-
gregation in sensor networks such as TAG [28] and SKETCH
[21]. All the previous aggregation approaches focus on query
aggregation at a particular snapshot in time with the accuracy
of the results deteriorating if there are node or link losses
in the network during the execution of the query. Static
CountTorrent provides snapshot aggregation whereas Dy-
namic CountTorrent aims to provide ubiquitous access to
query aggregates at any point in time with the aggregate up-
dated continuously with minimal bandwidth as nodes move,
leave or join the network.

In mobile sensor networks, where sensor nodes move
around and the network topology changes continuously, it
is difficult to take a snapshot reading of the sensor network
in the form of a query aggregate and hence the traditional
approaches which use a spanning tree to get query results
at an initiator sensor node are not practical. Dynamic Count-
Torrent avoids this problem by continuously updating the ag-
gregate results over the network with minimal bandwidth use
and hence can get a snapshot reading of the query aggregate
at any point in time.

6.1 Comparison with Previous Aggregation
Schemes

We compare CountTorrent with some popular query ag-
gregation schemes for sensor networks. In a typical scheme,
a query initiator node floods the network with the query and
the result is received at the initiator node via in-network ag-
gregation as is the case with Static CountTorrent as well.
Dynamic CountTorrent is different in spirit because it aims
to continuously update the query aggregate in the network
as the network topology changes. Hence, Dynamic Count-
Torrent is not directly comparable with previous aggregation
schemes in most scenarios although many previous schemes
such as [28, 31] provide methods for periodic and event-
driven continuous queries although they tend to employ ap-
proximation of aggregates to maintain robustness.

To compare Dynamic CountTorrent with snapshot
schemes, we choose a query initiator node and measure how
long it takes for Dynamic CountTorrent to provide the first

aggregate result at this node. We compare it with Static
CountTorrent as well as TAG1, TAG2 and SKETCH. This
comparison is possible since in this particular case, Dynamic
CountTorrent will resemble one-shot query aggregation be-
cause it will have to setup the data structures at every node
from scratch.
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Figure 5. Accuracy of COUNT query aggregation with
increasing link failures

We assume a 100 node sensor network, with nodes placed
randomly in a 100 x 100 area with each node’s communica-
tion range being 15. Hence, each node has about 7 neigh-
bors on average. The links are assumed to be lossy and any
packet sent on the link is lost with the particular link loss
probability. In Figure 5 we show the accuracy of the differ-
ent protocols with varying link loss probability in computing
the COUNT aggregate. Each bar is an average of 100 simu-
lation runs. A value of 1 suggests complete accuracy while
a value of say 0.8 implies the mean computed aggregate is
off 20% from the correct value. We also show 1 standard
deviation error from the computed mean. Hence, the plot for
SKETCH shows that there is high variance in the computed
aggregates even though the mean aggregate is close to the
correct value.

In a network with no lossy links, all schemes can compute
almost accurate aggregates but as the link loss rate increases,
TAG1 and TAG2 deteriorate rapidly while SKETCH and
Static CountTorrent deteriorate slowly. Dynamic CountTor-
rent on the other hand is able to compute accurate COUNT
aggregate values even with high link loss rates. This is essen-
tially because in Dynamic CountTorrent, even when packets
are lost, the sensor nodes continue sending packets until the
CountTorrent data structures stabilize and hence every node
gets the accurate aggregate value.

To achieve the accuracy even with high link loss rates,
Dynamic CountTorrent needs to send many more packets
than other aggregation schemes but each packet is just 6
bytes, consisting of the prefix, the aggregate value for that
prefix and a timestamp with each being 2 bytes in size. A
2 byte prefix limits the network diameter to 16 although this
can be easily increased while the CountTorrent structure still
fits in a TinyOS packet. In TAG1 and TAG2, the packet
size is just 2 bytes whereas for the SKETCH scheme, we
use 20 bitmaps of size 16 bits each as suggested by the au-
thors in [21]. The SKETCH packets are compressed using
the compression techniques of [9] which result in approx-



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

A
ve

ra
ge

 b
yt

es
 tr

an
sm

itt
ed

 p
er

 n
od

e

Link loss rate

COUNT query using various aggregation schemes

Static CountTorrent
Dynamic CountTorrent

Sketches
TAG1/TAG2

Figure 6. Bandwidth usage of COUNT query aggregation
with increasing link failures

imately 70% compression. In Figure 6 we plot the num-
ber of bytes transmitted over the network for each of the
aggregation schemes for the query initiator node to obtain
the final aggregate value. TAG1, TAG2 and SKETCH have
a fixed bandwidth consumption for a given topology. Dy-
namic CountTorrent on the other hand, needs to send more
packets (including some acknowledgment packets) to obtain
the accurate count as the link loss rate mounts to compensate
for the lost packets. We also plot the 95% confidence inter-
vals for the average bytes transmitted. In terms of number
of packets, TAG1 and SKETCH send 1 packet per non-root
node while TAG2 and CountTorrent need to send more pack-
ets per node.

For the following simulations and experiments, we use
Dynamic CountTorrent instead of Static CountTorrent un-
less otherwise stated. In dynamic or mobile networks where
nodes move, leave or join frequently, only Dynamic Count-
Torrent can be used.

6.2 Effect of Intelligent Selection and Pre-
ferred Diffusion
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Figure 7. Effect of IS and PD on COUNT query aggre-
gate

In Section 4, we described two heuristics to enhance the
performance of CountTorrent. We now evaluate the efficacy
of these heuristics when used separately as well as when
used together. The simulation setup comprises of a maxi-

mum of 500 stationary sensor nodes placed randomly in a
100 x 100 grid. Each sensor node has a communication range
of 15. The number of sensor nodes alive at any given time
varies as shown in Figure 7. With CountTorrent being used
to compute the COUNT aggregate query, we plot the aggre-
gate value computed over time with or without the 2 heuris-
tics. The + and − signs represent the presence or absence of
the corresponding heuristic respectively. For example, +IS
−PD is the CountTorrent protocol which uses Intelligent Se-
lection but not Preferred Diffusion.

As explained in Section 4.3, Intelligent Selection and Pre-
ferred Diffusion reinforce each other hence allowing Count-
Torrent to quickly update the aggregate metric when the net-
work changes and we observe from Figure 7, the importance
of the two heuristics enabled in tandem for CountTorrent to
be efficient. We also observe that PD without IS performs
very badly. This is because it is a broken protocol as ev-
ery node will keep sending random prefixes to its parent and
hence only the root node will have the correct estimate.

We also observe in Figure 7 that at each point in time
when more sensor nodes become alive, the CountTorrent ag-
gregate value suddenly drops before converging to the ac-
curate value. This is because of the way we depict the ag-
gregate value, as a mean of the aggregate estimates at each
sensor node. Since the new set of nodes join with an initial
aggregate value of 0, it suddenly lowers the mean aggregate
value.

In the remaining experiments, we always use the Count-
Torrent protocol with both Intelligent Selection and Pre-
ferred Diffusion enabled by default.
6.3 Unicast or Broadcast
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Figure 8. Taking advantage of broadcast in CountTor-
rent

CountTorrent assumes unicast data communication be-
tween a sensor node and one of its neighbors. But in a wire-
less setting CountTorrent can take advantage of the broad-
cast channel to send data to multiple nodes simultaneously.
In Figure 8, we plot the time it takes for CountTorrent to get
the accurate COUNT aggregate to all nodes in the network.
We vary the number of nodes in the network but maintain
the average degree of the nodes in the network at 4. When a
node has to send a tuple, it chooses the data according to the
2 heuristics described in Section 4 and broadcasts instead
of unicasting to a single neighbor and all nodes within its
communication range receive the packet. It can be observed



from Figure 8 that if available, CountTorrent can leverage
the broadcast channel to expedite the query aggregation es-
pecially in case of large networks.
6.4 Prefix buffer occupancy at the nodes
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Figure 9. Maximum of prefix buffer occupancy at all
nodes

Each sensor node in the CountTorrent protocol has a pre-
fix buffer to store tuples which cannot be combined at that
time. In Figure 9, we show the maximum of the buffer uti-
lization at all nodes in a 100 node network. With the Pre-
ferred Diffusion heuristic enabled, nodes prioritize sending
tuples to their parents, followed by other neighbors. Hence
in the case of unicast, the buffer occupancy is low since the
tuples received from a node’s children are more likely to be
merged with existing tuples in the buffer. For the unicast case
with lossy links, we do not show the curve on the plot as the
maximum buffer occupancy is similar to the non-lossy case.
For broadcast with high link losses, nodes need to send tu-
ples to many more nodes before the tuples all merge together
and the aggregate obtained. This results in more buffer oc-
cupancy and for a longer time than when there are no link
losses.
6.5 CountTorrent in Networks with Failures
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Figure 10. CountTorrent in Dynamic On-Off Networks

We can observe in Figure 7 that as the number of alive
nodes in the network changes, the CountTorrent COUNT ag-
gregate protocol adapts to the changed scenario and updates
the query aggregate at all nodes. This is especially true when

both the heuristics Intelligent Selection and Preferred Diffu-
sion are enabled. From now on, in all following experiments,
we assume the heuristics are always enabled unless stated
otherwise.

CountTorrent can be used for any distributive aggregate
queries. We now show how CountTorrent SUM aggregate
adapts to a changing network scenario in a sensor network.
The network consists of 100 sensor nodes and once again,
we place nodes randomly in a 100 x 100 area with a com-
munication range of 15. More and more sensor nodes join
the network until the number is 500 and then nodes leave
until the number is back to 100. At join time, each sensor
node picks a random number between 0 and 2.0 as its mea-
sured value. Hence at any point, the SUM aggregate over the
network will approximately be equal to the number of alive
nodes in the network since the average data value is 1.0.

Figure 10 shows that as the number of nodes in the net-
work change, hence changing the SUM aggregate value,
CountTorrent adapts and the aggregate converges to the cor-
rect value quickly. Again, we observe a dip in the SUM ag-
gregate when new nodes join. As already explained, this is
due the way we depict the aggregate value, as a mean of
the estimates at each sensor node. Since nodes join with an
initial aggregate estimate of 0, it suddenly lowers the mean
aggregate value.

Note that it takes about 40 seconds for the estimate to
stabilize after a sudden change in the number of nodes. A
simple calculation shows why this is so: Since the commu-
nication range is 15, the network diameter is approximately
10. Hence it can take up to 20 link traversals for new infor-
mation to traverse up and down the network. Since an ex-
change of information between 2 neighbors takes 2 seconds
(for tuple transmission and acknowledgment), it can take up
to 40 seconds for the aggregate estimate to stabilize.
6.6 CountTorrent in Mobile Sensor Networks
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Figure 11. COUNT aggregate with CountTorrent in a
mobile sensor network

In a mobile sensor network, with sensor nodes constantly
moving around and node to node links breaking and forming
in an ad-hoc manner, one-shot query aggregation will invari-
ably give inaccurate results. CountTorrent aims to continu-
ously adapt to the changing network topology and converge
to the accurate aggregate value over the network. If the topol-
ogy eventually stabilizes, CountTorrent aggregate value will
quickly converge to the correct value.



We simulate a mobile sensor network using the Random
Waypoint Border Model as explained in Section 5.1.2. There
are 100 sensor nodes initially placed randomly in a 100 x 100
area with 20 border waypoints. The speed of the nodes is
chosen randomly from vmax/2,vmax with vmax set to 5.0. The
communication range is 15. Nodes move out of range of
each other and in the range of other nodes on an ad-hoc basis
as they move inside the area. Figure 11 shows the COUNT
aggregate value as computed by CountTorrent over time. The
aggregate value depicted is the average of the aggregate val-
ues estimated by each sensor node. After 100 seconds, the
average absolute error in the estimate is about 10 with a stan-
dard deviation of about 7.
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Figure 12. COUNT aggregate with CountTorrent in a
mobile sensor network with Node Arrivals and Depar-
tures

In a mobile sensor where sensor nodes also have an arrival
and departure process, it becomes even more complicated to
keep track of the accurate query aggregate value. In this sim-
ulation we initially have 200 mobile nodes moving according
to the RWPB model. At time t = 100, the arrival-departure
process is triggered. The alive nodes depart at the average
rate of u and the dead nodes rejoin the network at the rate of
d where u = d = 1

N /node/second. Hence in the stable state
the number of alive nodes is approximately 100. In Figure
12, we observe that before t = 100, CountTorrent COUNT
aggregate value oscillates around the value 200, the number
of alive nodes. After t = 100, the number of alive nodes
starts decreasing until is gets to around 100. After 100 sec-
onds, the average absolute error in the estimate is about 14
with a standard deviation of about 10. CountTorrent adapts
to this and we observe the aggregate COUNT value follow-
ing the number of alive sensor nodes in the network.
6.7 Other distributive query aggregates

Apart from COUNT and SUM, CountTorrent can also
compute other distributive query aggregates such as MAX,
MIN, AVG etc. In Figure 13, we illustrate how well Count-
Torrent can aggregate distributive queries in mobile sensor
networks. There are 100 sensor nodes in a 100 x 100 grid.
The communication range of each node is 15 and v max is set
to 5.0. Each node has a measured value between 1.0 and
3.0 chosen uniformly randomly. We show the aggregates
COUNT, SUM and MAX as computed using CountTorrent
in this mobile network. For SUM and COUNT, we show the
result value per sensor node. As can be observed from Fig-
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Figure 13. Computing various distributive query aggre-
gates with CountTorrent

ure 13, in a mobile network with a continuously changing
topology, CountTorrent can provide a near accurate estimate
for various distributive aggregates.

7 TinyOS Experiments
In this section, we demonstrate the practicality of Count-

Torrent through experiments on TinyOS [2] Simulator
(TOSSIM). Later, we use micaz motes from Crossbow [1]
to test the protocol in a real setting. Since TinyOS does not
yet support a fully tested mobility model, we only simulate
network scenarios with stationary nodes.

7.1 Experiments on TOSSIM
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Figure 14. Simulations on TinyOS Simulator

We use TOSSIM to simulate 50 sensor nodes arranged in
a 5 x 10 grid and Dynamic CountTorrent to obtain a COUNT
query aggregate. Each node can comminucate with only the
nodes directly up, down, left and right of it, if any. We
number the nodes randomly with distinct ids chosen from
1 through 50. At time t = 0, all 50 nodes are alive. At time
t = 25, nodes numbered 31 through 50 turn off reducing the
network size to 30. At time t = 50, all the dead nodes come
back up again and the network size is back to 50 again. We
show the aggregate estimated at the node with the id 1. Fig-
ure 14 shows how the query aggregate computed with Count-
Torrent adapts with the changing network size. We use our
C simulator for the same simulation to compare with the im-
plementation on TOSSIM.

7.2 Experiments on micaz motes
Crossbow micaz motes are wireless sensor device proto-

types which run TinyOS [2] and can be programmed in a
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Figure 15. Experiments on Crossbow micaz motes

high level language. We conduct an experiment on micaz
motes to demonstrate that CountTorrent can estimate query
aggregates accurately in dynamic networks. We arrange 15
micaz motes numbered 1 through 15 in a 3 x 5 grid with
the node at the center (node 8) acting as a base station via
a Crossbow program controller and hence can be accessed
for data through a PC. As in the previous experiment, each
node can only communicate with atmost four nodes directly
up, down, left and right of it. At time t = 0, all nodes are
alive and start the Dynamic CountTorrent protocol. At time
t = 25, nodes numbered 1 through 7 turn off hence reducing
the network size to 8. At time t = 50, all the nodes come up
again and the network size is 15 once again. Figure 15 shows
the COUNT aggregate at the base station node as computed
using CountTorrent with time. We also simulate the scenario
on our C simulator to validate the CountTorrent performance
on micaz motes.

8 Related Work
Previous approaches to distributed aggregate querying

can be divided into two broad categories: those used for a
broad range of distributive queries and those focused in par-
ticular on counting the number of nodes in the network.

8.1 General Aggregate Querying
In the realm of sensor networks, traditional querying ap-

proaches [6] compute aggregates in two phases: the distri-
bution phase and the collection phase via in-network aggre-
gation. Similar approaches have been used in many other
systems [8, 33, 35]. However, in-network aggregation along
a tree is susceptible to node and transmission failures, which
are common in sensor networks [20, 28, 33]. Because each
of these failures loses an entire subtree of readings, a large
fraction of the readings are typically unaccounted for which
can introduce significant errors in the query results [16, 28].
In-network query aggregation schemes have the advantage
of being fast and low overhead but are vulnerable to network
failures. CountTorrent on the other hand, can provide ac-
curate aggregates in lieu of some extra bandwidth even in
failure-prone networks.

Various works have proposed multipath based alternatives
to the tree-based approaches for query aggregation. For ex-
ample, TAG [28] proposes dividing the partial aggregates
and sending them toward the root via multiple paths. This
solves to some extent the problem for losing multiple read-

ings when a node or link fails but can result in large transmis-
sion overheads and overcounting. Nath et. al. [31] propose
techniques to decouple aggregation from message routing so
that the aggregates are not affected by the order and the num-
ber of times partial results are received from the child nodes.
They also propose an Adaptive Rings technique for aggrega-
tion in dynamically changing topologies. Manjhi et. al. [5]
propose an adaptive scheme which uses both tree-based and
multipath aggregation mechanisms simultaneously in differ-
ent regions of the networks depending on the network con-
ditions. The scheme is robust due to its adaptive nature al-
though the aggregates may not be exact in highly dynamic
conditions.

Many techniques [8, 10, 14] try to maintain a robust rout-
ing layer so that any aggregation protocol can utilize it to
route successfully to the root node. There are overheads with
maintaining routing in the face of node and link failures and
they can suffer from the same problems of overcounting if
the aggregation protocol is not carefully designed. Prefix
routing schemes [7,13] on the other hand, maintain a routing
structure over the network by assigning hierarchical prefixes
to nodes and at the same time provide a natural spanning tree
structure which can be used for in-network aggregation.

Chen et. al. [19] propose computing local aggregates by
overlapping subsets of neighboring nodes to arrive at a global
consensus for an aggregate value. This works well for most
duplicate-insensitive queries such as MIN, MAX and some
duplicate-sensitive queries such as AVG (although the con-
vergence time can be large) but not as well for COUNT and
SUM. Kempe et. al. [12] use gossip-style communication to
compute aggregates. Such approaches provide a high degree
of robustness but suffer from high communication costs.

It should be noted that almost all the previous aggrega-
tion approaches rely on a root node to initiate the query and
collect the results. This introduces a central point of failure
as well as making it highly probable that any node or link
failure in the midst of a query will disrupt the ongoing query
aggregation. In CountTorrent, there is no unique query ini-
tiator node, the query aggregate is available at all times at
every node and in case of topology change/disruption, the
aggregate is updated at neighboring nodes which then dif-
fuses to all other nodes.
8.2 Node Counting

Various studies have focused solely on counting the num-
ber of nodes in a mobile ad-hoc or sensor network, or in other
words, computing the COUNT aggregate.

The problem of estimating the session size, i.e., estimat-
ing the number of nodes in a multicast network is well stud-
ied. The naive approach is to flood the multicast tree with re-
quests and have each node respond directly to the root. This
results in the so called “feedback-implosion” problem which
results in too many acknowledgment packets vying to get
to the root and congesting all the paths towards that node.
Various studies have tried to address this problem primar-
ily by restricting the number of responses so that each node
replies with a certain probability [3, 32]. The total number
can be estimated by the number of replies and the associated
probability. This can be accomplished in multiple rounds
by starting with a very low reply probability and slowly in-



creasing it. An alternative approach [22] does the estimation
in a single step by setting timers at each node for the reply
and canceling the timer after hearing another node sending
the reply. For estimating the sizes of multicast trees in the
Internet, many works [11, 30] propose using models of the
underlying topology. All these schemes provide an approxi-
mate value for the COUNT query. CountTorrent on the other
hand can always provide an accurate query aggregate at all
nodes, network conditions permitting.

A completely different way is to use linear [23] or log-
arithmic counting [16, 21] techniques also called Sketches
method. This involves using an array of bits and each node
using multiple hash functions to mark one of the bits. The
number of bits marked gives an estimate of log(N) in case
of logarithmic counting or of N in case of linear count-
ing. Other frequency counting techniques based on sketches
[15, 27, 36] have also been proposed. Unlike CountTorrent,
these approaches provide only approximate aggregate results
with a large variance, though it is possible to reduce the error
and variance by doing multiple Sketches simultaneously and
taking the average.

Counting in mobile ad-hoc networks has been studied by
Hatzis et. al. [4] using a flooding based technique which
takes care of overcounting provided no nodes leave or join
during the query process. Malpani et. al. [24] describe a
number of token circulation based algorithms for distinct
node counting but assume that the topology of the network is
known at any given time. Token based counting approaches
are susceptible to lost tokens in case of node and link failures
and hence are not suitable for sensor networks prone to such
failures.

9 Conclusions
We present CountTorrent, a novel approach for fast esti-

mation of distributive query aggregates in sensor networks.
We propose two flavors of CountTorrent, a Static version
suitable for one-shot query aggregation and a Dynamic ver-
sion more suited to query aggregation in networks where
nodes move, leave and join frequently. We show that in net-
works with stationary nodes, CountTorrent’s main advantage
is its robustness: in comparison to previous approaches, its
estimates remain up to 30% more accurate in networks with
lossy links. In networks where the topology varies due to
node movement, joins, and leaves, CountTorrent can pro-
vide estimates within 10− 20% of the accurate value. We
demostrate the practicality of CountTorrent through simu-
lations on TinyOS simulator and through experiments on
Crossbow micaz motes.
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