
Scalable Fluid Models and Simulations for
Large-Scale IP Networks
YONG LIU
University of Massachusetts, Amherst
FRANCESCO L. PRESTI
Universita’ dell’Aquila
VISHAL MISRA
Columbia University
DONALD F. TOWSLEY and YU GU
University of Massachusetts, Amherst

In this paper we present a scalable model of a network of Active Queue Management (AQM)
routers serving a large population of TCP flows. We present efficient solution techniques that
allow one to obtain the transient behavior of the average queue lengths and packet loss/mark
probabilities of AQM routers, and average end-to-end throughput and latencies of TCP users. We
model different versions of TCP as well as different implementations of RED, the most popular
AQM scheme currently in use. Comparisons between the models and ns simulation show our
models to be quite accurate while at the same time requiring substantially less time to solve than
packet level simulations, especially when workloads and bandwidths are high.

Categories and Subject Descriptors: C.2.6 [Computer-Communication Networks]: Internetworking; C.4 [Per-
formance of Systems]: Modeling techniques

General Terms: Performance

Additional Key Words and Phrases: Fluid model, Simulation, Large-scale IP networks

1. INTRODUCTION
Networks, and the Internet in particular, have seen an exponential growth over the past
several years. The growth is likely to continue for the foreseeable future, and understanding
the behavior of this large system is of critical importance. A problem, however, is that the
capabilities of simulators fell behind the size of the Internet a few years ago. The gap
has since widened, and is growing almost at the same rate as the network is growing.
Attempts to close this gap have led to interesting research in the simulation community. It
is has been shown computationally expensive to simulate a reasonably sized network. The
computation cost grows super-linearly with network size.

This work is supported in part by DARPA under Contract DOD F30602-00-0554 and by NSF under grants EIA-
0080119 and ITR-0085848. Any opinions, findings, and conclusions of the authors do not necessarily reflect the
views of the National Science Foundation.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Yong Liu et al.

In this paper, we take recourse to scalable modelling as a tool to speed up ”simulations”.
Our idea is to abstract the behavior of IP networks into analytical models. Solving the
models numerically then yields performance metrics that are close to those of the original
networks, thereby enabling an understanding of the key aspects of the performance of net-
works. Our starting point is the model in [Misra et al. 2000] that describes the behavior
of TCP networks by a set of (coupled) ordinary differential equations. The differential
equations represent the expected or mean behavior of the system. Interestingly, recent
results [Baccelli et al. 2002; Tinnakornsrisuphap and Makowski 2003] indicate that with
appropriate scaling the differential equations in fact represent the sample path behavior,
rather than the expected behavior. Hence, our solutions gain in accuracy as the size of
the network is increased, a somewhat surprising result. We solve the differential equations
numerically, using the Runge-Kutta method, and our simulations show speedups of orders
of magnitude compared to packet level discrete event simulators such as ns. Additionally,
the time-stepped nature of our solution mode lends itself to a particularly simple paral-
lelization. We also perform optimization to identify links that are not bottlenecks to speed
up the simulations.

The contribution of this paper goes beyond a numerical implementation of the ideas in
[Misra et al. 2000]. We address a number of critical deficiencies of the model in [Misra
et al. 2000]. Most importantly, we incorporate topological information in the set of differ-
ential equations. The original model in [Misra et al. 2000] defined a traffic matrix, which
described the set of routers through which a particular set of flows traversed. However, the
order in which the flows traversed the routers was ignored in the traffic matrix, and this
information is potentially of critical importance. In Section 2.2 we exemplify this with a
pathological case wherein the model of [Misra et al. 2000] yields misleading results which
our refined model corrects. We also model the behavior of a number of variants of TCP
such as SACK, Reno and New-Reno in our model. Going beyond the RED [Floyd and
Jacobson 1993] AQM mechanism modelled in [Misra et al. 2000], we also incorporate
other modern AQM mechanisms such as AVQ [Kunniyur and Srikant 2001] and PI control
[Hollot et al. 2001].

Two works are particularly relevant to our study. In [Bu and Towsley 2001], the au-
thors develop fixed point solutions to networks similar to ones that we are analyzing, to
obtain mean performance metrics. However, that approach suffers from two deficiencies.
First, we are often interested in transient behavior of the network, that might reveal po-
tential instabilities. Second, it is not clear from the solution technique outlined in [Bu and
Towsley 2001], that the solution complexity scales with the size of the network. Another
related approach is that of [Psounis et al. 2003]. In that approach, the authors exploit the
model in [Misra et al. 2000] and the ideas of [Baccelli et al. 2002; Tinnakornsrisuphap and
Makowski 2003] to demonstrate the fact that the behavior of the network is invariant if the
flow population and the link capacities are scaled together. Their approach to simulating
large populations of flows over high capacity links is to scale down the system to a smaller
number of flows over smaller capacity links, thereby making the simulation tractable for
discrete event simulators. The idea is appealing (and in fact applies to our approach too),
however the technique only explores the scaling in the population and capacity of the links.
Our methodology enables exploring a wider dynamic range of parameters. We can solve
larger networks (links and routers) than is possible using discrete event simulators. Prelim-
inary results indicate that the computational requirement of our method grows linearly with
ACM Journal Name, Vol. V, No. N, Month 20YY.

Scalable Fluid Models and Simulations for Large-Scale IP Networks · 3

the size of the network, whereas the growth of the computational requirement of discrete
event simulators is super-linear in the size of the network.
We start by deriving the topology aware fluid model of IP network. The numerical

solution algorithm of the fluid model is presented in Section 3. Model refinements are
described in Section 4 to account for different versions of TCP and RED implementations.
We present some experiment results in Section 5 to demonstrate the accuracy and com-
putation efficiency of our fluid model. Section 6 introduce some extensions to the model.
Section 7 concludes the paper and points out directions for future works.

2. FLUID MODELS OF IP NETWORKS
In this section we present a fluid model of a network of routers serving a population of
TCP flows. We focus on persistent TCP connections working in congestion avoidance
stage. Models for short-lived TCP flows and time-outs are discussed in Section 6.

2.1 Network Model
We model the network as a directed graphG = (V, E) where V is a set of routers and E is
a set of links. Each link l ∈ E has a capacity of Cl bps. In addition, associated with each
link is an AQM policy, characterized by a probability discarding/marking function pl(t),
which may depend on link state such as queue length. We develop models for AQMs with
both marking and dropping. For the clarity of presentation, we focus on AQMs with packet
dropping unless explicitly specified. Examples, including RED, will be given in Section
2.4. The queue length of link l is ql(t), t ≥ 0. Traffic propagation delay on link l is al.
The network G serves a population of N classes of TCP flows. We denote by ni the

number of flows in class i, i = 1, . . . , N . TCP flows within the same class have the
same characteristics, follow the same route and experience the same round trip propagation
delays. Let Fi = (ki,1, . . . , ki,m′

i
) and Oi = (ji,n′+1, . . . , ji,mi) be the ordered set of

queues (i.e., links) traversed by the data (forward path) and acks (reverse path) of class i
flows, respectively. We distinguish between forward and reverse paths as ack traffic loss is
typically negligible compared to data traffic loss. Let Ei = Fi ∪ Oi. For k ∈ Ei, we let
si(k) and bi(k) denote the queues that follow and precede k, respectively.

2.2 The MGT00 Model
In [Misra et al. 2000], a dynamic fluid flow model of TCP behavior was developed us-
ing stochastic differential equations. This model relates the expected values of key TCP
flows and network variables and is described by the following coupled sets of nonlinear
differential equations.

(1) Window Size. All flows in the same class exhibit the same average behavior. LetWi(t)
denote the expected window size of a class i flow at time t. Wi(t) satisfies

dWi(t)
dt

=
1

Ri(t)
− Wi(t)

2
λi(t), (1)

where Ri(t) is the round trip time and λi(t) is the loss indication rate experienced by
a class i flow. We present expressions for these latter quantities in the next Section.
Let Ai(t) denote the (expected) sending rate of a class i flow. This is related to TCP
window size by Ai(t) = Wi(t)/Ri(t).

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Yong Liu et al.

0 10 20 30 40 50 60 70 80 90 100
−50

0

50

100

150

200

250

300

350

400

450

Time

Q
ue

ue
 L

en
gt

h
ns
MGT
FFM

(a) The First Queue

0 10 20 30 40 50 60 70 80 90 100
−50

0

50

100

150

200

250

300

350

400

450

Time

Q
ue

ue
 L

en
gt

h

ns
MGT
FFM

(b) The Second Queue

Fig. 1. Importance of Topology Order

(2) Queue Length For each queue l, letNl denote the set of TCP classes traversing queue
l. Then:

dql(t)
dt

= −1(ql(t) > 0)Cl +
∑

i∈Nl

niAi(t), (2)

where 1(P) takes value one if the predicate P is true and zero otherwise.

The first differential equation, (1), describes the TCP window control dynamic. Roughly
speaking, the 1/Ri term models the window’s additive increase , while the Wi/2 term
models the window’s multiplicative decrease in response to packet losses, which is as-
sumed to be described by a Poisson process with rate λi(t).
The second equation, (2), models the average queue length behavior as the accumulated

difference between packet arrival rate at the queue, which in [Misra et al. 2000] is approx-
imated by term

∑
i∈Nl

niAi(t), and the link capacity Cl. Observe that the approximation
arises in replacing the aggregate arrival rate at the queue at time t with the aggregate send-
ing rate of the TCP flows traversing that queue at t. These two quantities can significantly
differ for two reasons: (1) flows are shaped as they traverse bottleneck queues; and (2) the
arrival rate at time t at a queue is a function of the sending rate at a time t − d, where d
is the sum of the propagation and queueing delays from the sender up to the queue. This
delay varies from queue to queue and from flow class to flow class. An extreme example
consists of one TCP class which traversing two identical RED queues with bandwidthC in
tandem. The TCP traffic will be shaped at the first queue so that its peak arrival rate at the
second queue is less than or equal to C, which equals the service rate of the second queue.
Clearly, there won’t be any congestion in the second queue. However, from (2), we will
get identical equations for those two queues. Therefore the model predicts the same queue
length and packet dropping probability for them as shown in Figure 1

2.3 A Topology Aware Model
We have observed in the previous subsection the importance of accounting for the order in
which a TCP flow traverses the links on its path. In this section we present a model that
takes into account how flows are shaped and delayed as they traverse the network. This
ACM Journal Name, Vol. V, No. N, Month 20YY.

Scalable Fluid Models and Simulations for Large-Scale IP Networks · 5

is achieved by explicitly characterizing the arrival and departure rate of each class at each
queue. For each queue l ∈ Fi traversed by class i flows, let Al

i(t) andDl
i(t) be the arrival

rate and departure rate of a class i flow, respectively. The following expressions relate the
departure and arrival process at a queue along the forward path.

—Departure RateWhen the queue length, ql(t), is zero, the departure rate at time t equals
the arrival rate. When the queue is not empty, the service capacity is divided among the
competing flows in proportion to their arrival rates. Thus, for each flow of class i and
l ∈ Fi, we have

Dl
i(t) =






Al
i(t), ql(t) = 0

Al
i(t−dl)

j∈Nl
Al

j(t−dl)
Cl, ql(t) > 0

(3)

where dl is the queueing delay experienced by the traffic departing from l at time t. dl

can be obtained as the solution of the following equation
ql(t − dl)

Cl
= dl. (4)

—Arrival Rate For each flow of class i, its arrival rate at the first queue on its route is just
its sending rate. On any other queue, its arrival rate is its departure rate from its upstream
queue after a time lag consisting of the link propagation delay. It is summarized in the
following equation:

Al
i(t) =






Ai(t), l = ki,1

Dbi(l)
i (t − abi(l)), otherwise

(5)

The evolution of the system is governed by the following set of differential equations:

(1) Window Size.
The window sizeWi(t) of a flow of class i satisfies

dWi(t)
dt

=
1(Wi(t) < Mi)

Ri(t)
− Wi(t)

2
λi(t) (6)

whereMi is the maximal TCP window size,Ri(t) and λi(t) denote the round trip time
and the loss indication rate at time t (in other words, as seen by the sender at time t).
Ri(t) is such that t−Ri(t) is the time at which the data, whose ack has been received
at time t, departed the sender. Ri(t) takes the form

Ri(t) =
∑

l∈Fi∪Oi

al +
ql(tl)
Cl

(7)

where tl is the time at which the data or ack arrived at queue l. {tl, l ∈ Ei} are related
to t by the following set of equations:

tsi(l) = al + tl +
ql(tl)
Cl

(8)

where tki,1 = t.
To compute λi(t) we need to consider the fate of a unit of traffic that departs at time
t − Ri(t) at each node along the forward path (assuming ack loss is negligible). The

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Yong Liu et al.

loss indication rate perceived by a TCP class is the summation of lost traffic at all
nodes along its path:

λi(t) =
∑

l∈Fi

Al
i(tl)pl(tl) (9)

(2) Queue Length
For each queue l, let Nl denote the set of TCP classes traversing it. Then:

dql(t)
dt

= −1(ql(t) > 0)Cl +
∑

i∈Nl

niA
l
i(t) (10)

We repeat the tandem queue experiment in Section 2.2. The revised topology order
aware model gives accurate queue length results at both queues as shown in Figure 1

2.4 AQM Policies
The classical AQM policy is RED [Floyd and Jacobson 1993]. RED computes the dropping
probability based upon an average queue length x(t). The relationship is defined by the
following:

p(x) =






0, 0 ≤ x < tmin

x−tmin

tmax−tmin pmax, tmin ≤ x ≤ tmax

1, tmax < x
(11)

where tmin, tmax, and pmax are configurable parameters. In the gentle variant of RED,
the following modification is done:

p(x) =






0, 0 ≤ x < tmin

x−tmin

tmax−tmin pmax, tmin ≤ x ≤ tmax

x−tmax

tmax (1 − pmax) + pmax, tmax < x ≤ 2tmax

(12)

In [Misra et al. 2000], the differential equation describing x(t) was derived to be

dx

dt
=

loge(1 − α)
δ

x(t) − loge(1 − α)
δ

q(t) (13)

where δ and α are the sampling interval and the weight used in the EWMA computa-
tion of the average queue length x(t). Thus, the differential equation describing pl(t) is
obtained by appropriately scaling (13) with (11) or (12) according to the scheme used.
We now present the differential equation describing pl(t) for the PI AQM controller

[Hollot et al. 2001]. The PI controller tries to regulate the error signal e(t) between the
queue length q(t) and some desired queue length qref (e(t) = q(t)− qref). In steady state
the PI controller drives the error signal to zero. The relationship between pl(t) and q(t) is
described by

dpl

dt
= K1

dq(t)
dt

+ K2(q(t) − qref) (14)

where K1 and K2 are design parameters of the PI algorithm. Note that the REM al-
gorithm [Athuraliya et al. 2001] uses a similar differential equation to compute the price
at a link, which is subsequently used by a static function to compute the packet dropping
ACM Journal Name, Vol. V, No. N, Month 20YY.

Scalable Fluid Models and Simulations for Large-Scale IP Networks · 7

probability. Thus, the same scheme as PI works with a little modification for REM. We
have a similar description for AVQ [Kunniyur and Srikant 2001] but do not include it in
the paper due to space constraint.

2.5 Model Reduction
In most operating networks, congestion only occurs at a small set of links, such as access
points and peering points of ISPs. Most network links, especially in backbone networks,
operate at low utilization levels. Queues at those links will be always empty and no packet
will be dropped. Therefore there is no need to model queueing and RED behavior and
maintain TCP states on those links. The network model can be reduced so that we only
solve queueing and RED equations for potentially congested links and those uncongested
links are transparent to all TCP classes except for introducing propagation delays. This can
greatly reduce the computation time of the fluid model solver.
Given a network topology and traffic matrix, we can identify uncongested links as fol-

lows:

—Step 1 Define the queue adjacent matrixADJ such thatADJ(i, j) = 1 if there exists a
TCP class which traverses queue j immediately after it traverses queue i;ADJ(i, j) = 0
otherwise. For queue i, define set O(i) as the set of TCP classes which have queue i as
their first hop.

—Step 2 Queue i is marked as uncongested if
∑

l∈E

ADJ(l, i) ∗ Cl +
∑

k∈O(i)

Mknk

τk
< Ci, (15)

where Mk is the maximal TCP window size, nk is the flow population and τk is two
way propagation delay of TCP class k.

—Step 3 Remove all uncongested queues from the topology and adjust TCP route accord-
ingly. If all queues on a TCP class’s route have been removed, remove this TCP class
and calculate its sending rate asMknk/τk.

—Step 4 If no queue is removed in Step 3, end the model reduction; otherwise, go back
to Step 1.

The first term on left hand side of (15) is the queue i’s maximal traffic inflow rate from all
its upstream queues. The second term accounts for the fact that a TCP flow’s arrival rate at
the very first queue on its route is bounded by the ratio of its maximal congestion window
to its two way propagation delay.

3. TIME-STEPPED MODEL SOLUTION ALGORITHM
The solution of the fluid model can be obtained by solving the set of delayed differential
equations defined in (3)-(14) at a low computational cost. We programmed fixed step-
size Runge-Kutta algorithm [Daniel and Moore 1970] in C to solve the fluid model. The
Runge-Kutta algorithm is a widely used method to solve differential equations numerically.
Briefly, for a system described by

dy(t)
dt

= f(t, y(t)),

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Yong Liu et al.

Initialiazation

End of
Simulation?

Update Windows
of All TCP Classes

Update Queue
Length & Loss

Probability at all
Congested Link

Update Each TCP
State Variables at All
Queues on its Route

Dumping Data

YES

NO

Start

END

Fig. 2. Flowchart of Fluid Model Solver

where y(t) = {y1(t), y2(t), · · · , ym(t)}, its solution can be obtained by the numerical
integration

y((n + 1)h) = y(nh) +
h

6
[kn,1 + 2kn,2 + 2kn,3 + kn,4],

where n is the timestep and h is the solution step-size and

kn,1 = f(tn, y(nh))
kn,2 = f(tn + h/2, y(nh) + kn,1h/2)
kn,3 = f(tn + h/2, y(nh) + kn,2h/2)
kn,4 = f(tn + h, y(nh) + kn,3h)

By implementing the Runge-Kutta algorithm, the fluid model solver essentially becomes
a time-stepped network simulator. Figure 2 depicts the flowchart of fluid model solver.
After reading in network topology and TCP traffic matrix from a configuration file, the fluid
model solver conducts model reduction using the algorithm in Section 2.5. Then the fluid
model is solved step by step for the whole duration of simulated time. At each time step, the
sending rate of each TCP class is updated according to (6); queue lengths and packet loss
probabilities at each congested queue are calculated from (10) and the correspondingAQM
equations, e.g. (11,12 and 13) for RED; TCP state variables {Ri(t), λi(t), Al

i(t), Dl
i(t)}

ACM Journal Name, Vol. V, No. N, Month 20YY.

Scalable Fluid Models and Simulations for Large-Scale IP Networks · 9

are updated according to equations (3), (5), (7), (9). The solution of the fluid model, includ-
ing the sending rate of each TCP class and each congested queue’s packet loss probability
and queue length, is dumped into data files at the end of the process.
To solve equations (3), (5), (7), (9) directly, for each t, we would need to track back in

time for each class the instant at which data (ack) arrived at each queue. Instead, we find
it convenient to proceed by rewriting those equations forward in time, i.e., by expressing
the future value of the round trip time, loss rate indication, arrival and departure rate as
functions of their current values. We proceed as follows:

—Round Trip Time
Let di

l(t), l ∈ Ei, i = 1, . . . , N , be the total delay accrued by the unit of data (ack) of
flow class i arriving at node l at time t. From the definition,

Ri(t) = di
si

(t) (16)

We compute these delays forward in time as follows:

di
l(tf) = di

bi(l)
(t) +

qbi(l)(t)
Cbi(l)

+ abi(l), (17)

where tf = t + qbi(l)(t)

Cbi(l)
+ abi(l) is the arrival time of a unit of data at link l given that it

arrives at the previous link bi(l) at time t.
—Loss Rate Indication
Let ri

l (t), l ∈ Ei, i = 1, . . . , N , be the amount of the flow class i data arriving at link l
at time t that is lost. From the definition, we have

λi(t) = ri
si

(t)

ri
l (tf) = ri

bi(l)
(t) + Abi(l)

i (t)pbi(l)(t), l ∈ Fi

ri
l (tf) = ri

bi(l)
(t), l ∈ Oi

—Departure Rate The expressions for the departure rate are directly obtained from (3).
For each class i and l ∈ Fi

Dl
i

(
t +

ql(t)
Cl

)
=

{
Al

i(t), ql(t) = 0
Al

i(t)

j∈Nl
Al

j(t)
Cl, ql(t) > 0 (18)

—Arrival Rate
For each flow i and l ∈ Fi,

Al
i(t + abi(l)) = Dbi(l)

i (t) (19)

The accuracy of the solution of a set of differential equations is determined by the stiff-
ness of the system and the solution step-size. The smaller the step-size the more accurate
the solution. On the other hand, the computation cost to solve differential equations is
proportional to the step-size. For our fluid model solver, the trade-off between step-size
and solution accuracy is not stringent. The stiffness of the fluid network model is bounded
by the smallest round trip time of TCP classes and the highest bandwidth of congested
queues. We can achieve sufficiently accurate enough results with a small enough step-size.
Meanwhile our fluid model solver still runs fast even with a small step-size. As we will see
in Section 5, a step-size of 1ms is small enough for our fluid model solver to get accurate

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Yong Liu et al.

solution and at the same time enables the solution of a large IP network to be obtained
reasonably fast.

4. REFINEMENTS OF FLUID MODEL
The model in Section 2 captures the basic dynamic behavior of TCP and RED. Real im-
plementations deviate from the basic models in a number of ways. For example, several
versions of TCP congestion control, e.g., Tahoe, Reno, SACK [Fall and Floyd 1996], have
been implemented in different operating systems. In this section, we present some model
refinements which account for different versions of TCP and implementations of RED.

4.1 Variants of TCP
Equation (6) models the behavior of TCP Reno. Starting from Reno, TCP implements
Fast Recovery mechanism. TCP halves its congestion window whenever the number of
duplicate ACKs crosses a threshold. When there are multiple packet losses in a window,
TCP Reno reduces its window several times. This makes Fast Recovery inefficient. New
Fast Recovery mechanisms are implemented in Newreno and SACK to ensure at most
one window reduction for packet losses within one window. In [Fall and Floyd 1996],
simulation results show that Newreno and SACK recover much faster than Reno from
multiple packet losses.
To model the Fast Recovery mechanisms of Newreno and SACK, we replace the per-

ceived packet loss rate λi(t) in Equation (6) by the following Effective Loss Rate

λ′
i(t) =

1 − (1 − λi(t)
Ai(t−Ri(t))

)Ri(t)Ai(t−Ri(t))

Ri(t)
,

where λi(t)/Ai(t − Ri(t)) approximates the end-to-end packet loss probability. Conse-
quently, the numerator is the probability that at least one packet is lost within a window of
Ri(t)Ai(t − Ri(t)) packets. Therefore λ′

i(t) models the actual window back off rate for
TCP Newreno and SACK under loss indication rate λi(t). When the packet loss probability
λi(t)/Ai(t − Ri(t)) is small, λ′

i(t) ≈ λi(t).

4.2 Compensation for Variance of TCP Windows
Equation (6) yields a stationary value for the average window size, W , of

√
2/p. Other

studies [Altman et al. 2000; J.Padhye et al. 1998] predict W =
√

1.5/p. We believe that
the difference comes from the assumption on loss event process. Our model is a mean-
value model: we model only the first order statistics of TCP window sizes and queue
lengths. In a real network, those second order statistics, e.g. variance of TCP window
size, impact network stationary behavior. For example, we use the average window size
to approximate TCP’s window size before back off. This is accurate if loss arrivals are
independent of TCP window size. When the correlation between a TCP class’s window
size and perceived loss arrival is not negligible, some compensation is necessary. One
extreme example is a single bottleneck supporting a single TCP class ofM flows. LetW i

denote the window size of ith flow within this class. The average window size of the class
is W̄ = 1

M

∑M
i=1 W i. Given a small packet loss probability p, the probability that at least

one packet in a window will be marked is approximatelyW ip. Then the average back off
ACM Journal Name, Vol. V, No. N, Month 20YY.

Scalable Fluid Models and Simulations for Large-Scale IP Networks · 11

20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

Time

Average
Mean Window Size

Fig. 3. TCP Window Sizes prior to Back-offs: points plotted are samples of TCP windows over time

20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

22

Time

Av
er

ag
e

W
in

do
w

Si
ze

MD=2
MD=3/2
NS

(a) Window Size

20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

Time

Pa
ck

et
 M

ar
kin

g
Pr

ob
.

MD=2
MD=3/2
NS

(b) Mark Probability

Fig. 4. Compensation for Window Variance

for the whole class is

1
M

M∑

i=1

(W i)2p/2,

which is larger than W̄ 2p/2. To demonstrate, we conduct an ns simulation of a single bot-
tleneck network with packet marking. There is only one class of TCP flows. We measure
each TCP flow’s window size immediately before back offs. From Figure 3 TCP window
sizes before back offs are generally larger than the average window size. To compensate,
we use W̄/1.5 instead of W̄/2 to model average back off of a TCP flow. Figure 4 contains
results for ns and fluid model with back-off parameters 1.5 and 2.

4.3 RED Implementation Adjustments
In this section, we model different implementations of RED. Here we assume RED imple-
ment packet marking instead of dropping.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Yong Liu et al.

—Geometric and Uniform. After calculating the packet marking probability p based on
average queue length, RED marks each packet independently with probability p. LetX
be the time interval between two drops. ThenX assumes a geometric distribution

P (X = k) = (1 − p)k−1p, k = 1, 2, · · ·

In [Floyd and Jacobson 1993], authors point out that a geometric inter-marking time
will cause global synchronization among connections. They then propose a marking
mechanism whereX is uniformly distributed in [1, 1/p]. Each arriving packet is marked
with probability p/(1 − count × p), where count is the number of packets that have
arrived since the last marked packet. A packet will always be marked if count× p ≥ 1.
By doing this, the actual packet marking probability is approximately 2p. To account
for uniform marking, the packet marking probability of RED is calculated in the fluid
model as

pl(t) = 2 ∗ p(xl(t)),

where p(·) is the piece wise linear RED marking profile as defined in (12).
—Wait Option. In the ns implementation, a RED option wait is introduced to avoid
marking two packets in a row. When wait option is on, which is the default for a re-
cent ns version, an arriving packet is marked with probability p/(2 − count × p) if
1 ≤ count × p ≤ 2. A packet will be marked with probability 1 if count × p ≥ 2.
Inter-marking interval X is uniformly distributed in [1/p, 2/p]. It effectively reduces
the packet marking probability from p to 2p/3.

To account for those implementation details, we modify the calculation of the RED
marking probability in the fluid model to be

pl(t) =

{
2
3p(xl(t)), wait = 1
2p(xl(t)), wait = 0

We simulated a single bottleneck network with a single TCP class of 60 flows. The RED
queue at the bottleneck uses ECN marking. Figure 5 shows the results for the RED queue
with and without the wait option.
Notice that the packet marking probability predicted by our fluid model is a little higher

than the actual packet marking rate in ns. This is because we don’t model Timeout. This
results in the need for a higher packet marking rate to bring down the TCP sending rates.

5. EXPERIMENTAL RESULTS
We have performed extensive experiments to evaluate the accuracy and computation ef-
ficiency of our fluid models. We present several representative experiments here. More
results are available to interested readers by sending email to authors.
For all the experiments in this section, we use TCP Newreno and RED with ECN mark-

ing as the AQM policy. The TCP maximal window size is set to be 128. The step-size
of the fluid model solver is fixed at 1ms. We start with a single bottleneck topology time
varying TCP workload. The fluid model’s accuracy is tested by comparing its solution with
simulation results obtained in ns when the network operates in both stable and unstable
regions. In Section 5.2, the fluid model’s scalability is demonstrated on a two bottleneck
topology. The results show that the fluid model is scalable in the link bandwidth and flow
populations. In addition, its accuracy improves as the link bandwidth scales up. In the last
ACM Journal Name, Vol. V, No. N, Month 20YY.

Scalable Fluid Models and Simulations for Large-Scale IP Networks · 13

5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

Time

Av
er

ag
e

Q
ue

ue
 L

en
gt

h
NS
FFM w/o Adj.
FFM w. Adj

(a) wait is on

5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

Time

Av
er

ag
e

Q
ue

ue
 L

en
gt

h

NS
FFM w/o Adj.
FFM w. Adj

(b) wait is off

Fig. 5. Account for RED Implementations

S2

S3

B1 B2

D1

D2

D3

S1

Class 2

Class 3

Class 1

Fig. 6. Single bottleneck network with dynamic workload

experiment, we test the capacity of our fluid model based simulation on a large topology
with more than 1, 000 nodes and thousands of TCP classes consisting up to 176, 000 TCP
flows. Computation results show that the fluid model approach is promising for simulating
large IP networks.

5.1 Accuracy of Fluid Model
The first experiment demonstrates the accuracy of our fluid model. As shown in Figure
6, there are 3 TCP classes. Each TCP class consists of 20 homogeneous TCP flows. The
bottleneck link is betweenB1 andB2. It has bandwidth of 10Mbps and propagation delay
of 25ms. All other links in the network have bandwidth of 100Mbps and propagation
delay of 20ms. There are a total of 14 queues. After model reduction, the fluid model
only needs to simulate 4 queues which potentially have congestion. TCP classes 1 and 2
start at time 0. After 40 seconds, class 2 stop sending data. The number of TCP flows on
the bottleneck link reduces from 40 to 20. The system enters an unstable region. At 70
second, both class 2 and class 3 become active. TCP workload increases by a factor of 3.
The system eventually settles around a stable operation point. We compare the fluid model
solution with results obtained from ns. Figure 7(a) plots one TCP connection’s window
sample path and the average window size we obtained from both ns and fluid model. The
fluid model captures the average window behavior very well both when the system is stable
and unstable. Figure 7(b) plots instantaneous queue length from ns and the average queue

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Yong Liu et al.

20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

Time

W
in

do
w

Si
ze

 (G
ro

up
1)

NS Sample
NS Average
FFM

(a) TCP Window Size

20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

Time

Q
ue

ue
 L

en
gt

h

NS
FFM

(b) bottleneck Queue

Fig. 7. Results for Single Bottleneck Topology

1 2

3

4 6

7

8

9

5

Class2

Class3 Class1

Fig. 8. Network with Two Bottlenecks

length predicted by the fluid model. We also observe a good match, which also implies the
fluid model calculates RED packet marking probability accurately.

5.2 Model Scalability with Link Bandwidth
The second set of experiments demonstrates the fluid model’s scalability with link band-
width and flow populations. We set up 3 TCP classes on a network of 8 links as in Figure
8.
Link bandwidth and flow populationwithin each class are set to be proportional to a scale

parameter K , which ranges from 1 to 100. The link between nodes 2 and 4, and the link
between nodes 6 and 8 have bandwidths of K ∗ 10Mbps. Other links have bandwidths of
K∗100Mbps. Each TCP class consists ofK∗40TCP flows. In order for simulation results
at different scales to be comparable, we make RED thresholds tmin and tmax proportional
to K and its queue averaging weight α is inversely proportional to K . There are a total
of 16 queues in the network. Our model reduction algorithm identifies 12 of them as
uncongested that don’t need to be simulated. For each K , we simulate the network for
100 seconds using both ns and the fluid model solver. Figures 9 and 10 show simulation
results for K = 1 and K = 10 respectively. Tables I and II list simulation statistics of
queue lengths and throughputs, including the mean obtained from both ns simulation and
fluid model, the standard deviation of ns results and the absolute difference between ns
and fluid model results. ns simulation results eventually converge to fluid model solution
ACM Journal Name, Vol. V, No. N, Month 20YY.

Scalable Fluid Models and Simulations for Large-Scale IP Networks · 15

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

Time

Se
nd

in
g

Ra
te

NS Class1
FFM Class1
NS Class3
FFM Class3

(a) TCP Sending Rate

10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

Time

Q
ue

ue
 L

en
gt

h

NS Bottleneck1
FFM Bottleneck1
NS Bottleneck2
FFM Bottleneck2

(b) Bottleneck Queues

Fig. 9. Simulation Results whenK = 1

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

Time

Se
nd

in
g

Ra
te

NS Class1
FFM Class1
NS Class3
FFM Class3

(a) TCP Sending Rate

10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

Time

Q
ue

ue
 L

en
gt

h

NS Bottleneck1
FFM Bottleneck1
NS Bottleneck2
FFM Bottleneck2

(b) Bottleneck Queues

Fig. 10. Simulation Results whenK = 10

Table I. Sending Rate of Class1
K 1 10 50 100

ns mean 42.0 41.6 42.5 41.8
ns std. dev. 0.59 0.28 0.766 0.21
FFM 41.6 41.6 41.6 41.6

abs. diff. 1.41 0.47 0.90 0.22

asK gets larger.
Because the fluid model is scalable with both link bandwidth and flow population, the

computation cost to obtain model solution is invariant to the scale parameter K . On the
other hand, the number of packets need to be processed in ns grow as link bandwidth and
number of flows scale up. It takes much longer for ns simulation to finish whenK = 100
than K = 1. Table III lists pure computation costs in unit of second of ns and the fluid
model, both without dumping data. The larger the scale, the bigger computation savings

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Yong Liu et al.

Table II. Queue Length at Bottleneck1
K 1 10 50 100

ns mean 100.4 995.4 4,875 9,942
ns std. dev. 18.7 59.5 100 162
FFM 99.1 990.5 4,953 9,905

abs. diff. 14.5 46.4 91.8 134

Table III. Computation Cost of ns and Fluid Model
K 1 10 50 100
ns 12.5 122 983 1,676
FFM 0.766 0.766 0.766 0.766

Speedup 16.32 159.3 1,283 2,188

(a) Ring Structure

0.0 0.1

1.0

1.1

1.3

1.2

1.4

1.5

4 5

3.1 3.0 2.0 2.1

3.2 3.3 2.2 2.3

0.2

Net 0
Net 1

Net 2
Net 3

(b) Topology of Subnetworks

Fig. 11. Topology of a Large IP Network

for the fluid model.

5.3 Experience with Large IP Networks
In this experiment, we test our fluid model’s capacity to simulate large networks. We use a
structured network topology adapted from a baseline network model posed as a challenge
to large network simulators by the DARPA Network Modelling and Simulation program.
At a high level, the topology can be visualized as a ring of N nodes. Each node in

the ring represents a campus network and is connected to its two neighbors by links with
bandwidth of 9.6Gbps and random delays uniformly distributed in the range of 10-20ms.
In addition, each node is connected to a randomly chosen node other than its neighbors
through a chord link. Figure 11(a) illustrates a ring structure generated for N = 20.
The campus networks at all nodes share the same topology shown in Figure 11. Each

campus network consists of 4 sub networks: Net 0, 1, 2, 3. All the links in campus networks
have bandwidth of 2.5Gbps.
Node 0.0 in Net 0 acts as the border router and connects to border routers of other

campus networks. The links within Net 0 have random delays uniformly distributed in
ACM Journal Name, Vol. V, No. N, Month 20YY.

Scalable Fluid Models and Simulations for Large-Scale IP Networks · 17

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60

Ti
m

e
(s

)

N

Fig. 12. Computation Cost as a function of N

the range of 5 − 10ms. Links connecting 0.x to other sub-networks have random delays
uniformly distributed in the range of 1 − 5ms. All links in Net 1, Net 2 and Net 3 have
random delays of 1-2ms. Net 1 contains two routers and four application servers. Net 2
and Net 3 each contains four routers connecting to client hosts.
The traffic consists of persistent TCP flows. From each router in Net 2 and Net 3, there

are 8 TCP classes. Four of them are destined to servers in its neighboring campus network.
The other four classes are destined to servers in the campus network that connects to it
through a chordal link. Each TCP class containsK homogeneous TCP flows.
In total, the entire network has 19N nodes, 44N queues, and 64N TCP classes. Our

experiment is carried on a Dell Precision Workstation 530, which is configured with two
Pentium IV processors(2.2GHz) and 2GB memory. However, as our program is not par-
allelized, only one processor is utilized. We fix the flow population of each TCP class at
50 and vary the number of campus networks on the ring from 5 to 55. Each topology is
simulated for 100 seconds. Our model reduction algorithm identifies nearly 60% queues
as uncongested. Figure 12 illustrates simulation times that grow almost linearly with the
number of campus networks. The simulation of the largest topology, which consists of
1, 045 nodes and 176, 000 TCP flows, completed after 74 minutes and 7.2 seconds when
the step-size is set to be 1ms. This simulation time can be reduced linearly when we use a
larger step-size.

6. EXTENSIONS
We have observed in previous sections that our fluid model based approach is promising for
simulating large IP networks. In this section, we present some possible model extensions.

6.1 Model Time-out and Slow Start
The model described in Section 2 captures the AIMD dynamic of the TCP window control.
As shown in [Misra et al. 2000], the model can be easily extended to account for timeout

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Yong Liu et al.

losses and the slow start behavior of TCP, by replacing (6) with

dWi(t)
dt

= (1 − αi,CA)
Wi(t)
Ri(t)

+ αi,CA
1

Ri(t)

− Wi(t)
2

λi(t)(1 − pi,TO) − (Wi(t) − 1)λi(t)pi,TO (20)

TheWi/Ri term models the exponential growth of the window size in the slow start phase
of TCP, while theWi − 1 term models the window’s reduction to 1 in response to timeout
losses. αi,CA is the probability that a flow of class i is in congestion avoidance (CA).
For long lived flows, we can ignore the slow start phase and set αi,CA = 1. pi,TO is
the probability that a loss is a timeout loss. This probability can be approximated by
pi,TO = min{1, 3/Wi} ([J.Padhye et al. 1998]).

6.2 Incorporate Unresponsive Traffic
Although the majority of Internet traffic is controlled by TCP, a non-negligible amount
of traffic is unresponsive to congestion. It can be generated by either UDP connections
or simply TCP connections which are too short to experience congestion. Recent work
[Hollot et al. 2003] studies unresponsive traffic’s impacts on AQM performance based on
the MGT model. We can incorporate unresponsive traffic into our model by changing (10)
to

dql(t)
dt

= −1(ql(t) > 0)Cl +
∑

i∈Nl

niAi(t) + ul(t), (21)

where ul(t) is aggregate unresponsive traffic rate at queue l. Instead of generating indi-
vidual unresponsive flows, we can use different unresponsive traffic rate models derived in
[Hollot et al. 2003] for ul(t) to speed up our simulation.

7. CONCLUSIONS AND FUTURE WORKS
In this paper, we have developed a methodology to obtain performance metrics of large,
high bandwidth IP networks. We started with the basic fluid model developed in [Misra
et al. 2000], and made considerable improvements and enhancements to it. Most impor-
tantly, we made the model developed in that paper topology aware. That contribution alone
is of independent interest in terms of theoretical (fluid) studies of such networks, as topol-
ogy awareness can play a critical part in conclusions regarding stability and performance
as we demonstrated by a simple tandem queue example. We also incorporated a number
of TCP features and variants, as also a number of different AQM schemes into the model.
Our solution methodology is computationally extremely efficient, and the scalable model
enables us to obtain performancemetrics of high bandwidth networks that are well beyond
the capabilities of current discrete event simulators. Our technique also scales well with the
size of the network, displaying a linear growth in computational complexity, as opposed
to a super-linear one observed with discrete event simulators. The time stepped nature of
our solution lends itself to a straightforward parallel implementation, pointing to another
possible avenue of ”simulating” large networks.
As a future work, we will further extend the fluid model and at the same time validate

model extensions, including those described in the previous section. Model reduction al-
gorithm described in Section 2.5 still has some space to improve. We are working on
ACM Journal Name, Vol. V, No. N, Month 20YY.

Scalable Fluid Models and Simulations for Large-Scale IP Networks · 19

integrating our fluid model based simulator with other existing packet level simulators to
conduct hybrid simulation. In such a hybrid simulation, our fluid simulator can be used to
simulate back ground traffic in the core network and provide network delay and loss infor-
mation to packet traffic running across the fluid core. Preliminary attempts to integrate our
fluid simulator with ns have proved successful. Now we are working on parallelizing our
fluid simulator to further boost its simulation speed. Some other work need to be done is
to test the sensitivity of the accuracy of our fluid model to the step-size and come up with
some guidelines to choose appropriate step-size. It will be also of our interest to compare
the solution of the original MGT model and the refined fluid model and identify scenarios
where the original model is sufficient to provide fast solution.

REFERENCES
ALTMAN, E., AVRACHENKOV, K., AND BARAKAT, C. 2000. A stochastic model of TCP/IP with stationary
random losses. In Proceedings of ACM/SIGCOMM ’00.

ATHURALIYA, S., LI, V., LOW, S., AND YIN, Q. 2001. REM: Active queue management. In IEEE Network.
Vol. 15. 48–53.

BACCELLI, F., MCDONALD, D., AND REYNIER, J. 2002. A Mean-field Model for Multiple TCP Connections
through a Buffer. In Proceedings of IFIP WG 7.3 Performance.

BU, T. AND TOWSLEY, D. 2001. Fixed Point Approximation for TCP behavior in an AQM Network. In
Proceedings of ACM/Sigmetrics.

DANIEL, J. W. AND MOORE, R. E. 1970. Computation and theory in ordinary differential equations. San
Francisco, W. H. Freeman.

FALL, K. AND FLOYD, S. 1996. Simulation-based comparisons of Tahoe, Reno, and SACK TCP. Computer
Communications Review 26.

FLOYD, S. AND JACOBSON, V. 1993. Random Early Detection gateways for congestion avoidance. IEEE/ACM
Transactions on Networking 1, 4 (August), 397–413.

HOLLOT, C., LIU, Y., MISRA, V., AND TOWSLEY, D. 2003. Unresponsive flows and AQM performance. In
Proceedings of IEEE/INFOCOM.

HOLLOT, C., MISRA, V., TOWSLEY, D., AND GONG, W. 2001. On designing improved controllers for AQM
routers supporting TCP flows. In Proceedings of IEEE/INFOCOM.

J.PADHYE, FIROIU, V., TOWSLEY, D., AND KUROSE, J. 1998. Modeling tcp throughput: A simple model and
its empirical. In Proceedings of ACM/SIGCOMM ’1998.

KUNNIYUR, S. AND SRIKANT, R. 2001. Analysis and design of an adaptive virtual queue algorithm for active
queue management. In Proceedings of ACM/SIGCOMM ’2001.

MISRA, V., GONG, W.-B., AND TOWSLEY, D. 2000. Fluid-based Analysis of a Network of AQM Routers
Supporting TCP Flows with an Application to RED. In Proceedings of ACM/SIGCOMM.

PSOUNIS, K., PAN, R., PRABHAKAR, B., AND WISCHIK, D. 2003. The scaling hypothesis: simplifying the
prediction of network performance using scaled-down simulations. ACM Computer Communications Review.

TINNAKORNSRISUPHAP, P. ANDMAKOWSKI, A. 2003. Limit Behavior of ECN/RED Gateways Under a Large
Number of TCP Flows . In Proceedings of IEEE Infocom.

ACM Journal Name, Vol. V, No. N, Month 20YY.

