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ABSTRACT

TCP has traditionally been considered unfriendly for real-
time applications. Nonetheless, popular applications such
as Skype use TCP since UDP packets cannot pass through
many NATSs and firewalls. Motivated by this observation,
we study the delay performance of TCP for real-time media
flows. We develop an analytical performance model for the
delay of TCP. We use extensive experiments to validate the
model and to evaluate the impact of various TCP mecha-
nisms on its delay performance. Based on our results, we
derive the working region for VoIP and live video streaming
applications and provide guidelines for delay-friendly TCP
settings. Our research indicates that simple application-level
schemes, such as packet splitting and parallel connections,
can reduce the delay of real-time TCP flows by as much as
30% and 90%, respectively.
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1. INTRODUCTION

The popularity of real-time applications, such as VoIP and
video streaming, has grown rapidly in recent years. The
conventional wisdom is that TCP is inappropriate for such
applications because its congestion controlled reliable de-
livery may lead to excessive end-to-end delays that violate
the real-time requirements of these applications. This has
led to the design of alternative unreliable transport proto-
cols [17,20,31] that favor timely data delivery over reliability
while still providing mechanisms for congestion control.

Despite the perceived shortcomings of TCP, it has been
reported that more than 50% of the commercial streaming

traffic is carried over TCP [16]. Popular media applica-
tions such as Skype [7] and Windows Media Services [16]
use TCP due to the wide deployment of NATs and firewalls
that often block UDP traffic. Further, TCP is by defini-
tion TCP-friendly [17] and is a mature and widely-tested
protocol whose performance can be fine tuned.

The gap between the perceived shortcomings of TCP and
its wide adoption in real-world implementations motivated
us to investigate the delay performance of TCP. Our study
seeks to address the following questions: (1) Under what
conditions can TCP satisfy the delay requirements of real-
time applications? (2) Can the performance of these applica-
tions be enhanced using simple application-layer techniques?
We address these questions in the context of two real-time
media applications that are characterized by timely and con-
tinuous data delivery: VoIP and live video streaming.

To understand all aspects of the performance of real-time
applications, we conduct an extensive performance study
using an analytical model and real-world experiments. The
analytical model allows us to systematically explore the de-
lay performance over a wide range of parameter settings, a
challenging process when relying on experimentation alone.
While there exists an extensive literature on TCP modeling
and analysis, it is geared towards file transfers [9,28,29] and
video streaming [19,34] rather than delay.

We use both test-bed and Internet experiments to val-
idate the model. We analyze how the delay depends on
the congestion control and reliable delivery mechanisms of
TCP. We further study the impact of recent extensions such
as window validation [18] and limited transmit [4]. The re-
sults obtained yield guidelines for delay-friendly TCP set-
tings and may further be used to compare the performance
of TCP with alternative protocols [17,20] and experimental
real-time enhancements for TCP [15,22,25]. We analyze two
application-level schemes, namely, packet splitting and par-
allel connections which we find to significantly reduce the
delay of live video streaming flows.

Our research reveals that real-time application performance
over TCP may not be as delay-unfriendly as is commonly
believed. One reason is that the congestion control mecha-
nism used by TCP regulates rate as a function of the num-
ber of packets sent by the application. Such a packet-based
congestion control mechanism results in a significant perfor-
mance bias in favor of flows with small packet sizes, such as
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The main contributions of this paper are:

e We are the first to present a discrete-time Markov
model for the delay distribution of a real-time TCP
flow (Section 4).

e We find that under the same network conditions, VoIP
flows suffer from lower TCP delays than live video
streaming flows. We derive the working region for
VoIP and live streaming flows based on our model and
experiments (Section 6.1). VoIP operates well when
the network loss rate is at most 2% and RTT is at
most 100 ms. Live video streaming operates well when
the network loss rate is at most 3% and RTT is 100 ms.

e We study the impact of various TCP mechanisms on
the TCP delay (Sections 6.2-6.6). We then provide
simple application-level heuristics (Section 7) and delay-
friendly guidelines (Section 8) for improving the per-
formance of real-time applications. The most promis-
ing heuristic uses parallel connections with shortest-
queue first policy and achieves up to 90% delay re-
duction. For a single connection, a packet splitting
heuristic reduces delay by 30% on average.

2. APPLICATION SETTING

We study a general real-time media application, with a
Constant Bit Rate (CBR) source, that sends data across the
network using TCP. CBR is the most basic and dominant
encoding for media flows in the Internet [35]. Although our
analysis is general, we focus on CBR sources corresponding
to VoIP and live video streaming, as detailed in Section 5.
The VoIP and live video streaming flows are application-
limited, i.e., their sending rate is a function of media encod-
ing and not the underlying network. This is in contrast to
greedy flows, such as FTP, which are network-limited.

Throughout the paper, we refer to the transmission unit
of TCP as a segment and to the TCP payload (i.e., the
application-layer data unit) as a packet. The maximum seg-
ment size, MSS, is determined by the maximum transmission
unit of the network path [32]. A common characteristic of
real-time applications is their sensitivity to end-to-end de-
lay which may vary from application to application. For
live video streaming, there is usually minimal interactivity
involved, so the application can afford a startup delay in the
order of seconds [16]. For VoIP, low delay of up to 400 ms is
required in order to maintain acceptable interactivity [15].
To reduce end-to-end delays, VoIP often uses small payloads
(e.g., 160-byte packets) that correspond to 20ms or 30 ms
of audio. Thus, in the context of this paper, the difference
between VoIP and live video streaming flows is their packet
sizes and their tolerance of delay.

We define TCP delay as the time it takes the applica-
tion to get a packet from source to destination through a
TCP connection. Packet delay, loss rate, and jitter are key
parameters that determine the user-perceived media qual-
ity [11,33]. We therefore use the TCP delay distribution
to evaluate the performance of real-time applications. From
the delay distribution we derive the portion of packets that
arrive beyond their scheduled playout times, i.e., the packet
loss rate at the application level. The loss rate metric is
determined by the a-percentile delay bound, defined as fol-
lows. A delay value d of a-percentile corresponds to 1 — «
portion of packets that are delayed more than d time units.
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Figure 1: Transport-layer queueing delays

3. TCP DELAY COMPONENTS

Here we examine the various ways in which delay is in-
troduced in a TCP connection with a CBR source. The
delay in a TCP connection consists of two main compo-
nents: (a) network delay, which is the time it takes a seg-
ment to get across the network; (b) TCP-level delay, which
is an artifact of how TCP reacts to variations in the effective
throughput. While throughput variations can occur due to
application-level flow control, they are primarily the result
of network congestion. To understand TCP-level delays, we
briefly describe the transmission behavior of TCP. TCP is
a window-based protocol that uses two main mechanisms to
regulate its sending rate: Additive-increase-multiplicative-
decrease (AIMD) and timeout. These mechanisms may de-
lay data delivery because they require TCP to reduce its
sending rate in response to network congestion. In addition,
TCP uses packet retransmissions to provide lossless data de-
livery. This mechanism introduces additional delay for data
delivery. A detailed discussion of the mechanisms in TCP
can be found in [32].

TCP uses two buffers to provide congestion-controlled re-
liable data delivery; a send buffer and a receive buffer. The
send buffer serves two functions [15]. It absorbs rate mis-
matches between the application sending rate and the trans-
mission rate of TCP. It also stores a copy of the packets in
transit in the network should they be retransmitted. Al-
though these packets are buffered, they do not introduce
additional queuing delay for unsent packets. Only the un-
sent packets held in the send buffer, hereafter referred to
as the backlogged packets, contribute to the delay of newly
admitted packets to the send buffer. The purpose of the
receive buffer is to hold out-of-order packets while a loss is
being recovered. This buffering results in head-of-line (HOL)
blocking delay.

In this paper, we only consider packet backlogging due
to network congestion and ignore packet backlogging due to
other causes, such as application-level flow-control (e.g., a

receiving application that slows down an aggressive sender [32]).

Applications usually minimize this backlogging by setting a
large receive buffer and operating with non-blocking sock-
ets. Packet backlogging can also occur due to Nagle’s algo-
rithm [27] that was added to TCP to limit the transmission
of small segments. This algorithm ensures that TCP sends
data only when there are at least MSS bytes of available
data, and hence improves throughput at the expense of in-
creased transmission delay. In practice, many delay-sensitive
applications disable this algorithm to reduce transmission
delays [39]. We follow this practice in our work. Figure 1 il-
lustrates the TCP-level delay components. The sender-side
delay is caused by the congestion control and reliable deliv-
ery mechanisms in TCP, whereas the receiver-side delay is
caused by the in-order delivery guarantee of TCP.
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Figure 2: The evolution of the TCP delay and con-
gestion window size for a video-like CBR source.

Figure 2(a) illustrates the delay behavior of a TCP flow
driven by a CBR source. The CBR source sends 50 MSS-
sized packets per second over a symmetric network with a
200 ms round-trip time (RTT). An application-limited pe-
riod is seen from Os to 0.5s and from 2.4s to 2.8s. We de-
fine an application-limited period as a period where the TCP
throughput satisfies the source’s rate requirement. In this
period, the TCP delay is determined by the network delay.
A network-limited period is seen from 0.5s to 2.4s. In this
period, the TCP throughput no longer satisfies the source’s
rate requirement, resulting in TCP-level delays. TCP moves
to a network-limited period when a packet loss occurs. Within
the network-limited period there are two subregions: loss
recovery, seen from 0.5s to 0.76s, and packet backlogging,
seen from 0.76 s to 2.4s. TCP uses retransmission to recover
the lost packet, which in turn causes head-of-line blocking
delay at the receiver. The receipt of a packet loss indication
at time 0.76 s triggers TCP to reduce its congestion window
size, resulting in packet backlogging.

Unlike application-limited periods, in network-limited pe-
riods TCP probes for additional bandwidth to satisfy the
source’s rate requirement. In our example, the transmission
rate of TCP is governed by the AIMD mechanism and hence
is linearly increasing, as seen in Figure 2(b). The mismatch
between the input and output rates at the TCP sender re-
sults in the quadratic-like delay curve seen in Figure 2(a).
TCP moves back to an application-limited period when the
rates are matched.

3.1 TCP Interaction with VVolP-like Flows

The performance of real-time applications that use small
packets (e.g., VoIP) is directly affected by whether the con-
gestion control mechanism in TCP is byte or packet-based.
According to [6], there are two different issues at work. First,
a TCP sender can track the congestion control state in terms
of outstanding bytes or outstanding packets. Second, a TCP
sender can update the congestion control state based on how
many bytes are acknowledged, a mechanism known as byte-
counting, or by some constant for each ACK arrival, a mech-
anism known as ACK-counting. A TCP implementation
that tracks its congestion control state in terms of bytes,
but updates its state in terms of MSS-bytes (e.g., a BSD
system) would qualify as an ACK-counting implementation
because it does not take into the account the size of the
data acknowledged. We compare the performance of ACK
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Figure 3: A high-level view of a model for a TCP
connection with a CBR . source.

and byte-counting mechanisms (Section 6.3) and focus on
the latter due to its wide-deployment [23], as also verified
by our measurements.

4. MODELING TCP DELAY

Our model builds upon the detailed TCP model in [37]
that predicts the performance of TCP from the viewpoint of
throughput. We extend this model in three ways. First,
we include the TCP buffer dynamics in order to predict
the delay performance of TCP. Second, we model the win-
dow behavior during application-limited periods [18] to ac-
curately capture the loss recovery latency of TCP. Third,
we capture the effect of window inflation [6] and the lim-
ited transmit mechanism [4] to improve the accuracy of the
model for small congestion windows. We assume that the
sender is using a NewReno TCP implementation, the pre-
dominant TCP variant in the Internet [23], and refer the in-
terested reader to [12,32] for a detailed description of TCP
NewReno’s mechanisms.

4.1 A TCP Model

We consider a CBR source that sends fixed-size packets at
regular intervals across the network using TCP. Throughout
the paper, we assume that the average throughput provided
by TCP satisfies the rate requirement of the CBR source.
However, transient congestion episodes in the network can
still lead to TCP throughput fluctuations and hence to TCP-
level delays. These episodes cause the TCP connection to
alternate between application-limited and network-limited
periods, as described in Section 3.

Mimicking the behavior of a real-world TCP flow, our
model consists of two main states: application-limited and
network-limited. It transitions from an application-limited
state to a network-limited state when a loss occurs. TCP-
level delays are introduced only during network-limited states.
The model transitions back to an application-limited state
when the TCP sender matches its input and output rates
(e.g., when packet backlog is cleared). While in a network-
limited state, the model moves among four states corre-
sponding to TCP’s congestion control phases: slow-start
(SS), congestion avoidance (CA), fast recovery (FR), and
retransmission timeouts (TO). A high-level view of a model
for a TCP connection with a CBR source is shown in Fig-
ure 3; for ease of presentation, we merged the timeout and
fast recovery states into a single loss recovery (LR) state.

We make several simplifying assumptions in our model, as
follows. First, we assume that TCP increases the congestion
window by one packet per round-trip time, an assumption
motivated by the wide-deployment of ACK-counting TCP
implementations [23]. Second, we assume that the TCP im-



| Notation | Definition |

load in packets per second

load in packets per round-trip time
packet size (bytes)

congestion window size (in segments)
backlog size (bytes)

indicates whether loss recovery is required
segment loss probability

one-way network delay (seconds)

MSS maximum segment size (bytes)

NS ~ 8 2 33—

Table 1: Summary of model notations

plementation does not increase the congestion window when
the TCP sender is application-limited, which is the behav-
ior observed for Linux and Windows XP systems (see Sec-
tion 6.4). Third, we assume that the slow start threshold is
statically set to half of the source’s sending rate in packets
per round-trip time. From our experience, using a static
slow-start threshold rather than a dynamic one has a mar-
ginal impact on the model’s prediction accuracy. Last, we do
not model the effect of delayed acknowledgements (ACKs).
Nonetheless, our model can be easily extended to support
delayed ACKs using a similar approach as in [29].

The CBR source is characterized by two parameters, the
data generation rate in packets per second f and the size of a
generated packet a. We let r denote the data generation rate
in packets per round-trip time. For convenience, we summa-
rized the notations used in this paper in Table 1. We model
the behavior of a TCP source by a discrete-time Markov
chain with a finite state space S = {(w,b,{)} and a prob-
ability transition matrix Q@ = [gs,s], s,8’ € S. Each state
is associated with at most three outgoing transitions repre-
senting the following events: the receipt of a fast retransmit
loss indication, the receipt of a timeout loss indication, and
successful delivery of window data. Each transition is asso-
ciated with a certain number of packet transmissions, and
each packet in this transmission is associated with a delay.

In our model, each state is represented by an ordered triple
(w, b,1), where w is the current congestion window size in
segments, b is the current backlog size in bytes, and [ in-
dicates whether a loss has been detected and needs to be
recovered from (I > 0) or not (I = 0). The backlog size
value is used to indicate whether the sender is application-
limited (r < w, b = 0) or network-limited. The window size
value is used to distinguish between the two loss recovery
strategies employed by TCP: fast recovery (w > 0,1 = 1)
and retransmission timeout (w = 0,! > 1), where ! indi-
cates the current exponential back-off stage. Table 2 lists
the rules for classifying an arbitrary state s = (w,b,1) ac-
cording to the congestion control phases of TCP. We use
the notation AL = {(w,b,l) : < w,b= 0,1 = 0} to denote
the set of states for which the application-limited condition
holds. The notations CA, SS, FR, TO are defined in a
similar way, as shown in Table 2.

4.2 A Delay Performance Model

In this section, we model the three ways in which TCP
introduces delays: congestion control, retransmissions, and
head-of-line blocking, as detailed in Section 3. We model the
time packets are buffered at the sender (i.e., the congestion
control delay) by scaling the backlog size by the sources’s

| Classification | Condition

AL (Application-limited) r<w,b=0,l=0

NL (Network-limited) O<w,b#0orw<r,b=0

CA (Congestion avoidance) | r/2 < w,l =0
SS (Slow start) w<r/2,l=0
FR (Fast recovery) O<w,l=1

TO (Timeout) w=0,l=1,...,6

Table 2: State classification

rate. This modeling approach can be explained by observ-
ing that the (unsent) buffered packets left behind after a
packet is transmitted must have been admitted to the send
buffer while the transmitted packet was buffered. Since we
consider a data source with a constant rate, a transmitted
packet that leaves behind a backlog of b bytes must have
been buffered for at least b/(fa), the backlog size divided
by the source’s rate in bytes per second. This approach in-
troduces an error in the order of several packetization inter-
vals. The error arises because the Markov chain captures the
backlog size evolution in network-limited states at round-
trip time granularity. This error can be reduced by keeping
track of the inter-sending packet times. However, this will
make the state space of the model prohibitively large and
hence will limit its usefulness.

We determine the head-of-line and the retransmission de-
lay by the loss recovery latency (i.e., the time it takes TCP
to detect and recover a lost packet). TCP interprets receipt
of three duplicate ACKs as an indication of a packet loss. It
immediately retransmits the lost packet upon the receipt of
the third duplicate ACK. Hence, we take the time required
to receive a fast retransmit loss indication to be RTT +3/ f;
the RT'T term is the time needed for the first duplicate ACK
feedback and the 3/f term is the maximum time to gener-
ate three duplicate ACKs, which is attained when the loss
occurs in an application-limited state. For sake of simplic-
ity, we assume that fast recovery always takes a single RTT
regardless of the number of packets lost in a transmission
window, as suggested by [9].

Using the above observations, we express the TCP delay
of the i*" packet sent in a transition from state s to state s’
as:

_ b/(fa) + RTT + (3+1)/f ifs € FR

d, =L+{ 0 if s' € TO

7 b/(fa) otherwise
(1)

where L is the one-way sender to receiver network delay. For
loss-free transitions, the delay added by TCP is determined
by the backlogged packets, and hence is modeled as b/(fa),
as shown by the third case of (1). For transitions to fast
recovery states, an additional delay of RTT + (3 +1)/f is
introduced by the in-order delivery guarantee of TCP, as
shown by the first case of (1). Since the TCP sender is
likely to be idle during timeouts, we assume no packets are
sent in transitions to timeout states.

The number of CBR packets sent in a transition from s



to s’ ng.e is given by

ifse AL,s" € AL
min (b, wMSS) /a] if s € {CA|SS}
min (b, (w+ 3)MSS) Ja| ifs € FR

if s € TO

Mgyt =

Or—r— =

(2)

Since our model evolves at packet-level granularity while
in an application-limited state (see Figure 3), a single packet
is sent in a loss-free transition from an application-limited
state, as captured by the first case of (2). The second case
models the number of packets sent in a loss-free transition
from a network-limited state, which is determined by the
number of backlogged packets that fit into the congestion
window. The third case accounts for the extra transmissions
due to the receipt of the duplicate ACKs needed to trigger
a fast recovery, a mechanism known as window inflation [6].

We obtain the stationary distribution of the Markov chain
for the TCP source, 75, using standard steady-state discrete-
time Markov analysis; see for example [38]. Let N: be the
number of packets successfully sent in some time interval
[0,¢] and let N¢(d) be the number of packets out of N; that
experience delay d. Then, the portion of packets sent that
experience delay d is given by N¢(d)/N;. Let D be the steady
state delay distribution of a TCP connection with a CBR
source. Assume D is defined over some finite interval A.
Using renewal theory [38], we can now compute the steady-
state delay distribution.

. Ne(d)
D=d .p. lim ——= Vde A
v fim =5 ;
Ts ’ s;s’ ;L;‘;s’ I el =
o D st S daa

Dises Ts 2isres dsis! Mo

®3)

where [ is the indicator function, 7, is the steady-state dis-
tribution of the chain, and d,,,» and ng,, are given in (1)
and (2), respectively. The numerator and denominator cor-
respond, respectively, to the number of packets sent that ex-
perience delay d in steady-state and the number of packets
sent in steady-state. Equation (3) can be solved numerically
to yield the performance statistics of TCP: the delay jitter
op and the a-delay percentile argmax,P{D < z} < a,
along with other useful statistics such as the mean delay
E|D].

4.3 Backlog and Window Size Evolution

In network-limited periods, TCP probes for additional
bandwidth to satisfy the rate requirement of the source.
Specifically, it increases the window size by one every round-
trip time in congestion avoidance phase, and doubles the
window size every round-trip time in slow-start phase. How-
ever, it is pretty typical for TCP implementations not to
increase the congestion window when the TCP sender is
application-limited (see Section 6.4). Hence, in the absence
of packet loss, the TCP model transitions from state s =
(w,b,1) to state s’ = (w + 1,0,1') if s € CA, to state
s = (2w, v',l') if s € SS, and to state s’ = (w,b,l') if
s € AL. A detailed description of the Markov chain is given
in Appendix A.

Since TCP is a byte stream protocol, it can assemble a
number of small application packets into one TCP segment.
An application that uses small packets (e.g., VoIP) yields

a TCP flow that dynamically varies its segment size, and
hence the packet size on the wire, depending on the con-
gestion in the network. During network-limited periods, the
data backlog often enables the TCP sender to use the maxi-
mum segment size. In application-limited periods, however,
there is no backlog at the sender, and TCP matches the seg-
ment size to the application payload size. Let M be the
size of a segment transmitted in a transition from state s.
Hence, My = a if s € AL and Ms; = M SS otherwise.

The backlog evolution (i.e., the TCP send buffer occu-
pancy evolution) for two successive states, s = (w, b,1) and
s’ = (w',b,1'), is modeled by

max (0,b+ afts.s — Ms) if se AL,s' € AL
max (0,b+ aftss — wMy) if ' € {CA|SS}
max (0,b+ afts,sr — (w+3)M,) if s’ € FR

max (0,b+ afts.s) if & € TO

b =

(4)

where t,.. is the time taken for the transition from s to s,
which can be found below. The first term in (4) b + afts,s
models the increase in backlog size due to newly admitted
packets to the send buffer. The second term models the
decrease in backlog size due to the transmission of segments,
which is obtained by applying similar reasoning to that used
to derive (2).

The time taken for a transition from state s to state s’,
denoted by t,../, is modeled by

1/f if se€ AL,s' € AL
b = RTT+3/f ifse AL,s’ € FR 5
s;8’ — 2min{l—1,6}TO if &' cTO ( )
RTT otherwise

Since our model evolves at packet-level granularity while
in an application-limited state (see Figure 3), the time spent
in a loss-free transition from an application-limited state is
the packetization interval 1/f, as captured by the first case
of (5). The time to receive a fast retransmit loss indication
in an application-limited state is RTT + 3/f, as discussed
in Section 4.2. In the absence of timeouts, the window size
is updated every round-trip time [29], as shown by the last
case of (5). The time spent in a sequence of timeout states
increases exponentially [29], but does not exceed 64 times
the base timeout value, denoted by 7p. This time duration
is captured by the thrid case of (5).

5. MODEL VALIDATION

We evaluated the model using experiments in a controlled
network environment and Internet experiments using Plan-
etLab and residential machines. We use “CBR-TCP” to de-
note a TCP connection with a CBR source, “FTP” for a
TCP connection with bulk data transfer, and “web” for a
TCP connection with HTTP traffic.

We wrote a tool that can send and receive bidirectional
CBR over TCP flows with different packet sizes and differ-
ent packetization (inter-sending time) intervals. To validate
our model we use CBR sources with packet sizes of 174,
724 and 1448 bytes, and packetization intervals of 20 ms and
30 ms, as these choices approximately reflect typical one-way
voice [31], low bit rate interactive video [15] and live video
streaming [16]. The size of the packet includes a 12 byte
RTP header [31] and two bytes for framing RTP packets
over TCP [21]. Hence, excluding the header size, the bit
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Figure 4: Experiment setup for model verification
in a controlled environment.

rate of the voice flows is 64kb/s and 42kb/s, that of inter-
active video is 284 kb/s and 187kb/s, and that of live video
streaming is 573kb/s and 378kb/s. Unless stated other-
wise, we refer to the voice flow with a bit rate of 64kb/s
as ‘VoIP’ and the live video streaming flow with a bit rate
of 573kb/s as ‘video’ flow. We abuse notation and refer to
the segment loss rate in the network as the packet loss rate.
These rates may be different for VoIP flows because TCP
can assemble several small packets into one segment during
network-limited periods.

All the experiments, except for those run in the Planet-
Lab environment, were conducted using Linux (kernel ver-
sions 2.6.17.8 and 2.6.9) and Windows XP machines. Both
operating systems yielded similar delay performance and
hence Windows XP results are not shown. PlanetLab ex-
periments were conduced using Linux machines. The system
and session-level TCP settings were determined according to
the configuration described in Section 8.1.

5.1 Validation Using Configured Drop Rates

We performed the model validation on a test-bed that
emulates a wide range of network settings. The topology
of the test-bed is shown in Figure 4(a). We consider a sin-
gle CBR-TCP flow going through a router running NIST
Net [1], a network emulation program which can introduce
constant delay and can drop packets according to a config-
ured loss process. We configured NIST Net to drop packets
uniformly at random irrespectively of their size.

We varied the network setting, as follows. NIST Net was
configured with drop rates of 0.1%, 0.5%, 1%, 2%, 3%, 5%
and 10%, and a fixed round-trip propagation delay of 20 ms,
100 ms, and 300 ms. The delay setting choice roughly re-
flects the delay of sites on the same coast in US, US coast-
to-coast delays, and trans-continental delays [15]. Note that
in this setting there were no background flows and hence
there were no queuing delays on the round-trip. We do not
consider loss rates greater than than 10% because the aver-
age TCP throughput (i.e., the available network bandwidth)
does not satisfy the rate requirement of the CBR-TCP flow
for considered RTTs. The average TCP throughput can be
computed using Padhye’s equation [29]. For each set of para-
meters, we ran the experiment for five minutes and repeated
each experiment ten times. We present the average results
of these experiments and compare them to the ones obtained
using our model. The model was run with the assumption

of random packet losses (see Appendix A.1).

Figure 5(a) and Figure 5(b) present the predicted vs. mea-
sured mean and 95th percentile TCP delay, respectively, for
VoIP and video flows for various network packet loss rates
and RTT of 100ms and 300ms. As shown, the model pro-
vides satisfactory matching for the majority of cases, specif-
ically, when the measured delay is below 0.6s. The delay
prediction results for the flows with lower bit rates, which
are presented in Figure 6 and 7, follow a similar pattern. To
better see the modeling accuracy across various loss rates
and RTTs, we plot the relative prediction error of the aver-
age TCP delay with respect to the actual measurement for
VoIP and video flows in Figure 8. Observe that for VoIP
flows, the average error is less than 10% for loss rates up to
2%. For video flows, the relative prediction error is in the
order of 20% for loss rates up to 1% and 0.1%, and RTT
of 100 ms and 300 ms, respectively. The increase in relative
error as compared to VoIP flows is due to high variability
in sender packet backlog. Video flows have a higher back-
log buildup than VoIP flows since they use higher bit rates.
Similar results are obtained for flows with lower bit rates, as
seen in Figure 9 and 10.

The modeling mismatches are due to several reasons. First,
the simplifying assumptions made by the model such as
the recovery of multiple losses in a single transmission win-
dow within one round-trip time introduce error. Second,
although our model accurately captures the backlog size at
round-trip time granularity, it ignores backlog evolution at
smaller time scales. A more detailed discussion of these is-
sues can be found in Section 4.1 and 4.2.

Observe from Figure 8 that the prediction error increases
with the network loss rate. This is because the size of the
state-space of the model is truncated to reduce computa-
tional complexity, as explained in Appendix A.3. Further,
for video flows, the jump in the prediction error at loss rate
of 0.5% and 1% for RTT of 100 ms and 300 ms, respectively,
occurs because the achievable TCP throughput is close to or
below the bit rate of video flow. When the CBR rate is close
to the TCP throughput, the TCP connection increasingly
suffers from saw-tooth like transmission behavior, resulting
in large variability in packet backlog buildup. This variabil-
ity causes the high modeling error. When the throughput
of the TCP connection is below the CBR rate, the CBR-
TCP flow can be delayed indefinitely. For TCP throughput
of at least twice the bit rate of VoIP and video flows, the
modeling error was below 20%.

In general, the modeling error increases as the rate of
the CBR source approaches the achievable TCP through-
put. The 95th percentile measure pinpoints cases of largest
deviation from the measurement, providing a highly conser-
vative measure for the validity of the model; the average
measure, demonstrates a better match between the model
and the experimental results. Similar results were obtained
for the variance and the maximum TCP delay measures, as
seen in Figure 11, which illustrates the predicted vs. mea-
sured standard deviation of the TCP delay.

5.2 Validation Using Internet Experiments

We performed model validation using the PlanetLab en-
vironment and hosts connected to residential DSL and cable
modems. We conducted the PlanetLab experiments on ma-
chines located in the US (California, New York, Texas), Eu-
rope (Germany, Italy, UK), and Asia (China, India, Japan,



O 1

z O RI=t00ms,voP | e

o % RTT=300ms,volP | e

° Z RTT=100ms,video | et *

3 0.5H RTT=300ms,video | ..o i
B " Reference | o *

£ PN

o oL GED ) \Vb \ Y \

T 0 0.2 0.4 0.6 0.8 1
. (a) average measurement delay (s)

0

K
E vvvvvvvvvvvvvv

3 Qe

_0-; o5 g % * o 4
e | L * @) v

s L@o*® ‘ ‘ |

o 0 0.2 0.4 0.6 0.8 1

(b) 95% measurement ‘delay (s)

Figure 5: Predicted vs. measured (a) mean (b) 95th
percentile TCP delay for VoIP and video flows with
bit rates of 64 kb/s and 573 kb/s, respectively, for
various loss rates and RTT of 100 ms and 300 ms.

e 1

z [@) RTTzlooms‘, D2KoisVolP | e

o) ¥ RTT=300ms,42kb/svolP | e

o RTT=100ms, 378 kb/svideo | .o

o 0.5H Z RTT=300ms, 378 kb/svideo | ..o * < il
‘8 1+ Reference R

= A *

g'> 0 L@ "V, v

© 0 0.2 0.4 0.6 0.8 1
. (a) average measurement delay (s)

n

-l
i

s | e

s e

$05¢ < e * Kk o 4
g | ey @)

£ .4 SO v v

3\’ ol-®@O 7 , , ,

@ 0 0.2 0.4 0.6 0.8 1

(b) 95% measurement .delay (s)

Figure 6: Predicted vs. measured (a) mean (b) 95th
percentile TCP delay for VoIP and video flows with
bit rates of 42 kb/s and 378 kb/s, respectively, for
various loss rates and RTT of 100 ms and 300 ms.

=

T e
O RTT=100ms, 284 kb/svideo | e
k¥ RTT=300ms, 178 Kb/svideo | e
RTT=100ms, 284 kb/svideo | o
H Z RTT=300ms, 178 kb/svideo | ..o
o Reference |

avg. model delay (s)
o
al

'
A

0 0.2 0.4 0.6 0.8 1
(a) average measurement delay (s)

=

%
s

95% model delay (s)
o
al

o
o

0.4 0.6 0.8 1
(b) 95% measurement delay (s)

Figure 7: Predicted vs. measured (a) mean (b) 95th
percentile TCP delay for interactive video flows with
bit rates of 284 kb/s and 178 kb/s for various loss
rates and RTT of 100 ms and 300 ms.

Taiwan). For each sender and receiver pair, we ran our tool
to generate VoIP and video flows for thirty minutes. The
DSL experiments were conducted from hosts in the US, Is-
rael, and Pakistan to hosts in New York and California.
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Figure 11: The predicted vs. measured standard de-
viation of the TCP delay for VolP and video flows
with bit rates of 64 kb/s and 573 kb/s, respectively,
for various loss rates and RTT of 100 ms and 300 ms.

For the majority of the PlanetLab and DSL experiments
we observed only a handful of losses (<0.5%), whereas in a
few cases, the throughput of the TCP connection did not
meet the rate requirement of the CBR-TCP flow. We there-
fore started multiple FTP flows in tandem with the CBR-
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Figure 13: Model validation using drop-tail router
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TCP flows, thereby increasing the congestion on the link
and causing the CBR-TCP flows to suffer from higher losses.
Figure 12(a) plots the predicted vs. measured 95th percentile
delay for VoIP and video flows for a range of sites around
the world. The top four settings in the legend of the figure
refer to VoIP flows, and the bottom four refer to video flows.
The network loss rates p and RTTs experienced by the flows
are shown as well. As shown, there is a good match between
the model and the measured delay.

5.3 \Validation Using Drop-Tail Routers

We consider a scenario where multiple CBR-TCP flows
compete with FTP and web flows for a bottleneck router
with a drop-tail queueing scheme, as shown in Figure 4(b).
We note that the lines in the figure connecting the data
sources and sinks to the end hosts are for illustration pur-
poses only and do not represent actual links.

The queue at the bottleneck router may be limited in
packets or bytes [20]. When the queue size is maintained
in bytes, small packets are less likely to be dropped than
large packets, and hence TCP flows with small packets may
perform better than TCP flows with large packets under the
same network conditions. Since Internet router behavior is

not well specified, we designed our model to support drop-
tail queues in bytes and in packets, as discussed in Appendix
Al

To validate the model, we used the test-bed from Sec-
tion 5.1 and modified NIST Net to incorporate a drop-tail
queue. We devised a multi-flow setting in which five VoIP
CBR-TCP flows compete with five long-lived FTP and vary-
ing number of web flows. We repeated the experiment for
video flows. We used the SRI and ISI traffic generator [2] to
generate exponentially distributed web traffic with a mean
duration of 50ms and a constant packet size of 512 bytes.
The choice of the number of FTP and web flows, and packet
size for web flows was inspired by the configuration used to
evaluate the performance of TFRC-small packets [14]. The
round-trip propagation delay was set to 100 ms for all exper-
iments. The link capacity was set to 3Mb/s and 30 Mb/s
for voice and video CBR-TCP flows, respectively, so that
the ratio of cumulative bit rate of five CBR-TCP flows to
link capacity was one to ten.

For CBR-TCP flows with small packets, the packet and
byte queues were configured as 100 packets and 50,000 bytes
respectively. Ideally, the byte queue size should be MSS*100
packets or 1,500,000 bytes (MSS is 1500 bytes for Ethernet [30]).
However, this number overestimates the packet queue equiv-
alent since the packet sizes of the CBR-TCP and web flows
are less than one MSS. Thus, we set it to 50,000 bytes which
approximately reflects the average of VoIP CBR-TCP (174-
byte packets), web (512-byte packets), and FTP (1448-byte
packets) flows, a choice motivated by [14]. Similarly, for
TCP flows with large packets, we set the byte queue to
100,000 bytes which approximately reflects the average of
video CBR-TCP (1448-byte packets), web and FTP flows.
For each configuration, we ran the experiment for five minutes,
repeated it five times, and present the average of the results.

We measured the network loss rate and RTT in each of the
experiments to obtain the input parameters for the model.
In the considered environment, the network round-trip time
consists of a round-trip propagation delay of 100ms and a
queuing delay at the router. Table 3 and 4 present the av-
erage round trip time and the average network loss rate for
VoIP and video flows and a packet and a byte-based queue.
It also presents the mean and standard deviation of the 95th
percentile TCP delay for these experiments. In the packet-
based queue experiments, the measured RTT was roughly
380 ms for VoIP flows and 101 ms for video flows. Hence, the
congestion was low for the video experiments. The queuing
delays and loss rates are different for these two flows because
the link bandwidths in these two settings were different.

Figure 12(b) presents the measured and predicted 95th
percentile delay for VoIP and video flows in an environment
with a packet-based queue. Some of the prediction inac-
curacies in the drop-tail router experiments are caused by
inaccurate characterization of the loss process. In this envi-
ronment, as in the PlanetLab case, we run the model with
the assumption of correlated packet losses (see Appendix
A.1). However, the actual burstiness of losses experienced
by the CBR-TCP flows varies depending on the level of sta-
tistical multiplexing at the router.

As seen in Table 3, the use of a byte-based queue yields
lower RTTs and network loss rates compared to a packet-
based queue. Consequently, TCP flows with a byte-based
bottleneck experience lower delays than those with an equiv-
alent packet-based bottleneck. The use of byte-based queues



| Network loss rate, RTT, 95th percentile TCP delay and jitter for VoIP flows

Web Packet queue Byte queue
flows
loss RTT (s)| 95% 95% loss RTT (s)| 95% 95%
rate (%) jit- delay rate jit- de-
ter(s) | (s) (%) ter (s) | lay(s)
0 1.02 0.317 0.027 0.410 0.20 0.172 0.014 0.135
10 1.60 0.380 0.034 0.498 0.55 0.178 0.019 0.183
15 2.31 0.371 0.041 0.644 0.81 0.180 0.022 0.233
20 3.39 0.383 0.052 1.335 1.24 0.182 0.028 0.308
25 5.61 0.385 0.089 6.173 2.41 0.185 0.040 3.057

Table 3: The network loss rate, RTT, 95th TCP percentile delay and jitter for a VoIP flow in an environment

with a packet and a byte-based queue.

| Network loss rate, RTT, 95th percentile TCP delay and jitter for video flows

Web Packet queue Byte queue
flows

loss RTT (s) | 95% 95% loss RTT (s) | 95% 95%

rate (%) jit- delay rate jit- de-

ter (s) | (s) (%) ter (s) | lay(s)

0 0.75 0.101 0.020 0.215 1.25 0.101 0.030 0.460
10 0.81 0.101 0.018 0.265 1.28 0.101 0.032 0.594
25 0.90 0.101 0.018 0.289 1.34 0.101 0.035 0.914
50 1.20 0.101 0.022 0.608 1.79 0.101 0.046 1.890
100 2.91 0.101 0.062 4.880 3.18 0.101 0.109 5.978

Table 4: The network loss rate, RT'T, 95th percentile TCP delay and jitter for a video flow in an environment

with a packet and a byte-based queue.

yield higher delays for video flows than a packet-based queue
because video flows, which have a packet size of 1448, com-
pete against web traffic, which has a smaller packet size of
512 bytes. Figure 13 presents the measured and predicted
95th percentile delay for VoIP and video flows in an envi-
ronment with a byte-based queue. The mismatch between
the model and the measurement at 50 web flows occurs be-
cause the bit rate of video flow is very close to the maximum
achievable TCP throughput, as explained in Section 5.1.

6. DISCUSSION

In this section, we explore the delay performance of real-
time delivery over TCP. We experimentally characterize the
working region for VoIP and live video streaming applica-
tions with bit-rates of 64kb/s and 573kb/s, respectively,
and use our model to identify the working region for other
bit-rates. Then, we study the impact of various mechanisms
in TCP on its delay performance.

6.1 Working Region

Here we characterize the working region for VoIP and
live video streaming applications, i.e., the conditions under
which the performance of these applications is satisfactory.
In general, the user perceived media quality is acceptable
when the fraction of packets that arrive beyond their play-
out time is low and the end-to-end delay is low.

For interactive applications, ITU G.114 recommends that
the worst-case one-way delay should be 400ms. Studies
show that 200ms is an acceptable one-way delay limit for
VoIP applications [26]. The choice of the delay limit for
video is more flexible because people can usually tolerate a

few seconds of startup delay. For the analysis we consider
a 5s startup delay, as suggested by [16]. While VoIP can
usually tolerate up to 5% of packets that miss their playout
deadline without a significant effect on intelligibility [26],
video viewing quality drops rapidly at 0.1% [34]. We follow
these guidelines and define the working region for VoIP and
live video streaming as the range of network loss rates and
RTTs where the 95th percentile and maximum TCP delay
is at most 200 ms and 5 s, respectively. We explore how the
performance varies with the delay limit in Section 6.6.
Figure 14(a) plots the 95th percentile delay for various
loss rates from 0.1% to 10% and RTTs of 20ms, 100 ms,
and 300 ms for a VoIP flow with a bit-rate of 64kb/s. The
results shown were obtained empirically using the environ-
ment described in Section 5.1. Observe that when the RTT
is 100 ms, the delay tolerance for VoIP is satisfied when the
network loss rate is at most 2%. However, when the RTT
is only 20ms, the results indicate a tolerance of up to 5%.
At the boundary of the working region, the delay added by
TCP causes 5% of the packets to miss their playback dead-
line. Figure 14(b) plots the maximum delay for a live video
streaming flow with a bit-rate of 573kb/s. When the RTT
is 100 ms, the streaming threshold is satisfied when the loss
rate is at most 3%. For RTT of 300ms, it is satisfied at
a network loss rate of 0.1%. The jump in the maximum
delay at a network loss rate of 0.5% and RTT of 300 ms oc-
curs because the 5s startup delay is no longer sufficient to
completely mask TCP delays. This knee of the curve typ-
ically occurs when the achievable TCP throughput is close
to the bit rate of the video flow, as explained in Section 5.1.
The bit rates of 64kb/s and 573 kb/s are the highest among
the bit rates considered in Section 5 for VoIP and video
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Figure 14: Working region for VoIP and video

streaming with bit rates of 64 kb/s and 573 kb/s,
respectively, as a function of RTT and packet loss
rate.

flows and therefore, they give the most conservative esti-
mate of the working region. We used the model to compute
the working region for the other bit rates. While the work-
ing region was less constrained due to the lower bit-rates,
as seen in Figure 15 and 16, the results follow similar pat-
tern as in Figure 14. Furthermore, the working region can
be significantly constrained if the application does not use
delay-friendly TCP settings, as discussed in Section 8.1.

6.2 The Effect of Packet Size on Performance

Our experiments indicate that under the same network
conditions, VoIP flows perform significantly better than video
flows. Figure 17(a) plots the 95% delay for VoIP and video
flows with the same workload in packet per second (pps) but
quite different workload in terms of bits per second (kb/s),
i.e., the VoIP flow has a bit rate of 64 kb/s whereas the video
flow has a bit rate of 573kb/s. The figure clearly shows a
performance bias towards the VoIP flow. This happens be-
cause a video flow has a higher bit rate than a VoIP flow.
Hence, during network-limited periods, a TCP sender trans-
mitting a video flow builds up a larger packet backlog and
consequently, it requires more time to drain this backlog.
For VoIP flows, the TCP sender groups several queued VolP
packets into one transmission packet as permitted by the
MSS. This further increases the queue drain rate, thereby
reducing the queuing delay at the TCP sender.

An interesting question to ask is that among two flows
having the same workload in kb/s, does TCP have a perfor-
mance bias towards a flow with larger workload in pps? To
address this question, we measured the delay performance
of two flows having the same workload in kb/s but differ-
ent workload in pps. The results are shown by the curves
labeled video and video+split in Figure 17(a). Specifically,
the packet rate of video+split flow is twice of the video flow
but the application-level workload rate in bytes is the same.
Surprisingly, there is a performance bias towards the flow
with twice the packet rate of the other flow.

To illustrate the reason for this performance difference, we
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Figure 15: Working region for VoIP and video

streaming with bit rates of 42 kb/s and 378 kb/s,
respectively, as a function of RTT and packet loss
rate.
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Figure 16: Working region for interactive video

streaming with bit rates of 284 kb/s and 178 kb/s
as a function of RTT and packet loss rate.

plot the TCP delay and congestion window size for two flows
with the same application-level workload in kb/s in Fig-
ure 18. The flow in Figures 18(a) and (b) corresponds to
an application that sends 100 MSS-sized packets per sec-
ond. The flow in Figures 18(c) and (d) corresponds to an
application that sends 200 half MSS-sized packets per sec-
ond. Both flows operate over a symmetric network with
200ms RTT and experience two close-by losses. Observe
that the flow with half MSS-sized packets experiences lower
delay than the other one. This happens because the AIMD
mechanism updates the congestion control state as a func-
tion of the number of packets sent, rather than as a function
of the number of bytes sent (see Section 3.1). Since TCP
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Figure 17: (a) The delay performance of two TCP
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in pps, and a VoIP flow. (b) Delay breakdown: the
portion of TCP-level delays caused by the conges-
tion control mechanism.
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Figure 18: TCP delay and congestion window evo-
lution for two flows with the same workload in kb/s
but different packet sizes, MSS and half-MSS.

adapts its congestion control state and hence its through-
put based on the number of packets sent, the magnitude of
the throughput fluctuations (in bytes) is smaller for the flow
with smaller packet size and higher packet rate, resulting in
lower delays. For example, the peak delay of the flow with
half MSS-sized packets in Figure 18 is 45% lower than that
of the one with MSS-sized packets. As shown, the perfor-
mance gain of a TCP flow with small packets (e.g., VoIP)
comes from the reduction in the delays caused by the AIMD
mechanism. That is, video flows suffer more from packet
backlogging than VoIP flows. However, reducing the packet
size has side effects such as increased instances of packet
reordering [23].

The performance bias of TCP creates an incentive for real-
time applications to improve their performance by manip-
ulating their packet size. We discussed this issue in Sec-
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tion 7.1. We analyze the breakdown of TCP-level delays by
computing the time packets are backlogged at the sender
(i.e., the congestion control delay component) and the time
it takes the TCP sender to get a packet to the receiving
application (i.e., the retransmission and head-of-line delay
components). Figure 17(b), shows the delay breakdown in
terms of these two components for VoIP and video flows. As
shown, the delays of a VoIP flow over TCP tend to be dom-
inated by the loss recovery latency, whereas those of a video
flow tend to be dominated by the delays caused by the con-
gestion control mechanism. Similar results were obtained
for CBR sources with other bit rates.

6.3 Sensitivity to Byte-counting

In order to provide a measured response to ACKs that
cover only small amounts of data, [3] proposes to increase the
congestion window based on the number of bytes acknowl-
edged by each incoming ACK rather than on the number of
ACKs received. This mechanism is known as byte-counting.
Byte-counting is configured on a per-system rather than per-
connection basis in Linux, and is disabled by default. It is
not implemented in Windows XP. A question arises how does
the performance of VoIP flows change when TCP increases
its congestion window by the number of bytes sent.

To answer this question, we measured the delay of five
VoIP flows competing with five long-lived TCP flows and
varying number of web flows in a drop-tail queue environ-
ment (see Section 5.3). Figure 19 shows 95th percentile
and maximum delay for a VoIP flow using ACK and byte-
counting. It highlights the gain of a VoIP flow when byte-
counting is not used. On average, the use of byte-counting
increases the TCP delay by 10-20%. The delay increases
because TCP with byte-counting increases its sending rate
in proportion to the number of bytes sent. Hence, a byte-
counting TCP can be viewed as more fair than ACK-counting
TCP with respect to the congestion control behavior. The
support for byte-based congestion control mechanism must
come from the underlying operating system. However, since
Linux and Windows XP use ACK-counting by default, VoIP
flows implicitly benefit from it.

6.4 The Effect of Timeouts on Performance

Since a real-time flow is rate-limited, it has the potential
of causing the connection’s congestion window to be small.
Hence, the chance of sending enough segments for the re-
ceiver to generate the three duplicate ACKs becomes small,
too. This can harm the delay performance as the sender may
need to rely on lengthy retransmission timeouts for loss re-
covery. Nonetheless, our traces show that the likelihood of
timeouts is low.

The likelihood of timeouts is directly effected by the be-
havior of TCP during application-limited periods. Accord-
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Figure 20: The timeout probability predicted by our
model, Beomjoon et al. model (BHJ), and the mea-
sured probability for various loss rates.

ing to [18] there are three possibilities. A TCP sender can
reduce the congestion window so that it would reflect the
actual amount of data sent, as suggested by the window
validation extension [18]. It may increase the congestion
window, resulting in an arbitrarily large window value, or
it may maintain the same congestion window, resulting in
an invalid window value. We focus on the latter case, as it
is the one observed in our measurements for Windows XP
and Linux systems. The invalid congestion window overesti-
mates the actual amount of data sent, and hence reduces the
likelihood of timeouts. This overestimation happens implic-
itly for CBR-TCP flows, because during application-limited
periods, the TCP sender retains memory of an ‘inflated’ con-
gestion window used to clear the recent data backlog. The
congestion window behavior can be observed in Figure 18(b)
and (d). The window value overestimates the actual load by
30% and 40%, respectively, for the flow with MSS-byte and
MSS/2-byte packets. The other factor that influences the
likelihood of retransmission timeouts is the limited transmit
mechanism [4], which is enabled by default in Linux 2.6 and
Windows XP. This mechanism allows a TCP sender to send
a new data segment upon the receipt of each of the first
two duplicate ACKs, thereby increasing the chances of re-
ceiving the three duplicate ACKSs required to trigger a fast
retransmission.

To quantify the impact of these mechanisms (i.e., limited
transmit and invalid congestion window) on TCP’s loss re-
covery efficiency, we compared the timeout probability pre-
dicted by of our model to that predicted by a recent detailed
loss recovery model proposed by Beomjoon et al. [8]. The
latter model does not consider the impact of the two mech-
anisms. We show the results in Figure 20 for a window size
of three and an overestimation factor of 30%. To validate
the results we measured the timeout probability of several
VoIP flows with an average window size of three in an envi-
ronment with random packet losses. The figure shows that
for small windows the absence of limited transmit and in-
valid congestion window has a non-negligible impact on the
timeout probability.

6.5 The Effect of Bottleneck Limitation on Per-

formance

While the queue at a bottleneck router may be limited
in packets, in some cases it may be limited in bytes [14].
The former will give both small and large packets the same
drop probability, whereas the latter will preferentially drop
large packets. As Interment router behavior is not well spec-
ified [20], a question of interest is how does the delay of TCP
flows affected by the network bottleneck limitation.

To address the question, we measure the 95th delay per-
centile of a VoIP flow in an environment with a drop-tail
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Figure 21: 95th percentile of the TCP delay in an
environment with a drop-tail queue maintained in
bytes and packets.
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Figure 22: 95% and maximum delay for a VoIP flow
using ACK and byte-counting in an environment
with a drop-tail queue maintained in bytes.

queue in bytes and packets (see Section 5.3). Both queues
have the same size in bytes. As shown in Figure 21, the
delays experienced by a CBR-TCP flow with small pack-
ets, under a byte-based queue, are lower than those under
an equivalent packet-based queue. Recall from Section 4.3
that a TCP flow with small packets dynamically varies its
segment size depending on the network congestion. Conse-
quently, it sees lower packet loss rates for a queue in bytes
than a queue in packets.

We then study whether the performance bias in favor of
flows with small packets is affected by TCP’s congestion con-
trol implementation. Figure 22 shows the 95th percentile
and the maximum delay for a VoIP flow using ACK and
byte-counting in an environment with a drop-tail queue in
bytes. As shown, a TCP flow with ACK-counting expe-
riences lower delays than those of a TCP flow with byte-
counting. Comparing these results to those obtained in an
environment with a queue in packets (see Figure 19), we find
that a byte-based queue results in lower TCP delays than a
packet-based queue for both byte and ACK-counting TCP
implementations.

The discussion above is summarized in Table 5. It qual-
itatively shows the bias in favor of TCP flows with small
packets (e.g., VoIP) for different bottleneck queues and dif-
ferent congestion control implementations. In general, a
byte-based bottleneck queue exacerbates the bias in favor
of TCP flows with small packets.

6.6 Playout Buffer Size Setting

Real-time applications use a playout buffer to compensate
for variable network delays. The receiving application usu-
ally delays the playout of received media packets for some
time so that a large fraction of the packets is received be-
fore their scheduled playout times. A question of interest is
how should an application factor in the TCP-level delays in
computing the appropriate playout buffer size.

TCP is a reliable and in-order delivery protocol that deals



Byte-based queue | Packet-based
queue
Byte-based
congestion control || + None
Packet-based
congestion control || +++ ++

Table 5: The performance bias in favor of TCP flows
with small packets. ’4++4-+4’ represents the largest
bias and ’None’ represents no bias.

with packet loss by introducing delay. As explained in Sec-
tion 4.2, TCP needs at least RT'T+3/fto detect and recover
a lost packet using a fast retransmit, where 1/f is the pack-
etization interval. The time TCP needs to detect a lost
packet using a retransmission timeout is at least the base
timeout value. According to [17], this value can be approx-
imated by 4RTT. Setting the playout delay below the sum
of the one-way network delay L and the minimum of these
two thresholds will always cause the application to overrun
its playout buffer in response to a packet loss.

We investigate the sensitively of a media application to
the playout delay value by measuring the fraction of packets
that miss their deadlines, which we refer to as late packets,
as a function of the playout delay. For the analysis we con-
sider a fixed playout delay. Figure 23 shows the results for
VoIP and video streaming obtained in the network environ-
ment described in Section 5.1. The plot indicates that the
application’s sensitivity to the playout delay value decreases
with RTT. That is, the decrease in the fraction of late pack-
ets due to an increase in the playback delay decreases with
RTT. It also shows that VoIP flows require smaller playout
delays than video flows for the same fraction of late packets.
This happens because video flows suffer more from packet
backlog than VoIP flows, as explained in Section 6.2.

In the considered environment, TCP can recover from a
packet loss using a fast retransmit within 1.5RTT + 60 ms,
because the packetization interval is 20 ms and the network
is symmetric. As seen in the plot, setting the playout delay
to the loss recovery latency of TCP yields up to 5% of late
packets for RTTs of up to 100 ms and network loss rates of
up to 2%. We then use the model to evaluate the effective-
ness of this playout setting for the workings regions defined
in Section 6.1. We find that a buffer with a playout delay of
L+ RTT +3/f can mask out TCP delays for a large portion
of the VoIP working region. This setting, however, does not
mask out TCP delays for the video working region, because
the delay of video flows is dominated by the packet backlog
rather than by the loss recovery latency. Figure 24 shows
the delays masked out by the proposed playout setting for
VoIP and video flows in a network with a 100ms RTT and
packet loss rates of 1% and 3%.

7. DELAY REDUCTION APPROACHES

In this section we discuss application-level heuristics that
can improve the performance of real-time media applica-
tions without additional help from the network. We analyze
whether the delay reduction comes at the expense of other
flows, in particular long-lived FTP flows. In the following,
we first discuss a packet splitting scheme and then consider
the use of parallel connections. We show that both schemes
are effective for video flows but have only a marginal impact
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Figure 24: The TCP delays masked out by a
1.5RTT + 3/f playout delay for a network loss rate
of (a) 1% and (b) 3%.

on VoIP flows.
7.1 Packet Splitting

As described in Section 6.2, the congestion control mech-
anism of TCP results in a performance bias in favor of flows
with small packets. A question of interest is whether the de-
lay performance of real-time applications can be improved
by masquerading TCP flows with large packets as flows with
small packets. The application can split every large packet
into a few smaller ones, while maintaining the same work-
load in bytes per second. We call this scheme split-N, where
N is the packet split factor. Packet splitting, however, may
also backfire: if all CBR-TCP flows started using packet
splitting, the network could quickly become congested due
to the TCP header overhead. Hence, a wide-scale adoption
of such an approach runs the risk of degrading the perfor-
mance of all flows. Further, reducing the packet size can
increase instances of packet reordering [23].

We analyzed the upper bound on the delay reduction of
a split-N scheme for both video and VoIP flows by apply-
ing our model in the environment with configured packet
drops described in Section 5.1. As shown in Figure 25, the
split-2 scheme reduced the 95th delay percentile by 60%
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Figure 25: The reduction in the 95th delay per-
centile of a video flow using split-N in an environ-
ment with configured packet drops.

0.3

300

} -V~ baseline
c D A= split-2
S 0.2 S L - split-4
© <200
3 .4 5
o 0.1¢ s
> [=)
© 3100
° <]
3 o 2 4
1]
-0.1 0
0 100 0 50 100

number of web flows
(b) Fairness impact

number of web flows
(a) Performance impact

Figure 26: (a) The reduction in the 95th delay per-
centile of a video flow using split-N in a drop-tail
queue environment (b) Throughput of background
FTP flows in the same environment.

on average. This is consistent with the observation made
in Section 6.2 that a TCP flow with small packets expe-
riences smaller packet backlogs, and hence smaller delays,
than that of a flow with large packets. For VoIP flows, the
scheme yielded diminishing gains due to the low backlog lev-
els experienced by these flows.

To understand the performance of split-N in a wide-scale
deployment, we measured the delay of a video flow (i.e., a
573kb/s video source) in an environment with a drop-tail
queue described in Section 5.3. As shown in Figure 26(a),
the split-2 scheme reduces TCP delay by up to 30% under
low and moderate loss rates, whereas schemes with higher
split factors yield diminishing gains or perform even worse
than a no-split scheme. The performance degradation is par-
tially due to the increase in the burstiness of the flow with
packet splitting. This burstiness can be reduced to some ex-
tent by evenly spacing split-packets over the packetization
interval. However, perfect pacing may be difficult to achieve
at the application layer due to the small packetization inter-
vals (e.g., 20ms) used in practice.

During periods of high congestion (100 web flows), a TCP
sender using a split-N scheme is heavily backlogged and
hence it is unable to obtain a performance bias by using a
split-N backlogged scheme. We used the drop-tail queue en-
vironment to study the fairness implications of this scheme.
In particular, we measured the throughput of long-lived TCP
flows that share a congested link with video flows employ-
ing packet splitting. As shown in Figure 26(b), the split-N
scheme impacts the throughput of the long-lived TCP flows.
For example, the use of split-4 reduces the throughput of a
background TCP flow by 27% on average. From the plot,
we observe that the throughput reduction quickly increases
with the split factor.
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Figure 27: The reduction in the 95th delay per-
centile for VoIP and video flows using a ‘blind’
scheme with N connections in an environment with
configured packet drops.

7.2 Parallel Connections

A straightforward approach to improve the delay perfor-
mance of a CBR-TCP flow is to stripe its load across paral-
lel TCP connections. The idea is that several TCP streams
are more aggressive than one TCP stream with respect to
the congestion control behavior [35], which can result in
lower TCP delays. The use of parallel TCP connections
for streaming and data-intensive applications has mainly fo-
cused on enhancing the throughput. However, we focus on
reducing the delay. Specifically, we provide insights on the
delay performance of parallel connection schemes for real-
time applications.

Packet striping can be done in delay-agnostic or delay-
aware fashion. The simplest approach is to use a delay-
agnostic (‘blind’) parallel connection scheme that sends pack-
ets over parallel TCP connections in a round-robin fashion.
We study the performance of the ‘blind’ scheme for VoIP and
video flows by applying the model in the environment with
configured packet drops described in Section 5.1. Figure 27
shows the delay reduction of the ’blind’ scheme. The plot
indicates that five parallel connections reduce the 95th delay
percentile by 60% on average. As shown, the performance
gain was negligible for VoIP flows. The gain was negligi-
ble because the delay reduction is offset by the decrease in
TCP’s loss recovery efficiency caused by small congestion
windows (see Section 6.4). The small congestion windows
are due to the low load per connection. We then empirically
study the performance improvement of this scheme for video
flows in the drop-tail queue environment described in Sec-
tion 5.3. Figure 28(a) shows that five parallel connections
reduce the 95th delay percentile by 90% on average. The de-
lay reduction stems from lowering the load per connection,
which in turn reduces sender backlog buildup and receiver
head-of-line blocking per connection, and hence the TCP
delay. We note that the scheme yielded diminishing gains
when more than five connections were used.

We propose a delay-aware (‘intelligent’) scheme which se-
lects a connection for packet transmission that has the small-
est TCP send queue and is not in the timeout state and show
the results in Figure 28(a). The ‘intelligent’ scheme out-
performs the ‘blind’ scheme because it dynamically avoids
connections with large queues and in timeout states. Fur-
ther, due to its dynamic nature, this scheme copes better
with connections with small congestion windows. Similar
to the ‘blind’ scheme, we observe that using more than five
parallel connections results in diminishing gains. We note
that the parallelization spectrum ranges from a single flow
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Figure 28: (a) The reduction in the 95th delay per-
centile for a ‘blind’ and an ‘intelligent’ scheme with
N connections in a drop-tail queue environment (b)
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to having as many flows as the packet rate per RTT. Simi-
lar to packet splitting, we study the fairness impact of these
schemes on the background traffic using a drop-tail queue
environment. We present the results in Figure 28(b). As
shown, both ‘intelligent’ and ‘blind’ schemes have a negligi-
ble impact on the throughput of the background long-lived
FTP flows. The impact is negligible because these schemes
do not introduce additional traffic besides session setup and
teardown. Though parallel TCP streams are more aggres-
sive than a single TCP stream, their aggregated throughput
is still limited by the rate of the CBR source.

8. DELAY-FRIENDLY GUIDELINES

We present delay-friendly guidelines for TCP-based VoIP
and live video streaming applications. We categorize them
into TCP and OS-level guidelines and application-level guide-
lines. In the following, we first provide a comprehensive set
of guidelines for setting TCP and OS parameters. While sev-
eral settings such as disabling Nagle’s algorithm and using
large receive buffers are common practices in delay-sensitive
applications, the impact of others, specifically, window val-
idation, byte counting and limited transmit is less obvious.
We then provide guidelines for setting application-level pa-
rameters.

8.1 TCP and OS-level guidelines

e As discussed in Section 3, Nagle’s algorithm should
be disabled as it introduces transmission delays at the
TCP sender.

e CBR-TCP applications should set a large receive buffer
and operate with non-blocking sockets so that the trans-
mission of TCP is not limited by its flow control mech-
anism.

e To increase the loss efficiency of TCP, SACK should be
enabled [10] and limited transmit be used. The latter is
primarily applicable for a TCP connection with small
windows.

e Congestion window validation during application-limited

periods, and byte-counting should be disabled. These
settings are disabled by default on Linux and Windows
XP systems.

e The initial window size should be set to four segments
as it can remove delays up to three RTTs and a time-
out during the initial slow-start period [5]. Some op-
erating systems (e.g., Linux) inherit the ssthresh value
from last connection for the current connection. This
may cause the current connection to enter congestion
avoidance earlier even if it does not suffer from any
loss, thereby incurring additional start-up delay during
initial slow-start. Therefore, we suggest that ssthresh
inheritance be disabled.

As a general rule, the above TCP-level configurations should
be set on a per-connection basis if the underlying operating
system supports it. Note that these guidelines do not require
any change in the TCP stack.

8.2 Application-Level guidelines

e Playout buffer setting. As discussed in Section 6.6,
a CBR-TCP application with small packets can stati-
cally set the playout delay to the loss recovery latency
L+ RTT+3/f This setting masks out TCP delay vari-
ations for a wide range of environments, in particular,
for a large portion of the VoIP working region.

e Video flows. The delay performance of video flows
can be improved by parallelizing the flow over multiple
connections. If supported by the underlying operating
system (e.g., Linux), an application should preferen-
tially send packets over the connection that has the
smallest send buffer size and is not in a timeout state.
Splitting MSS-sized packets by half reduces delay for
video flows if a single connection is preferred.

e Idle periods. VoIP over TCP may have somewhat
different properties than CBR over TCP. In particular,
VoIP has idle periods, requiring TCP to ramp back up
to the old sending rate after idle periods. We therefore
suggest that an application should continue sending
minimal traffic during idle periods (e.g., 3 packets per
round-trip time, as suggested by [24]) to avoid having
very small congestion windows. The size of the packets
sent during silence periods can be as low as one-byte if
the TCP implementation uses ACK-counting. This is
because an ACK-counting TCP increases the conges-
tion window size based on the number of packets sent
rather than the number of bytes sent.

e MSS to packet size ratio. We recommend that
the ratio of MSS to packet size should be an integer.
This setting insures that the packet assembly capabil-
ity of TCP will give the lowest possible sending rate
in packets per second when the TCP sender is back-
logged. The lower sending rate results in lower delays
compared to a flow with an equivalent load in kb/s and
a non integer MSS to packet size ratio.

e Proactive packet drop. By examining the size of
the TCP send buffer, an application can potentially
infer the delays a new packet will experience. Thus, it
may choose to drop packets at the sender, if the buffer
size crosses a certain inferred delay threshold.

e In-order delivery mechanism. As described in Sec-
tion 6.2, the delays of TCP flows with small packets



tend to be dominated by the in-order delivery mecha-
nism of TCP. That is, packets are held in the receive
buffer while waiting for a lost packet(s) to arrive. A
potential modification to the TCP operating system
API can allow the application to peek into its receive
buffer and extract out-of-order packets. A similar ap-
proach has been proposed by [22]. Although this mod-
ification requires changing the receive API to receive
our-of-order packets, it does not change the network
semantics of TCP.

9. RELATED WORK

There is an extensive literature on analytical and exper-
imental evaluation of TCP. We present only those studies
closely related to ours and refer the reader to [28] for a com-
prehensive survey of TCP modeling. The majority of TCP
modeling studies are geared towards file transfers assuming
either persistent [29] or short-lived flows [9]. Our work differs
from past work in that we consider non-greedy rate-limited
flows with real-time delivery constraints. More recently, the
performance of TCP-based video streaming has been analyt-
ically analyzed by [34]. The receive buffer size requirement
for TCP streaming has been determined in [19]. These pa-
pers combine TCP throughput and application-layer buffer-
ing models to compute the portion of late packets, whereas
we directly model the transport-layer delay of TCP. Our
work further differs from those above in that we consider ap-
plications with tight delay constraints such as VolP. Wang
et al. [35] have performed a comprehensive analytical study
of the performance of multipath video streaming using TCP.
This work explains that the performance of TCP streaming
increases as the ratio of the aggregated TCP throughput to
video encoding rate increases. However, our contribution is
the insights on the TCP delay performance.

Goel et al. [15] present an empirical study of kernel-level

TCP enhancements to reduce the delays induced by congestion-

control for streaming flows. The performance of TCP for
real-time flows has also been considered by [22,25]. How-
ever, unlike our study, these papers propose a modification
to the TCP stack. Application-layer heuristics for improving
the loss recovery latency of TCP have been suggested [24].
These heuristics are geared towards bursty traffic flows and
hence may not be effective for real-time flows.

10. CONCLUSION AND FUTURE WORK

We have presented a Markov-chain TCP delay model for
CBR-TCP flows. The model captures the behavior of VoIP
and streaming flows. We used experiments and the model
to derive the working region of these flows. We verified the
model in a test-bed and in PlanetLab. We explored the
impact of TCP mechanisms and presented guidelines for
improving the delay friendliness of CBR-TCP applications.
The delay performance of a video flow can be improved using
packet splitting or parallel connection heuristics.

This study provides insights on the use of TCP for VoIP
and live-video streaming applications. A direct comparison
of real-time delivery over TCP versus unreliable protocols is
left for future work. We have used delay percentiles to eval-
uate the performance of CBR-TCP flows. However, Mean
Opinion Score (MOS) is considered a better metric for evalu-
ating user-perceived performance. This is another potential
topic for future work.

11. ACKNOWLEDGEMENTS

We especially thank Sally Floyd for her detailed and valu-
able feedback on the initial technical report. We would also
like to thank the anonymous reviewers, Oren Laadan, and
Jitendra Padhye for their valuable feedback on the paper.
Finally, we sincerely thank our shepherd Martin Arlitt whose
guidance helped us refine the final version.

12. REFERENCES

[1] NIST Net. http://www-x.antd.nist.gov/nistnet /.

[2] SRI and ISI traffic generator.
http://www.postel.org/tg/tg.html.

[3] M. Allman. TCP Congestion Control with
Appropriate Byte Counting (ABC). RFC 3465
(Experimental), February 2003.

[4] M. Allman, H. Balakrishnan, and S. Floyd. Enhancing
TCP’s Loss Recovery Using Limited Transmit. RFC
3042, January 2001.

[5] M. Allman, S. Floyd, and C. Patridge. Increasing
TCP’s Initial Window. RFC 3390, October 2002.

[6] M. Allman, V. Paxson, and W. Stevens. TCP
Congestion Control. RFC 2581, April 1999.

[7] S. A. Baset and H. Schulzrinne. An Analysis of the
Skype Peer-to-Peer Internet Telephony Protocol. In
IEEE INFOCOM, Barcelona, Spain, April 2006.

[8] K. Beomjoon, C. Yong-Hoon, and L. Jaiyong. An
Extended Model for TCP Loss Recovery Latency with
Random Packet Losses. IEICE Transactions on
Communications, 89(1):28-37, January 2006.

[9] N. Cardwell, S. Savage, and T. Anderson. Modeling
TCP Latency. In IEEE INFOCOM, Tel-Aviv, Israel,
March 2000.

[10] K. Chen, C. Huang, P. Huang, and C. Lei. An
Empirical Evaluation of TCP Performance in Online
Games. In ACM SIGCHI, Montréal, Canada, April
2006.

[11] K. Chen, C. Huang, P. Huang, and C. Lei.
Quantifying Skype User Satisfaction. In SIGCOMM,
Pisa, Italy, September 2006.

[12] S. Floyd, T. Henderson, and A. Gurtov. The NewReno
Modification to TCP’s Fast Recovery Algorithm. RFC
3782, April 2004.

[13] S. Floyd and V. Jacobson. Random Early Detection
Gateways for Congestion Avoidance. IEEE/ACM
Transactions on Networking, 1(4):397-413, 1993.

[14] S. Floyd and E. Kohler. TCP Friendly Rate Control
(TFRC): The Small-Packet (SP) Variant. RFC 4828
(Experimental), April 2007.

[15] A. Goel, C. Krasic, K. Li, and J. Walpole. Supporting
Low-Latency TCP Based Media Streams. In I/WQoS,
Miami, Florida, USA, May 2002.

[16] L. Guo, E. Tan, S. Chen, Z. Xiao, O. Spatscheck, and
X. Zhang. Delving into Internet Streaming Media
Delivery: a Quality and Resource Utilization
Perspective. In IMC, Rio de Janeiro, Brazil, October
2006.

[17] M. Handley, S. Floyd, J. Padhye, and J. Widmer.
TCP Friendly Rate Control (TFRC): Protocol
Specification. RFC 3448, January 2003.

[18] M. Handley, J. Padhye, and S. Floyd. TCP
Congestion Window Validation. RFC 2861



[19]

(Experimental), June 2000.

T. Kim and M. H. Ammar. Receiver Buffer
Requirement for Video Streaming over TCP. In
Proceedings of SPIE, San Jose, CA, USA, January
2006.

E. Kohler, M. Handley, and S. Floyd. Designing
DCCP: Congestion Control Without Reliability. In
SIGCOMM, Pisa, Italy, September 2006.

J. Lazzaro. Framing Real-time Transport Protocol
(RTP) and RTP Control Protocol (RTCP) Packets
over Connection-Oriented Transport. RFC 4571, July
2006.

D. McCreary, K. Li, S. A. Watterson, and D. K.
Lowenthal. TCP-RC: A Receiver-Centered TCP
Protocol for Delay-Sensitive Applications. In MMCN,
San Jose, California, USA, January 2005.

A. Medina, M. Allman, and S. Floyd. Measuring the
Evolution of Transport Protocols in the Internet.
SIGCOMM CCR, 35(2):37-52, April 2005.

A. Mondal and A. Kuzmanovic. When TCP
Friendliness Becomes Harmful. In IEEE INFOCOM,
Anchorage, Alaska, USA, May 2007.

B. Mukherjee and T. Brecht. Time-lined TCP for the
TCP-friendly Delivery of Streaming Media. In ICNP,
Osaka, Japan, November 2000.

S. Na and S. Yoo. Allowable propagation delay for
voip calls of acceptable quality. In AISA, London, UK,
August 2002.

J. Nagle. Congestion Control in IP/TCP
Internetworks. RFC 896, January 1984.

J. Olsen. Stochastic Modeling and Simulation of the
TCP Protocol. PhD thesis, Uppsala University,
October 2003.

J. Padhye, V. Firoiu, D. Towsley, and J. Kurose.
Modeling TCP Throughput: A Simple Model and its
Empirical Validation. In SIGCOMM, Vancouver,
British Columbia, Canada, September 1998.

J. Postel. The TCP Maximum Segment Size and
Related Topics. RFC 879, November 1983.

H. Schulzrinne, S. Casner, R. Frederick, and

V. Jacobson. RTP: A Transport Protocol for
Real-Time Applications. RFC 3550, July 2003.

W. R. Stevens. TCP/IP Illustrated, volume 1.
Addison-Wesley, MA, November 1994.

S. Tao, J. Apostolopoulos, and R. Gu. Real-time
Monitoring of Video Quality in IP Networks. In
NOSSDAYV, Stevenson, Washington, USA, June 2005.
B. Wang, J. Kurose, P. Shenoy, and D. Towsley.
Multimedia Streaming via TCP: An Analytic
Performance Study. In ACM Multimedia, New York,
NY, USA, October 2004.

B. Wang, W. Wei, and D. Towsley. Multipath Live
Streaming via TCP: Scheme, Performance and
Benefits. In CoNEXT, New York, NY, USA,
December 2007.

J. Widmer, C. Boutremans, and J. L. Boudec.
End-to-end congestion control for tcp-friendly flows
with variable packet size. SIGCOMM Comput.
Commun. Rev., 34(2):137-151, 2004.

A. Wierman, T. Osogami, and J. Olsen. A Unified
Framework for Modeling TCP-Vegas, TCP-SACK,

and TCP-Reno. In MASCOTS, Orlando, Florida,
USA, October 2003.

[38] R. W. Wolff. Stochastic Modeling and theory of
Queues. Prentice-Hall, New York, 1989.

[39] X. Zhang and H. Schulzrinne. Voice over TCP and
UDP. Technical Report, CUCS-033-04, Department of
Computer Science, Columbia University, September
2004.

APPENDIX
A. MODEL FOR AREAL-TIME TCP FLOW

We model a TCP connection with a CBR source using
a finite state discrete-time Markov chain. Each state rep-
resents a triple, (w,b,l), where w is the current congestion
window size, b is the current backlog size, and [ is either 1
or 0 depending on whether any loss needs to be recovered in
the current state (I = 1), or not (I = 0). Let quw,p,1);(w’ b ,17)
be the probability associated with a transition from state
s = (w,b,1) to state s' = (w',b',1"). Let dw,b.1);w,p.17) bE
the delays associated with packets sent in this transition.
Packet delays are represents by an ordered list denoted as
(di)i=1, where d; denotes the ith member of the list and
n denotes its length. Let Ty be the duration of the initial
timeout. The state transition probabilities and the delays
associated with the transitions are given in Table 6. The
states in this table are grouped into four categories that
correspond, respectively, to the states of a TCP connection
(a) application-limited (b) network-limited and loss-free (c)
fast recovery (d) and retransmission timeout. For ease of
presentation, we use (x)" £ max(0, ) and

afw+l ifr/2<w 0<V
{w+1‘2w}_{ 2w ifw<r/2,0<b

A.1 Transition Probabilities of the Markov Chain

In our model, each state is associated with at most three
outgoing transitions representing the following events: the
receipt of a fast retransmit (fast recovery) loss indication,
the receipt of a timeout loss indication, and successful de-
livery of window data. We support a wide range of network
environments by considering both correlated and random
segment loss models, typical for RED [13] and FIFO drop-
tail routers, respectively.

In the random segment loss model, each segment is dropped
uniformly with a fixed probability p. We determine the
transition probabilities for the Markov chain using the time-
out and fast retransmit probabilities for TCP-SACK given
in [37]. The probabilities in [37], however, cannot be used
to determine the transition probabilities from application-
limited states, because the model evolves at packet-level
granularity rather than at window-level granularity while
the sender is application-limited. We derive these transition
probabilities by repeating the loss recovery analysis in [37]
under the assumption that the first segment in a transmis-
sion window is always lost. That is, we replace P, (i), the
probability of i losses out of a window of w segments, in
the probability expressions for fast recovery and timeout
PfT/fr(w) and PZ(w), respectively, with pP,,_1(i — 1), the
probability of ¢ losses given that the first segment is lost.
The resulting transition probabilities are shown in Table 6.



q(w,0,0);(w,0,0) =1-p r<w

(w,0,0);(w,0,0) =1L r<w
(w,0,0)5(L(-+3)/2),3,1) =Yl (P -p)® r<w
A(w,0,0i(L(r+3) /2),3,1) = (L+RTT +i/f)}%" r<w
Q(w,0,0):(0,Tp fa,1) =p-Y (v a-p© r<w
Q(w,6,0);({w+1|2w}, (b+ RTT fa—wMSS)+,0) =(1-p)* O0<w,0<borr <w,b=0
A(w,5,0);({w+1,2w}, (b+RTT fa—wMSS)+,0) =(L+ b/(fa))2~L211in{b’wMSS}/aJ 0<w,0<borr<w,b=0
G(w,b.0):(|(w+3)/2) (b4 RTT fa—(uw+3)M58) 1) = 2iey (1P (1 —=p)" 0<w,0<borr<w,b=0
da,0)5((w43) /2] (54 BT T fa—(wimyssyty = (D+ RTT +b/(fa) + (3 +1)/ )iyt (rIMSSHel g <p 0 < horr <w,b=0
Q(w,6,0);(0,0-+Tp fa,1) =1-(1-p» -7 (V)p' (1 —p)* O<w,0<borr<w,b=0
Q(w,b,1); (w,(b+RTT fa—wM SS)+,0) =1 0<w
(s b,1)s(w, (b+RTT fa—wMSS)+,0) = (L +b/(fa))fmyitwrrssy/al 0<w
4(0,b,1);(1,(b+RTT fa—MSS)+,0) =1-p 1<1<6
d(0,b,1)5(1,(b+RTT fa— MSS)+,0) = (L +b/(fa))mrioMssd/al 1<1<6
4(0,b,1);(1,b+2! Ty fa,min{l+1,6}) =p 1<1<6

Table 6: TCP delay model: definition of the state transition probabilities and the delays associated with the

transitions.

We use similar approach to derive the transition probabil-
ities under the correlated segment loss model. In this model,
if a segment is lost, so are all the following segments sent
within the same window. We determine the correspond-
ing transition probabilities using the probability expressions
in [29]. As in the random loss case, we derive the transi-
tion probabilities from application-limited states by replac-
ing A(w, k), the probability that k segments are successfully
transmitted in a round, with pA(w—1,k—1), in the timeout
probability expression in equation (22) of [29].

So far we have assumed that the bottleneck router man-
ages its flow in packets so that both small and large packets
have the same drop probability. However, If the bottleneck
router manages its flow in bytes, then small packets are less
likely to be dropped. In this environment (e.g., a drop-tail
queue in units of bytes), TCP flows with small packets would
experience lower delays than those with large packets. Since
Internet router behavior is not well specified (see [20]), we
extend our model to support a drop-tail queue in bytes. We
assume that a small segment of size a is A/a times less likely
to be dropped than a large segment of size A, as suggested
by [36]. We derive the transition probabilities of the Markov
chain for a byte limited environment by replacing the origi-
nal segment loss probability p in Table 6 by the scaled loss
probability p7-, where Mj is the size of a segment transmit-
ted in a transition from state s. As described in Section 4.3,
we let My =aif s € AL and My = MSS otherwise.

A.2 Modeling Limited Transmit

The limited transmit mechanism [4] allows the TCP sender
to transmit a new data segment upon the receipt of each of
the first two duplicate ACK, thereby increasing the chance
of receiving the three duplicate ACKs needed to trigger a
fast retransmission.

We obtain the Markov chain for a TCP source with lim-
ited transmit by modifying the transition probabilities given
in Table 6. The transition probability from state s to a fast

retransmit state s’ € FR is modified to
Grsr = Pu(w — 1)(1 = p) "1 (1 = p)* L (6)
+P’w(w_2)(1_p)w72(1_p2)1’w>2+q5,5’ w>3

where P, (i) = (¥)p'(1 — p)“~" is the probability of i losses
out of a window of w segments and [ is the indicator func-
tion. The first term in (7) corresponds the case where a
single duplicate ACK is received for a single transmission
window and it leads to two successful segment transmis-
sions. The second term corresponds to the case where two
duplicate ACKs are received for a single transmission win-
dow and they lead to at leat one successful segment trans-
mission. The probability for a transition from state s to a
timeout state s” € TO is modified to p — qSLZ, if s € AL and
tol—(1—-p)*— qSLZ, otherwise.

We apply a similar approach to derive the transition prob-
abilities for a TCP source with limited transmit and cor-
related segment losses. That is, we modify the transition
probabilities from state s to a timeout state s’ € TO to

a5t = A(w, 1)plus1 (7)
+ A(w,2)(p+ (1 — p)p)Lw>2 + ¢s s Tuw>3

where A(w, k) is the probability that k segments are suc-
cessfully transmitted in a round, which is given by equation
(22) in [29], and ¢, stands for the transition probability
for a TCP source under the correlated loss model, which is
described in Section A.1. The probability for a transition
from state s to a fast recovery state s” € F'R is modified to
p—ql if s € AL and to 1 — (1 — p)* — ¢5T otherwise.

A.3 Computation Complexity

The complexity of solving the Markov chain is directly
affected by the size of the state space. Let wy, and b, be
the maximum supported congestion window size and backlog
size, respectively. Since we have six back-off timeout states
and w,, non-timeout states with unique window sizes, the
total number of states is 6b,, 4+ 2by, wp,. For the analysis we
use wy, = 8r and b, = 4T f = 16r. This state space is small



enough to allow us to efficiently evaluate the TCP delay for
the range of network environments considered in Section 5.



