
On the Optimality of Greedy Garbage Collection for SSDs

Yudong Yang
Columbia University

yyd@cs.columbia.edu

Vishal Misra
Columbia University

misra@cs.columbia.edu

Dan Rubenstein
Columbia University

danr@cs.columbia.edu

ABSTRACT
Solid state drives have been widely applied in modern com-
puter systems. The lifetime of the SSD depends heavily on
the efficiency of the implementation of the garbage collec-
tion (GC) algorithm that reclaims previously used pages.
In this paper, we present the first detailed proof that the
greedy GC algorithm has the optimal performance (mini-
mized write amplification) for memoryless workloads.

1. INTRODUCTION
Solid State Drives (SSDs) have been widely applied as

persistent storage in personal computers and cloud servers
due to their high performance and low energy consumption.
In a SSD, space is partitioned into blocks, with each block
containing the same number of pages. Data to be stored is
written into pages, and a page can be reused only when it
holds data that is no longer needed (invalid) and the block
containing the page is cleaned. Cleaning is a costly op-
eration, in that a block becomes unusable for storage after
being cleaned too often (in the range of the tens or hundreds
of thousands, depending on the specific design of SSD [2]).
Hence, it is important to design efficient garbage collection
(GC) algorithms that decide when to perform a clean, and
which block to clean.

Intuitively, it is preferable to clean a block with more in-
valid pages since such a clean frees more pages for reuse.
It is therefore also intuitive that an algorithm that greedily
chooses the block with the most invalid pages as its next
block to clean will perform well, perhaps even optimally, in
general.

Despite this intuition that greedy is optimal and a large
body of prior work studying the greedy GC policy, to our
knowledge, no formal proof of this exists prior to our work
here. Here, we prove that greedy GC is optimal for
workloads where the lifetimes of pages are exponen-
tially distributed, or, more simply put, the workload
is memoryless.

In [5], the authors analyze the write amplification of greedy
GC algorithm for memoryless workloads and propose a win-
dowed greedy policy to ease the algorithm complexity. An-
other closed-form solution for write amplification under greedy
GC algorithm for memoryless workloads is presented in [3],
the result is more precisely compare to [5] especially when
the spare factor is small (Sf < 0.2). Bux et al. [1] also give a

Copyright is held by author/owner(s).

closed form of the write amplification for greedy GC in large
systems under memoryless workloads. Lin et al. [7] propose
a Dual-greedy heuristic and compare it with the greedy GC
algorithm and other heuristics, suggesting that the greedy
GC algorithm outperforms several heuristics on memoryless
workloads but Dual-greedy performs best on traces of work-
loads. The authors of [8] and [6] use a mean field model
to analyze the performance of the D-choice GC algorithm
which cleans the block with minimal valid pages among d
randomly selected blocks. In [4], the authors give a proof
sketch about the optimality of greedy GC algorithm for ran-
dom write workload, in which the utilization factor µ is fixed,
which is a special case of our memoryless workload model.

2. SYSTEM MODEL
A SSD contains N blocks, each block contains B pages,

where at any time a page is either valid, invalid or emp-
ty. Each arrival is written to an empty page which, upon
writing, becomes valid. Page lifetimes are independent and
exponentially distributed with identical rate µ, such that at
any time, all valid pages have equal probability of becoming
the next invalid page. When a block is cleaned, all invalid
pages in that block become empty. We assume that clean-
ing can be completed (almost) instantaneously, such that
arrivals do not queue up to be placed. The arrivals of new
pages which must be written to storage can be described by
arbitrary process, but we assume that the number of valid
pages never exceeds NB such that an arriving page can al-
ways be stored. If run for long enough, an SSDs pages will
all be valid or invalid, having no empties to place incoming
arrivals. Hence, a Garbage Collection Algorithm must,
from time to time, select a block to clean.

A common measure of performance of a GC Algorithm is
the write-amplification, defined as

limM→∞
MB∑M
j=1 ij

,

where M is the number of cleans performed and ij is the
number of invalid pages that were emptied on the jth clean.
A smaller write amplification is better, since this implies
that on average, more space was freed for future storage per
clean.

The Greedy GC algorithm waits until the SSD is filled,
and then cleans a block with maximal number of invalids1.
There are two variants, previously considered, which we also
consider here:

1Ties are broken arbitrarily



• D-choice: when choosing a block to clean, restrict the
algorithm to choose among D randomly chosen blocks.
D = 1 is a “pure” random algorithm, and D = N is
the most generalized (no restriction on choice). Greedy
would choose the block from the set of D choices with
the maximal number of invalids.

• Clean-and-move: The process of cleaning a block
involves buffering valid pages in a temporary space,
erasing the entire block, and then rewriting the valid
pages back to the block. Clean-and-move allows the
buffered valid pages to be written to other blocks (in
the case where the other blocks have empty pages).

3. OPTIMALITY OF GREEDY
We show that Greedy is optimal in comparison to any

other on-line algorithm A, which can, at any time t, choose
blocks to clean based only on the history of events up to time
t (i.e., any previous arrivals, departures, moves and cleans
prior to time t).

Lemma 1. For any algorithm, a block should only be
cleaned when it is full (of valid and invalid pages).

Proof. Consider a block that has been cleaned while
containing empties, and let a be the next arrival to be s-
tored in the block. Then there was space for a prior to the
cleaning, and hence a could have been placed prior to the
cleaning. Furthermore, by delaying the cleaning, additional
pages may have expired, such that a later cleaning would
free up more invalid pages.

X Y
Invalid

Valid

Valid

Invalid
Invalid

ValidLX LY

MY

UY

MX

UX iX
iY

B

(a) Blocks before clean

X Y
Empty
Valid

Valid

Invalid
Invalid

ValidLX LY

MY

UY
MX

UX

A Cleaned X
(b) After A cleans

X Y
Invalid
Valid

Valid

Empty
Empty (prior 

to move)

ValidLX LY

MY

UY

MX

UX

 Greedy Cleans Y and moves MX

(c) After Greedy cleans and
moves

Figure 1: A visual perspective of the respective
clean operations.

Theorem 1. In clean-and-move systems with memory-
less workloads, Greedy is optimal.

Proof. The proof is by contradiction. Consider an opti-
mal algorithmA that chooses a block X other than the block
containing the largest number of invalids to clean, and let Y
be a block (as chosen by Greedy) with the largest number of
invalids. By Lemma 1, neither X nor Y would have empty
pages (since an optimal algorithm would delay their clean-
ing until they were indeed full.) Hence, block S ∈ {X,Y }
has iS invalid pages and B − iS valid pages where iX < iY .
We divide the pages each block S into 3 regions: the upper

US is a fixed collection of iX invalid pages, the lower LS is a
fixed collection of B− iY valid pages, and the middle of size
iY − iX where the pages in MX are valid and the pages in
MY are invalid. These regions are depicted in Figure 1(a).

An important observation is that due to the memoryless
property, the pages in LX are identical in a stochastic sense
to those in LY : they are all valid and the distributions on
each page’s remaining lifetime is identical.

When A cleans block X, block X will contain iX empty
pages, and B − iX valid pages, while block Y maintains iY
invalid pages and B − iY valid pages, as shown in Figure
1(b).

After Greedy cleans block Y , there are B− iY valid pages
and iY empty pages, and blockX contains B−iX valid pages
and iX invalid pages. Assume the pages in region MX are
immediately copied over to (empty region MY in Y , and all
blocks in Mx are invalidated. By doing this, we now have
an additional iY − iX valid pages in Y making the total
B − iX , iY − iX fewer empty pages in Y making the total
iX , iY − iX , with the number of invalids equalling 0. We
also created iY − iX additional invalid pages in X making
the total number of invalids equal to iY , and reduced the
number of valid pages by iY − iX making the valid number
B − iY , as shown in Figure 1(c).

In other words, from a stochastic standpoint, block X in
Greedy-with-move is stochastically equivalent to Y in A,
while block Y in Greedy-with-move is stochastically equiv-
alent to X in A, and Greedy chose the block with more
invalid pages to be cleaned.

The proof is concluded by constructing another algorithm
B which duplicates A until the first time t when A selects a
block X that Greedy would not select, and B instead selects
the block Y that Greedy would select and peform the move
described above. Since the states of systems are stochastical-
ly equivalent after these events, B could “imitate” algorithm
A, except that it would treat block X as A treats Y , and
treating Y as A would treat block X, thereby making the
ji equal in expectation for all subsequent cleans. By repeat-
ing the process on B at each point where it deviates from
Greedy, we reduce write amplification and converge toward
a completely Greedy algorithm.

Theorem 2. For memoryless workloads, there is no ad-
vantage to moving active pages between blocks.

Proof. Assume for the sake of contradiction that some
number n > 0 of valid pages in block X must be moved to
block Y at time t to minimize the write amplification.

First, we note that any move and clean events of a block
Z can be delayed until an arrival of some page p that needs
to be placed in either Z or some block involved in a move
with Z. Hence, without loss of generality, we can assume
that there is a new arrival p at time t that is to be placed in
either X or Y , and that p cannot be placed prior to the move
(without increasing write amplification). Hence at time t,
the move will occur, followed by (possibly) cleaning block
X and/or block Y , followed by placement of p in block X
or block Y .

We first consider the case where p is to be placed in Y .
Y must have exactly n empty pages, or we could place p
in an empty page of Y prior to the move and still have e-
nough pages to move the remaining n pages from X to Y .
Hence, the n pages are moved, then Y is cleaned, freeing
some invalid pages, where p can then be placed. However,



the cleaning of Y could have been performed prior to the
move (the n empty pages would remain empty, the remain-
ing pages have the same status whether the order of events
is move, clean or clean, move). We could therefore, at time
t, clean Y , place p, have at least n empty pages in Y for a
move that would not need to occur until some later arrival
q. Thus, the move can be delayed until after time t wihtout
impacting the number of invalids cleaned, and we can keep
delaying the move as long as the page is to be placed into
Y .

Next, consider the case where p is to be placed in X.
X must have no empty pages at time t, or p could be
placed there prior to the move, contradicting the assump-
tion. Hence, the move must be performed, followed by a
cleaning of X, followed by the placement of p. We distin-
guish one particular page q of the n valid pages being moved,
and propose that instead of moving the n valid pages, we
instead move n − 1 of the pages to Y , and also place p in
Y . Because of the memoryless assumption, the remaining
lifetimes of p and q are stochastically equivalent, such that
the state of the two systems (moving n pages versus moving
n− 1 and p) are stochastically equivalent. Furthermore, at
time t, we can simply place p in Y , and delay the move of
the remaining n − 1 pages until a subsequent arrival. Note
that this argument holds for the case where n = 1 (there is
simply no move in our proposed modification). As before,
the proposed change does not modify the number of invalids
performed by the clean.

We have shown that at time t, it is possible to delay the
move to a later time,2 contradicting the assumption that the
move must take place at time t.

Note that the proof extends to the case where one block
X to multiple other blocks by separately applying the proof
to the subsets of blocks moved to a single block.

Note also that in a memoryless system, Theorem 2 pro-
vides a mapping from an algorithm A with moves to a com-
parable (or better) algorithm without moves. If A moves n
pages from block X to block Y , we would instead abort the
move and place the next n arrivals that would have been
destined for block X into block Y , following the same clean-
ing schedule for Y as in A, and postponing a cleaning of
X until at least after Y filled. This non-move algorithm
maintains identical write amplification.

4. DISCUSSION
First, we wish to point out that our proofs apply directly

to D-choice variants (for D > 1, as our proof only looking
at 2 blocks. Theorem 1 applies where both A and Greedy
are allowed to choose from the same (restricted) set of D
blocks.

While the proof demonstrates optimality with respect to
the write-amplification metric, it also applies to other nat-
ural metrics for the problem, such as minimizing (in expec-
tation) the number of cleans that need to be performed by
a time t.

5. FUTURE WORK
While we have demonstrated that Greedy is optimal in

memoryless systems, the optimality of greedy GC algorithm

2and/or possibly reducing, but never increasing, the number
of moved pages.

for more general workloads remains unclear. Prior work[9]
suggests that greedy GC algorithm is not optimal for Rosen-
blum workloads, or the workloads where the lifetime is long-
tailed distributed[7]. We conjecture that Greedy, or some
variant therein, may still be the optimal for short-tailed
workloads. Our proofs do provide us with some insights
on the problem:

• It seems useful to consider Clean-and-Move variants
in addition to strict Clean versions, as they should
be implementable in practice, possibly offer improved
performance, and may be useful in proving bounds on
the performance on the non-move counterparts.

• The memoryless property allowed to abstract out the
differences that might exist (in terms of remaining life-
time) of valid pages. Presumably, for other distribu-
tions, the lifetimes must be taken into account when
selecting a block. In other words, one does not want to
clean a block now which may, in a very short time, have
a much larger number of invalid pages. Hence, some
scheme that “weights” valid blocks might be needed
for optimality.

Last, we have also designed an off-line heuristic which has
knowledge of future arrivals and lifetimes, and have shown
experimentally that such knowledge can be used to out-
perform Greedy. Thus, the problem of understanding the
on-line competitive ratio of Greedy is still open.

6. REFERENCES
[1] W. Bux and I. Iliadis. Performance of greedy garbage

collection in flash-based solid-state drives. Performance
Evaluation, 67(11):1172–1186, 2010.

[2] F. Chen, D. A. Koufaty, and X. Zhang. Understanding
intrinsic characteristics and system implications of flash
memory based solid state drives. In ACM
SIGMETRICS Performance Evaluation Review,
volume 37, pages 181–192. ACM, 2009.

[3] P. Desnoyers. Analytic modeling of ssd write
performance. In Proceedings of the 5th Annual
International Systems and Storage Conference, page 12.
ACM, 2012.

[4] X. Haas and X. Hu. The fundamental limit of flash
random write performance: Understanding, analysis
and performance modelling. Technical report, IBM
Research Report, 2010/3/31, 2010.

[5] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and
R. Pletka. Write amplification analysis in flash-based
solid state drives. In Proceedings of SYSTOR 2009:
The Israeli Experimental Systems Conference, page 10.
ACM, 2009.

[6] Y. Li, P. P. Lee, and J. Lui. Stochastic modeling of
large-scale solid-state storage systems: analysis, design
tradeoffs and optimization. In Proceedings of the ACM
SIGMETRICS/international conference on
Measurement and modeling of computer systems, pages
179–190. ACM, 2013.

[7] W.-H. Lin and L.-P. Chang. Dual greedy: Adaptive
garbage collection for page-mapping solid-state disks.
In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2012, pages 117–122. IEEE, 2012.

[8] B. Van Houdt. A mean field model for a class of
garbage collection algorithms in flash-based solid state
drives. In ACM SIGMETRICS Performance Evaluation
Review, volume 41, pages 191–202. ACM, 2013.

[9] B. Van Houdt. Performance of garbage collection
algorithms for flash-based solid state drives with
hot/cold data. Performance Evaluation,
70(10):692–703, 2013.


