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ABSTRACT
Wireless object tracking applications are gaining popular-
ity and will soon utilize emerging ultra-low-power device-
to-device communication. However, severe energy con-
straints require much more careful accounting of energy us-
age than what prior art provides. In particular, the available
energy, the differing power consumption levels for listen-
ing, receiving, and transmitting, as well as the limited con-
trol bandwidth must all be considered. Therefore, we for-
mulate the problem of maximizing the throughput among
a set of heterogeneous broadcasting nodes with differing
power consumption levels, each subject to a strict ultra-low-
power budget. We obtain the oracle throughput (i.e., maxi-
mum throughput achieved by an oracle) and use Lagrangian
methods to design EconCast – a simple asynchronous dis-
tributed protocol in which nodes transition between sleep,
listen, and transmit states, and dynamically change the tran-
sition rates. We also show that EconCast approaches the or-
acle throughput. The performance is evaluated numerically
and via extensive simulations and it is shown that EconCast
outperforms prior art by 6x – 17x under realistic assump-
tions. Finally, we implement EconCast using the TI eZ430-
RF2500-SEH energy harvesting nodes and experimentally
show that in realistic environments it obtains 57% – 77% of
the achievable throughput.
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1. INTRODUCTION
Object tracking and monitoring applications are gaining

popularity within the realm of Internet-of-Things [3]. One
enabler of such applications is the growing class of ultra-
low-power wireless nodes. An example is active tags that
can be attached to physical objects, harvest energy from
ambient sources, and communicate tag-to-tag toward gate-
ways [20, 41]. Relying on node-to-node communications
will require less infrastructure than traditional (RFID/reader-
based) implementations. Therefore, as discussed in [7, 20,
34,56], it is envisioned that such ultra-low-power nodes will
facilitate tracking applications in healthcare, smart building,
assisted living, manufacturing, supply chain management,
and intelligent transportation.

A fundamental challenge in networks of ultra-low-power
nodes is to schedule the nodes’ sleep, listen/receive, and
transmit events without coordination, such that they commu-
nicate effectively while adhering to their strict power bud-
gets. For example, energy harvesting tags need to rely on
the power that can be harvested from sources such as indoor-
light or kinetic energy, which provide between 0.01mW and
0.1mW [21,22] (for more details see the review in [51] and
references therein). These power budgets are much lower
than the power consumption levels of current low-power
wireless technologies such as Bluetooth Low Energy [2] and
ZigBee/802.15.4 [32] (usually at the order of 1 − 10mW).
On the other hand, Bluetooth Low Energy and ZigBee are
designed to support data rates (up to a few Mbps) that are
higher than required by the applications our work envisages
supporting (less than a few Kbps).

In this paper, we formulate the problem of maximiz-
ing broadcast throughput among energy-constrained nodes.
We design, analyze, and evaluate EconCast: Energy-
constrained BroadCast. EconCast is an asynchronous dis-
tributed protocol in which nodes transition between sleep,
listen/receive, and transmit states, while maintaining a
power budget. The nodes and network we focus on have
the following characteristics:
Broadcast: A transmission can be heard by all listening
nodes in range.
Severe power constraints: The power budget is so limited
that each node needs to spend most of its time in sleep state
and the supported data rates can be of a few Kbps [22]. Tra-
ditional approaches that spend energy in order to improve



coordination (e.g., accurate clocks, slotting, synchroniza-
tion) or form some sort of structure (e.g., routing tables and
clusters) are too expensive given limited energy and band-
width.
Unacquainted: Nodes do not require pre-existing knowl-
edge of their environment (e.g., properties of neighboring
nodes). This can result from the restricted power budget or
from unanticipated environment changes due to altered en-
ergy sources and/or node mobility.
Heterogeneous: The power budgets and the power con-
sumption levels can differ among the nodes.

Efficiently operating such structureless and ultra-low-
power networks requires nodes to make their sleep, listen,
or transmit decisions in a distributed manner. Therefore, we
consider the fundamental problem of maximizing the rate
at which the messages can be delivered (the actual content
of the transmitted messages depends on the application).
Namely, we focus on maximizing the broadcast throughput
and consider two alternative definitions:

• Groupput – the total rate of successful bit transmissions
to all the receivers over time. Groupput directly applies
to tracking applications in which nodes utilize a neighbor
discovery protocol to identify neighbors which are within
wireless communication range [8,27,29,42,49,53,57,60].
In such applications, broadcasting information to all other
nodes in the network is important, allowing the nodes to
transfer data more efficiently under the available power
budgets. Groupput can also be applied to data flooding
applications where the data needs to be collected at all the
nodes in a network.
• Anyput – the total rate of successful bit transmissions to

at least one receiver over time. It applies to delay-tolerant
environments that utilize gossip-style methods to dissem-
inate information. In traditional gossip communication, a
node selects a communication partner in a deterministic
or randomized manner. Then, it determines the content of
the message to be sent based on a naive store-and-forward,
compressive sensing [4,23,37,38,47,48], or decentralized
coding [15,28]. As another example, in delay-tolerant ap-
plications, data transmission may get disrupted or lost due
to the limits of wireless radio range, sparsity of mobile
nodes, or limited energy resources, a node may wish to
send its data to any available receiver.

First, we derive oracle throughput (i.e., maximum
throughput achieved by an oracle). This is done both for the
groupput and anyput and it is shown that the value can be ef-
ficiently computed. Then, we use Lagrangian methods and
a Q-CSMA (Queue-based Carrier Sense Multiple Access)
approach to design EconCast. The protocol has variants
that maximize both groupput and anyput. In both of them,
nodes dynamically adapt their transition rates between sleep,
listen, and transmit states based on (i) the energy available
at the node and (ii) the number (or existence) of other ac-
tive listeners. To support the latter, a listening node emits a
low-cost informationless “ping” which can be picked up by
other listening nodes, allowing them to estimate the number
(or existence) of active listeners. We briefly discuss how this

method helps increasing the throughput and the implementa-
tion aspects. We analyze the performance of EconCast and
prove that, in theory, it converges to the oracle throughput.

We evaluate EconCast numerically and via extensive
simulations under a wide range of power budgets, and lis-
ten/transmit power consumption levels, and for various het-
erogeneous nodes. Specifically, numerical results show that
EconCast outperforms prior art (Panda [42], Birthday [43],
and Searchlight [5]) by a factor of 6x – 17x under realis-
tic assumptions. In addition to throughput, we consider the
performance in terms of burstiness and latency.

We implement EconCast using the TI eZ430-RF2500-
SEH energy harvesting nodes and experimentally show that
in practice it obtains 57%− 77% of the achievable through-
put. Moreover, we compare the throughput obtained experi-
mentally to analytical results for Panda [42] (where the ana-
lytical results are usually better than the experimental perfor-
mance) and show that, for example, EconCast outperforms
Panda by 8x – 11x.

We note that the design of EconCast does not assume a
specific topology (nodes do not know anything about their
neighbors). Yet, in this paper, we mainly focus on a clique
topology (i.e., nodes are within the communication range of
each other), since it lends itself to analysis. We briefly ex-
tend the analytic results to non-clique topologies and also
evaluate the performance for such networks.

To summarize, the main contributions of this paper are:
(i) a distributed asynchronous protocol for a heterogeneous
collection of energy-constrained wireless nodes, that can ob-
tain throughput that approaches the maximum possible, (ii)
efficient methods to compute the oracle throughput, (iii) ex-
tensive performance evaluation of the protocol.

The rest of the paper is organized as follows. We discuss
related work in Section 2 and formulate the problem in Sec-
tion 3. In Section 4, we present methods to compute the
oracle throughput. We present EconCast in Section 5 and
outline the proof of the main theoretical result in Section 6.
We evaluate EconCast numerically and via simulations and
compare to related work in Section 7. In Section 8, we dis-
cuss the experimental implementation and evaluation. We
conclude in Section 9. Due to space constraints, some of
the proofs are omitted and can be found in the technical re-
port [12].

2. RELATED WORK
There is vast amount of related literature in sensor net-

working and neighbor discovery that tries to limit energy
consumption. Within this large body of work, most of the
protocols do not explicitly account for different listen and
transmit power consumption levels of the nodes [5,6,8,9,16,
26,43,46,49,50,52–54,59,60], or do not account for different
power budgets [14, 17, 52–54, 59]. They mostly use a duty
cycle during which nodes sleep to conserve energy and when
nodes are simultaneously awake, a pre-determined listen-
transmit sequence with an unalterable power consumption
level is used. However, for ultra-low-power nodes con-
strained by severe power budgets, the appropriate amount



N , N Set of nodes, number of nodes
Li, L Node i’s listen power consumption (W), L = [Li]
Xi, X Node i’s transmit power consumption (W), X = [Xi]
ρi, ρ Node i’s power budget (W), ρ = [ρi]
bi Energy storage level of node i (J)
w, W Network state, the set of collision-free states
αi, α Fraction of time node i listens, α = [αi]
βi, β Fraction of time node i transmits, β = [βi]
γ, γ̂ Indicator if existing some nodes listening, its estimated value
c, ĉ Number of nodes listening, its estimated value
ν Indicator if there is exactly one node transmitting
πw , π Fraction of time the network is in w ∈ W , π = [πw]
Tg , Ta Groupput and Anyput of the network
Tw Throughput of state w ∈ W
T ∗ Oracle throughput
ηi, η Lagrangian multiplier of node i, η = [ηi]

Table 1: Nomenclature

of time a node sleeps should explicitly depend on the rel-
ative listen and transmit power consumption levels. These
prior approaches achieve throughput levels which are much
below optimal (and hence much below what EconCast can
achieve). Additionally, there are protocols that often require
some explicit coordination (e.g., slotting [14, 43, 46, 59], or
explicitly require exchange of parameters [42], which are not
suitable for emerging ultra-low-power nodes.

From the theoretical point of view, our approach is in-
spired by the prior work on network utility maximization
(e.g., [13, 30, 35, 36]), and queue-based CSMA literature
(e.g., [18, 19, 25, 33, 40, 58]). However, the problem con-
sidered in this paper is not a simple extension of the prior
work for two reasons. First, in the past work on CSMA and
network utility maximization, nodes or links make decisions
based on the relative sizes of queues. Often, a queue is a
backlog of data to send or the available energy. Prior work
that considers the latter (e.g., [10, 31, 39]) uses the energy
only for transmission, while listening is “free”, which is a
very different paradigm than the one considered in this pa-
per. Second, in our setting, the queue “backlogs” energy but
there is no clear mapping as previously assumed from energy
to successful transmission. A node’s listen or transmit events
will relieve the backlog, but do not increase utility (through-
put) unless other nodes are appropriately configured (i.e.,
transmitting when no listening nodes exist or listening when
no transmitting nodes exist does not increase the through-
put). This coordination of state among nodes to utilize their
energy makes the considered problem more challenging.

Finally, we note that our approach should be amenable
to emerging physical layer broadcast methods such as
backscatter [34, 44].

3. MODEL AND PROBLEM FORMU-
LATION

We consider a network of N energy-constrained nodes
whose objective is to distributedly maximize the broadcast
throughput among them. The set of nodes is denoted by N .
Table 1 summarizes the notations.

3.1 Basic Node Model
Power consumption: A node i ∈ N can be in one of three

states: sleep (s), listen/receive1 (l), and transmit (x), and
the respective power consumption values are 0, Li (W), and
Xi (W).2 These power consumption levels are based on
hardware characteristics.
Power budget: Each node i has a power budget of ρi (W).
This budget can be the rate at which energy is harvested by
an energy harvesting node or a limit on the energy spending
rate such that the node can maintain a certain lifetime. In
practice, the power budget may vary with time [21, 22] and
the distributed protocol should be able to adapt. For simplic-
ity, we assume that the power budget is constant with respect
to time. However, the analysis can be easily extended to the
case with time-varying power budget with the same constant
mean. Each node i also has an energy storage (e.g., a battery
or a capacitor) whose level at time t is denoted by bi(t).
Severe Power Constraints: Intermittently connected
energy-constrained nodes cannot rely on complicated syn-
chronization or structured routing approaches.
Unacquainted: Low bandwidth implies that each node i
must operate with very limited (i.e., no) knowledge regard-
ing its neighbors, and hence, does not know or use the infor-
mation (ρj , Lj , Xj) of the other nodes j 6= i.

3.2 Architecture Assumptions
We assume that there is only one frequency channel and

a single transmission rate is used by all nodes in the trans-
mit state. Similar to CSMA, nodes perform carrier sensing
prior to attempting transmission to check the availability of
the medium. Energy-constrained nodes can only be awake
for very short periods, and therefore, the likelihood of over-
lapping transmissions is negligible.

We also assume that a node in the listen state can send
out low-cost, informationless “pings” which can be picked
up by other listening nodes, allowing them to estimate the
number (or existence) of active listeners. We explain in Sec-
tion 5 how this property will help us develop a distributed
protocol and in Section 8, we provide practical means by
which such estimates can be obtained.

3.3 Model Simplifications
At any time t, the network state can be described as a

vector w(t) = [wi(t)], where wi(t) ∈ {s, l, x} represents
the state of node i. While the distributed protocol EconCast
(described in Section 5) can operate in general scenarios, for
analytical tractability, we make the following assumptions:

• The network is a clique.3

• Nodes can perform perfect carrier sensing in which the
propagation delay is assumed to be zero.

These assumptions are suitable in the envisioned applica-
tions where the distances between nodes are small. Under
these assumptions, the network states can be restricted to
1We refer the listen and receive states synonymously as the
power consumption in both states is similar.
2The actual power consumption in the sleep state, which
may be non-zero, can be incorporated by reducing ρi, or in-
creasing both Li and Xi, by the sleep power consumption.
3We also investigate non-clique networks in Section 4.3.



the set of collision-free states, denoted by W (i.e., states in
which there is at most one node in transmit state). This re-
duces the size of the state space from 3N to (N + 2)2N−1.

Let γw ∈ {0, 1} indicate whether there exists some nodes
listening in state w and let cw be the number of listeners
in state w. We use νw ∈ {0, 1} as an indicator which is
equal to 1 if there is exactly one transmitter in state w and
is 0 otherwise. Based on these indicator functions, two mea-
sures of broadcast throughput, groupput and anyput, and the
throughput of a given network state w are defined below.

DEFINITION 1 (GROUPPUT). The groupput, denoted
by Tg , is the aggregate throughput of the transmissions re-
ceived by all the receivers, where each transmitted bit is
counted once per receiver to which it is delivered, i.e.,

Tg = lim
T→∞

1

T

∫ T

t=0

νw(t)cw(t)dt. (1)

DEFINITION 2 (ANYPUT). The anyput, denoted by Ta,
is the aggregate throughput of the transmissions that are re-
ceived by at least one receiver, i.e.,

Ta = lim
T→∞

1

T

∫ T

t=0

νw(t)γw(t)dt. (2)

DEFINITION 3 (NETWORK STATE THROUGHPUT).
The throughput associated with a given network state
w ∈ W , denoted by Tw, is defined as

Tw =

{
νwcw, for Groupput
νwγw, for Anyput

(3)

Note that without energy constraints, the oracle (maxi-
mum) groupput is (N − 1) and is achieved when some node
always transmits and the remaining (N − 1) nodes always
listen and receive the transmission. Similarly, the oracle
(maximum) anyput without energy constraints is 1 and is
achieved when some node always transmits and some other
node always listens and receives the transmission.

3.4 Problem Formulation
Define πz as the fraction of time the network spends in a

given state z ∈ W , i.e.,

πz = lim
T→∞

1

T

∫ T

t=0

1{w(t)=z} dt, (4)

where 1{w(t)=z} is the indicator function which is 1, if the
network is with state z at time t, and is 0 otherwise. Corre-
spondingly, denote π = [πw].

Below, we define the energy-constrained throughput max-
imization problem (P1) where the fractions of time each
node spends in sleep, listen, and transmit states are assigned
while the node maintains the power budget. Define variables
αi, βi ∈ [0, 1] as the fraction of time node i spends in lis-
ten and transmit states, respectively. The fraction of time it
spends in sleep state is simply (1− αi − βi). In view of (1)

– (4), (P1) is given by

(P1) max
π

∑
w∈W

πwTw (5)

subject to αiLi + βiXi ≤ ρi, ∀i ∈ N , (6)

αi =
∑

w∈Wl
i

πw, βi =
∑

w∈Wx
i

πw, (7)∑
w∈W

πw = 1, πw ≥ 0, ∀w ∈ W, (8)

where W l
i and Wx

i are the sets of states w ∈ W in which
wi = l and wi = x, respectively. Each node is constrained
by a power budget, as described in (6), and (8) represents
the fact that at any time, the network operates in one of the
collision-free states w ∈ W .

Based on the solution to (P1), the maximum throughput
is achievable by an oracle that can schedule nodes’ sleep,
listen, and transmit periods, in a centralized manner. There-
fore, we define the maximum value obtained by solving (P1)
as the oracle throughput, denoted by T ∗. Respectively, we
define the oracle groupput and oracle anyput as T ∗g and T ∗a .

To evaluate EconCast, it is essential to compare its per-
formance to the oracle throughput. However, (P1) is a Lin-
ear Program (LP) over an exponentially large number of
variables (i.e., |W| is exponential in N ) and is computa-
tionally expensive to solve. In Section 4, we show how to
convert (P1) to another optimization problem with only a
linear number of variables. Note that the solution to (P1)
only provides the optimal fraction of time each node should
spend in sleep, listen, and transmit states, but does not indi-
cate how the nodes can make their individual sleep, listen,
and transmit decisions locally. Therefore, in Section 5, we
focus on the design of EconCast that makes these decisions
based on (P1).

4. ORACLE THROUGHPUT
In this section, we present an equivalent LP formulation

for (P1) in a clique network which only has a linear number
of variables. We also derive both an upper and a lower bound
for the oracle groupput in non-clique topologies which will
be used later for evaluating the performance of EconCast in
non-clique topologies.

Recall that αi and βi are the fraction of time node i spends
in listen and transmit states, respectively. We can rewrite the
constraints in (P1) as follows

αiLi + βiXi ≤ ρi, ∀i ∈ N , (9)
αi + βi ≤ 1, ∀i ∈ N , (10)∑
i∈N

βi ≤ 1. (11)

Specifically, (9) is the usual power budget constraint on each
node i ∈ N , and (10) is due to the fact that a node can only
operate in one state at any time. We remark that energy-
constrained nodes can only be awake for very small fractions
of time (i.e., αi+βi � 1), and therefore (10) may be redun-
dant. Finally, collision-free operation in a clique network
when at most one transmitter can be present at any time im-
poses (11) which bounds the sum of the transmit fractions
by 1.



4.1 Oracle Groupput in a Clique
To maximize the groupput (1), it suffices that any node

only listens when there is another transmitter, since listening
when no one transmits wastes energy. Namely, the fraction
of time node i listens cannot exceed the aggregate fraction
of time all other nodes transmit, i.e.,

αi ≤
∑

j 6=i
βj , ∀i ∈ N . (12)

Since a node only listens when there exists exactly one trans-
mitter, every listen counts as a reception, and the groupput of
a node (i.e., the throughput it receives from all other nodes)
is simply the fraction of time it spends in listen state αi.
Therefore, the groupput in a clique network simplifies to∑
i∈N αi. The oracle groupput, denoted by T ∗g , can be ob-

tained by solving the following maximization problem

(P2) T ∗g := max
α,β

∑
i∈N

αi (13)

subject to (9)− (12).

(P2) is an LP consisting of 2N variables and (3N +1) con-
straints (i.e., solving for α and β given inputs of N , ρ, L,
and X). On a conventional laptop running Matlab, this com-
putation for thousands of nodes takes seconds. Moreover,
we show that the oracle groupput obtained by solving (P2)
is indeed achievable by an oracle which can schedule nodes’
listen and transmit periods. This result is summarized in the
following lemma and the proof is in [12].

LEMMA 1. The (rational-valued) solution (α∗,β∗) to
(P2) can be feasibly scheduled by an oracle in a fixed-size
slotted environment via a periodic schedule, (perhaps) after
a one-time energy accumulation interval.

For the case of homogeneous nodes (i.e., ρi = ρ, Li =
L, Xi = X, ∀i ∈ N ) where nodes are sufficiently energy-
constrained (i.e., (9) dominates (10)), the closed-form solu-
tion to (P2) (note that the equalities hold for equations (9)
and (12)4) is given by

β∗ = ρ/(X + (N − 1)L), α∗ = (N − 1)β∗, T ∗g = Nα∗.

4.2 Oracle Anyput in a Clique
The oracle anyput is obtained based on the observation

that a transmission only occurs when there is at least one
listener. We define additional variables χi,j as the fraction
of time node j receives a transmission from node i, for the
following two constraints

βi ≤
∑

j 6=i
χi,j , ∀i ∈ N , (14)

αj =
∑

i6=j
χi,j , ∀j ∈ N . (15)

The oracle anyput, denoted by T ∗a , can be obtained by solv-
ing the following maximization problem

(P3) T ∗a := max
α,β

∑
i∈N

βi (16)

subject to (9)− (11), (14), and (15).
4This can be proved by contradiction. The details can be
found in [12].

First, (14) ensures that when node i transmits, there is al-
ways at least one other node than can receive this transmis-
sion. Then, (15) makes sure that in the optimal schedule, the
fraction of time node j listens is large enough to cover all
the transmissions it receives. Therefore, (P3) maximizes the
anyput by ensuring that every transmission is received by at
least one node.

For the case of homogeneous nodes, the closed-form so-
lution to (P3) is given by

β∗ = α∗ = ρ/(X + L), T ∗a = Nβ∗.

4.3 Oracle Groupput in Non-cliques
The problem formulations (P1) – (P3) so far have as-

sumed a clique network. Obtaining the exact maximum
groupput for non-cliques (denoted by T ∗nc) is difficult. This
is because a node may receive simultaneous transmissions
from two nodes which are not within communication range
of each other. As explained before, listen and transmit events
are rare within energy-constrained nodes. Therefore, the
likelihood of simultaneous transmissions is small and it is
expected to have minimal impact on the throughput.

We present both an upper bound T ∗nc and a lower bound
T ∗nc on the maximum groupput in non-clique topologies. In
the scenarios where T ∗nc and T ∗nc are the same, the exact max-
imum groupput T ∗nc can be obtained. The lower bound T ∗nc
is obtained by solving (P2) but replace constraint (12) by

αi ≤
∑

i∈N (i)
βj , ∀i ∈ N ,

where N (i) is the set of neighboring nodes of node i. This
ensures that the fraction of time node i listens cannot ex-
ceed the sum of its neighboring nodes’ fractions of trans-
missions. The upper bound T ∗nc is obtained by solving (P2)
in which the constraint (11) is removed. This allows over-
lapping transmissions which can possibly happen in non-
cliques. Numerical results show that with certain topologies,
T ∗nc = T ∗nc holds, resulting in the exact maximum groupput
T ∗nc. In Section 7.5, we compute T ∗nc and evaluate the perfor-
mance of EconCast in such scenarios.

5. DISTRIBUTED PROTOCOL
In this section, we describe EconCast from the perspec-

tive of a single node that transitions between sleep, listen,
and transmit states, under a power budget. Since we focus on
a single node i, in parts of this section, we drop the subscript
i of previously defined variables for notational compactness.

5.1 A Simple Heterogeneous Example
To better understand the challenges faced in designing

EconCast, consider a simple example of 4 nodes, all having
identical listen and transmit costs Li = Xi = 1mW (i =
1, 2, 3, 4), but different power budgets ρi, as indicated in Ta-
ble 2. Table 2 also shows the percentage of time each node
spends in listen and transmit states (α∗i , β

∗
i ) (i = 1, 2, 3, 4)

such that the groupput is maximized by solving (P1). It also
shows the percentage of time each node spends in transmit
state when awake (i.e., 100·β∗

i

α∗
i +β

∗
i
%).



Node 1 2 3 4
Power Budget: ρi(mW) 0.005 0.01 0.05 0.1

Awake(%): α∗
i + β∗

i 0.5 1.0 5.0 10.0
Transmit when Awake(%) 20.0 22 53.6 65.7

Table 2: A simple example in a heterogeneous network.

Sleep Listen Transmit
�sl(t) �lx(t)

�xl(t)
(s) (l) (x)

�ls(t)

Figure 1: The node’s states and transition rates.

If, instead, all nodes have the same power budget of ρi =
0.1mW, the percentage of time each node spends in trans-
mit state when awake is 25% (with α∗i = 0.075, β∗i = 0.025,
i = 1, 2, 3, 4). Note that in the above example, the power
budget of node 4 remains unchanged but changes in other
nodes’ power budgets shift the percentage of time it should
transmit when awake from 25% to 65.7%. This clearly
shows that the partitioning of a node’s power budget among
listen and transmit states is highly dependent on other nodes’
properties. However, we will show that if a node does not
know the properties of its neighbors, an optimal configura-
tion can be obtained without explicitly solving (P1).

5.2 Protocol Description
To clearly present EconCast, we start from a theoretical

framework and slowly build on it to address practicalities.
As mentioned in Section 3, a node can be in one of three
states: sleep (s), listen (l), and transmit (x). As depicted
in Figure 1, it must pass through the listen state to transi-
tion between sleep and transmit states. The time duration a
node spends in a given state u before transitioning to state v
is exponentially distributed with rate λuv(t). These transi-
tion rates can be adjusted over time. We remark that send-
ing packets with exponentially distributed length (i.e., a node
transitions from transmit state to listen state with a rate λxl)
is impractical. However, it can be shown that this is equiv-
alent to continuously transmitting back-to-back unit-length
packets with probability (1 − λxl) if λxl ∈ [0, 1], which is
indeed the case in EconCast.

The throughput (5) as a function of πw is controlled by
appropriately adjusting the transition rates between differ-
ent states of each node. EconCast determines in a dis-
tributed manner how these adjustments are performed over
time. Roughly speaking, each node adjusts its transition
rates λuv(t) based on limited information that can be ob-
tained in practice, which includes

• Its power consumption levels, L and X, and energy stor-
age level b(t).
• A sensing of transmit activity of other nodes over the chan-

nel (CSMA-like carrier sensing).
• A count of other active listeners (for groupput maximiza-

tion), c(t), or an indicator of whether there are any active
listeners (for anyput maximization), γ(t). In practice, c(t)

and γ(t) may not be accurate, and we denote ĉ(t) and γ̂(t)
as their estimated values.

We note that in EconCast, unlike in previous work such
as Panda [42], each node does not need to know the num-
ber of nodes in the network, N , and the power budgets and
power consumption levels of other nodes. Furthermore, a
node does not need to know its power budget ρ explicitly
(e.g., in the case of energy harvesting [41]), although this
knowledge can be incorporated, if available.

Under EconCast, a node sets λsl(t) as an increasing
function of the available stored energy, b(t), to more ag-
gressively exit sleep state. Furthermore, it sets λlx(t) as an
increasing function of the number of listeners, ĉ(t), to en-
ter transmit state more frequently when more nodes are lis-
tening. We will describe how these functions are chosen in
Section 5.5.

5.3 Estimating Active Listeners: Pings
As described above, an important input to EconCast is

the number of active listeners c(t) (for groupput) or the indi-
cator of existence of active listeners γ(t) (for anyput). We
now discuss the estimation of ĉ(t) or γ̂(t). Recall from
Section 3 that nodes can send out periodic pings that any
other listener can receive. The pings need not carry any ex-
plicit information and are potentially significantly cheaper
and shorter than control packet transmissions (e.g., an ACK).
Therefore, they consume less power and take much less time
than a minimal data transmission.

Consider the case in which all nodes are required to send
pings at a pre-determined rate and the power consumption
is accounted for in the listening power consumption L. In
such a case, a fellow listener detecting such pings (e.g., us-
ing a simple energy detector) can use the count of such pings
in a given period of time, or the inter-arrival times of pings,
to estimate the number of active listeners c(t). Estimating
γ(t) is even easier by detecting the existence of any ping. In
general, the estimates do not need to be accurate for Econ-
Cast to function, although poor estimates are expected to
reduce throughput.

5.4 Two Variants of EconCast
We now address the incorporation of the estimates ĉ(t)

and γ̂(t) into EconCast. We present two versions of Econ-
Cast which only differ when a node is in transmit state:

• EconCast-C (the capture version): a node may “cap-
ture” the channel and transmit for an exponential amount
of time (i.e., several back-to-back packets). When each
packet transmission is completed, the transmitter listens
for pings for a fixed-length pinging interval. Each success-
ful recipient of the transmission initiate one ping at time
chosen uniformly at random on this interval. The transmit-
ter then estimates ĉ(t) or γ̂(t) based on the count of pings
received and adjusts λxl(t) (as described in Section 5.5).
In Section 8.3, we discuss the experimental implementa-
tion of this process.

• EconCast-NC (the non-capture version): a node always
releases the channel after one packet transmission. Each



node continuously pings and receives pings from other
nodes when listening, estimates ĉ(t) or γ̂(t), and adjusts
λlx(t) (as described in Section 5.5).

EconCast-C is significantly easier to implement since the
estimates are only needed for the transmitter right after each
packet transmission. The probability that the same transmit-
ter will continue transmitting depends on the estimates ĉ(t)
or γ̂(t). Therefore, our implementation and experimental
evaluations in Section 8 focus on EconCast-C.

5.5 Setting Transition Rates
Consider a node running EconCast. Time is broken into

intervals of length τk (k = 1, 2, · · · ). The k-th interval is
from time tk−1 to time tk and we let t0 = 0. EconCast
takes input of two internal variables:

• η is a multiplier which is updated at the beginning of each
time interval. Let b[k] (k = 0, 1, · · · ) denote the energy
storage level at the end of the k-th time interval. Let (·)+
denote max(0, ·) and η[k] is updated as follows

η[k] =
(
η[k − 1]− δk

τk
· (b[k]− b[k − 1])

)+
, (17)

in which δk ∈ (0, 1) is a step size and b[k] = b(tk). We
use square brackets here to imply that the multiplier η[k]
remains constant for t ∈ [tk, tk+1).

• A(t) is the carrier sensing indicator of a node, which is 1
when the node does not sense any ongoing transmission,
and is 0 otherwise. Carrier sensing forces a node to “stick”
to its current state. When receiving an ongoing transmis-
sion, a node in listen state will not exit the listen state until
it finishes receiving the full transmission, and a node in
sleep state will not leave the sleep state (i.e., it enters the
listen state but immediately leaves when it hears the ongo-
ing transmission by performing carrier sensing).

The transition rates are described as follows (the super-
scripts C and N denote EconCast-C and EconCast-NC).
For groupput maximization, at any time t in the k-th interval,

λsl(t) = A(t) · exp[−η[k]L/σ)], (18a)
λls(t) = A(t), (18b)

λClx(t) = A(t) · exp[η[k](L −X)/σ], (18c)

λNlx(t) = A(t) · exp[η[k](L −X)/σ + ĉ(t)/σ], (18d)

λCxl(t) = exp[−ĉ(t)/σ], (18e)

λNxl(t) = 1. (18f)

For anyput maximization, ĉ(t) is replaced with γ̂(t). Theo-
rem 1 below states the main result of this paper. We outline
the proof and explain the intuition behind the protocol in
Section 6.

THEOREM 1. Let σ → 0 and select parameters δk and
τk properly (e.g., δk = 1/[(k + 1) log (k + 1)] and τk =
k). Under perfect knowledge of c(t) or γ(t), the average
throughput of EconCast (Tg or Ta) converges to the oracle
throughput (T ∗g or T ∗a ) given by (P1).

5.6 Stability and Choice of σ, δk, and τk

EconCast is adaptive and, as expected, it must deal with
the tradeoff of “adapting quickly but poorly” to “adapting
optimally but slowly”. This adaptation manifests itself into
the parameters σ, δk, and τk. When σ is increased, the
throughput is less bursty (nodes transition from transmit
state to listen state more frequently). However, the result-
ing throughput also decreases with respect to increased σ, as
we will describe in Section 6.

Under a given value of σ, each node continuously adjusts
the rates λuv(t) based on its multiplier η according to (17),
which is a function of the ratio δk/τk. Small δk/τk ratios
make smaller changes of η over time, and lead to longer
convergence time to the “right” multiplier values. In con-
trast, larger δk/τk ratios make η oscillate more wildly near
the optimal value, such that the performance of EconCast
is further from the optimal. Although the guaranteed conver-
gence requires careful choices of the parameters (as stated in
Theorem 1), in practice, we can choose δk = δ and τk = τ
for some small constant δ and large constant τ .

6. PROOF OUTLINE OF THEOREM 1
In this section we provide an outline of the proof of The-

orem 1. The complete proof can be found in [12]. The
proof is based on a Markov Chain Monte Carlo (MCMC)
approach [18, 25, 40] from statistical physics.

First, note that if the vector of multipliers η = [ηi] freezes,
EconCast generates the network state distribution described
in the following lemma.

LEMMA 2. With fixed η, the network Markov chain, re-
sulted from overall interactions among the nodes according
to the transition rates (18), has the steady state distribution

πη
w =

1

Zη
exp

[
1

σ

(
Tw −

∑
i:wi=l

ηiLi −
∑
i:wi=x

ηiXi

)]
, (19)

where Zη is a normalizing constant so that
∑

w∈W πη
w = 1.

PROOF. The proof is followed by checking that the steady
state distribution (19) satisfies the detailed balance equa-
tions of the network Markov chain. Details can be found
in [12].

We then present an optimization problem (P4) as follows

(P4) max
π

∑
w∈W

πwTw − σ
∑

w∈W
πw log πw (20)

subject to (6), (7), and (8),

where σ is the positive constant used in EconCast (the
counterpart in statistical physics is the temperature in sys-
tems of interacting particles). Note that (P4) is a concave
maximization problem and as σ → 0, the optimal value of
(P4) approaches that of (P1). To solve (P4), consider the
Lagrangian function L(π,η) formulated by moving the en-
ergy constraint (6) into the objective (20) with a Lagrange
multiplier ηi ≥ 0 for each node i, i.e.,

L(π,η) =
∑

w∈W πwTw − σ
∑

w∈W πw log πw

−
∑
i∈N [ηi(αiLi + βiXi − ρi)] . (21)



Algorithm 1 Gradient Descent Algorithm
Input parameters: σ, ρ, L, and X
Initialization: αi(0) = βi(0) = ηi(0) = 0, ∀i ∈ N
1: for k = 1, 2, · · · do
2: δ(k) = 1/k, compute π(k) from (19) using η = η(k)
3: for i = 1, 2, · · · , N do
4: Update ηi(k), αi(k), and βi(k) according to (23), (24)

In view of (7) and (8), given a vector of multipliers η, it
can be shown that the optimal πη = [πη

w] that maximizes
L(π,η) is exactly given by (19). Thus if EconCast knows
the optimal choice of Lagrange multipliers, it can start with
the optimal choice and the steady state distribution generated
by EconCast will converge to the optimal solution to (P4).

Next, to find the optimal Lagrange multipliers η∗, con-
sider the dual D(η) := L(πη,η) over η � 0 (here 0 is an
N -dimensional zero vector and � denotes component-wise
inequality). Interestingly, it can be shown that the partial
derivative of D(η) with respect to ηi is simply given by

∂D/∂ηi = ρi − (αiLi + βiXi), (22)

which is the difference between the power budget ρi and the
average power consumption of node i. Therefore, the dual
can be minimized by using a gradient descent algorithm with
inputs of step size δk > 0, ρ, L, and X, which generates a
state probability π(k) (k = 1, 2, · · · ). This algorithm is
described in Algorithm 1 along with the following equations

ηi(k) = [ηi(k − 1)− δk(ρi − αi(k)Li − βi(k)Xi)]
+
, (23)

αi(k) =
∑

w∈WL
i

πη(k)
w , βi(k) =

∑
w∈WX

i

πη(k)
w . (24)

Hence, with the right choice of step size δk (e.g., δk = 1/k),
π(k) converges to the optimal solution to (P4).

Finally, to arrive at a distributed solution, instead of com-
puting the quantities αi and βi directly according to (24)
(which is centralized with high complexity), we can approx-
imate the difference between the power budget and the aver-
age power consumption (22) by observing the dynamics of
the energy storage level at each node. Specifically, each node
i can update its Lagrange multiplier ηi(k) based on the dif-
ference between its energy storage levels at the end and the
start of an interval of length τk, divided by τk, as described
by (17). Therefore ηi is updated according to a “noisy” gra-
dient descent. However, it follows from stochastic approxi-
mation (with Markov modulated noise) that by choosing step
sizes and interval lengths as given in Theorem 1, these noisy
updates will converge to η∗ as k →∞ (see e.g., Theorem 1
of [24]). As mentioned in Section 5.6, the choice of param-
eters σ, δk, and τk will affect the tradeoff between conver-
gence time and the performance of EconCast.

7. NUMERICAL RESULTS
In this section, we consider various heterogeneous net-

works and numerically show that the throughput approaches
the oracle throughput T ∗ as σ decreases. In the special case
of homogeneous networks, we explore the sensitivity of the

throughput to various power consumption levels, and com-
pare to related work. Then, via simulations, we study the
burstiness and latency of EconCast, and evaluate its perfor-
mance in non-clique topologies.

Our general conclusions with respect to anyput perfor-
mance are quite similar as to groupput. Therefore, we fo-
cus on the groupput performance achieved by EconCast-C
throughout this section. For brevity, we omit the subscript
for groupput and use the following notation: (i) T ∗ is the
oracle groupput obtained by solving (P1) or, equivalently,
(P2), (ii) T σ is the achievable groupput of EconCast with
a given value of σ obtained by solving (P4), and (iii) T̃ σ is
the groupput of EconCast obtained via simulations with a
given value of σ.

7.1 Setup
We consider σ ∈ {0.1, 0.25, 0.5}. The nodes’ power bud-

gets and consumption levels correspond to energy harvesting
budgets and ultra-low-power transceivers in [21,22,45]. Un-
less stated otherwise, we use a power budget of ρ = 10 µW
and power consumption levels L = X = 0.5mW. This re-
sults in a ratio of 50 between the transceiver power consump-
tion and the budget. Note that the performance of Econ-
Cast only depends on the ratio between the listen or trans-
mit power and the power budget. For example, nodes with
ρ = 10 µW, L = X = 0.5mW behave exactly the same as
nodes with ρ = 1mW, L = X = 50mW. Therefore, the
oracle throughput applies and EconCast can operate in very
general settings.

Recall that we assume that there are not simultaneous
transmissions and collisions. We also assume that the packet
length is 1ms and that nodes have accurate estimate of the
number of listeners, i.e., ĉ(t) = c(t).

Our simulation results show that T̃ σ perfectly matches
T σ for σ ∈ {0.25, 0.5}. For σ = 0.1, T̃ σ does not con-
verge to T σ within reasonable time due to the bursty nature
of EconCast, as will be described in Section 7.4. Therefore,
we evaluate the throughput performance of EconCast by
comparing T σ to T ∗ with varying σ in both heterogeneous
and homogeneous networks. Specifically, homogeneous net-
works consist of nodes with the same power budget and con-
sumption levels, i.e., ρi = ρ, Li = L,Xi = X,∀i ∈ N .

7.2 Heterogeneous Networks – Through-
put

One strength of EconCast is its ability to deal with
heterogeneous networks. Figure 2 shows the throughput
achieved by EconCast normalized to the corresponding or-
acle throughput (i.e., T σ/T ∗) for heterogeneous networks
with N = 5 and σ ∈ {0.1, 0.25, 0.5}. The results are ob-
tained by solving (P1) for T ∗ and (P4) for T σ with a given
value of σ. Intuitively, higher values of T σ/T ∗ indicate bet-
ter performance of EconCast.

Along the x-axis, the network heterogeneity, denoted by
h, is varied from 10 to 250 at discrete points. The relation-
ship between the network heterogeneity and the values of h
is as follows: (i) for each node i, Li and Xi are indepen-
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Figure 2: Sensitivity of the achievable throughput normal-
ized to the oracle throughput, T σ/T ∗, to the heterogeneity
of the power budget, ρ, and consumption levels, L and X.

dently selected from a uniform distribution on the interval
[510−h, 490+h] (µW), (ii) for each node i, a variable h′ is
first sampled from the interval [− log h

100 , log h] uniformly
at random, and then ρi is set to be exp (h′). Therefore, the
energy budget ρi varies from 100/h to h (µW). As a result,
for any h, Li and Xi have mean values of 0.5mW. ρi has
median of 10 µW but its mean increases as h increases. Note
that a homogeneous network is represented by h = 10.

The y-axis indicates for each value of h, the mean and
the 95% confidence interval of the ratios T σ/T ∗ averaged
over 1000 heterogeneous network samples. Figure 2 shows
that T σ/T ∗ approaches 1 as σ decreases, illustrating the re-
sults in Section 6. Furthermore, with increased heterogene-
ity of the network, T σ/T ∗ has little dependency on the het-
erogeneity but heavy dependency on σ. Since larger h val-
ues impose higher power budgets, the corresponding oracle
throughput T ∗ increases as well.

7.3 Homogeneous Networks – Compari-
son to Related Work

We now evaluate the performance of EconCast in homo-
geneous networks with repest to different power consump-
tion levels, and compare to related work which assumes
homogeneity across nodes. We consider three protocols:
Panda [42], Birthday [43], and Searchlight [5], which oper-
ate under stricter assumptions than EconCast. In particular:

• The probabilistic protocols Panda and Birthday both re-
quire a homogeneous set of nodes and a priori knowledge
of the number of nodes, N . The throughput of Panda and
Birthday is computed as described in [42] and [43], re-
spectively.

• The deterministic protocol Searchlight is designed for
minimizing the worst case pairwise discovery latency,
which does not directly address multi-party communica-
tion across a shared medium. However, the discovery la-
tency is closely related to the throughput, since the in-
verse of the average latency is the throughput. Hence,
maximizing throughput is equivalent to minimizing the
average discovery latency. We derive an upper bound on
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Figure 3: Throughput performance of various protocols (all
normalized to the oracle throughput T ∗) with N = 5, ρ =
10 µW, and L +X = 1mW, as a function of X/L.

the throughput of Searchlight by multiplying the pairwise
throughput by (N − 1). This is assuming that all other
(N − 1) nodes will be receiving when one node transmits.
However, in practice the throughput is likely to be lower
unless all the nodes are synchronized and coordinated.

Figure 3 presents the throughput achieved by various pro-
tocols normalized to the oracle throughput T ∗ as a func-
tion of the ratio X/L, with N = 5, ρ = 10 µW, and
L +X = 1mW. The protocols considered are: EconCast
with σ ∈ {0.1, 0.25, 0.5}, Panda, Birthday, and Search-
light.5 The horizontal dashed line at 1 represents the oracle
throughput. Note that with L = X = 0.5mW, the ratio
T σ/T ∗ achieved by EconCast outperforms that of Panda
by 6x and 17x with σ = 0.5 and σ = 0.25, respectively. The
simulation results, which will be discussed later, also verify
this throughput improvement.

Figure 3 shows that with σ = 0.1, T σ is very close to the
oracle throughput T ∗ unless X � L. As σ is increased, the
ratio T σ/T ∗ drops as expected (see Section 6) but still sig-
nificantly outperforms that of prior art forX ≈ L. However,
the performance of EconCast degrades with extreme values
of X/L. This is because with small X/L values, nodes en-
ter transmit state infrequently, since listen is expensive and
they must pass the listen state to enter the transmit state. On
the other hand, with largeX/L values, nodes waste their en-
ergy to transmit even when there is no other nodes listening
(e.g., ĉ(t) = 0). We believe that any distributed protocol
will suffer from such performance degradation since, unlike
Panda, Birthday, and Searchlight, nodes in a fully distributed
setting do not have any information about the properties of
other nodes in the network.

7.4 Burstiness and Latency
The results until now suggest allowing σ → 0. While re-

ducing σ improves throughput, it considerably increases the
communication burstiness, as described in Section 5. In gen-
eral, increased burstiness means that the long term through-
put can be achieved with given power budgets but the vari-
5For Searchlight we compare its throughput upper bound to
T ∗, as described in Section 7.3.
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to the pairwise worst case latency of Searchlight.

ance is more significant during short term intervals. Recall
from Section 7.1 that the packet length is 1ms, we there-
fore measure the average burst length compared to this unit
packet length.

Figure 4 shows the average burst length received by the
nodes in homogeneous networks with N ∈ {5, 10}, ρ =
10 µW, L = X = 500 µW, and varying σ. Values are ex-
tracted using an analytical formula (curves) derived from the
solution of (P4) and contrasted with simulations at specific
values of σ (markers). Aside from showing that the sim-
ulation results and the analytical results are well matched,
Figure 4 also demonstrates how reducing σ dramatically in-
creases burstiness. For example, with σ = 0.25 andN = 10,
a node has an average received burst length of 85ms, and
this value is increased to 4.5× 105 ms with σ = 0.1. This
explains why T̃ σ cannot be obtained with σ = 0.1 (see Sec-
tion 7.1) and we remark that reducing the communication
burstiness is a subject of future work.

A second metric we consider is the communication la-
tency. It is defined as the time interval between consecu-
tive bursts received by a node from some other node where
the interval includes at least one sleep period. We focus on
this metric because nodes receiving longer bursts consume
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more energy, and therefore, need to sleep for longer periods
of time. It is possible for a node to receive multiple bursts
in one listen period. Figure 5 presents the CDF of commu-
nication latency obtained via simulations, for N ∈ {5, 10}
and σ ∈ {0.25, 0.5}, and indicates both the average and the
99th-percentile latency values. It also shows the pairwise
worst case latency of Searchlight computed from [5] under
the same power consumption level and power budget.6

Figure 5 shows that (i) as σ decreases, the latency in-
creases since nodes suffering from long bursts will sleep
longer, and (ii) larger value of N results in lower latency,
since it is more likely to receive when more nodes exist. As
an example, with σ = 0.5 andN = 5, a node receives bursts
from some other node on average every 5 seconds. In ad-
dition, for all parameters considered, the 99th-percentile la-
tency is within 120 seconds, outperforming the Searchlight
pairwise worst case latency bound of 125 seconds. Note that
although EconCast has a non-zero probability of having
any latency, in most cases (over 99%), its latency is below
the worst case latency of Searchlight.

7.5 Evaluation in Non-clique Topologies
We now compute the oracle throughput for non-clique

topologies (derived in Section 4.3) and evaluate the through-
put of EconCast in such scenarios. Operating in a dis-
tributed manner, EconCast can be easily adapted to non-
clique topologies: if a node hears two simultaneous trans-
missions from two nodes, it does not count any of the trans-
missions as throughput. Recall from Section 3 that nodes
always check the channel utilization before waking up, si-
multaneous transmission can only happen if two nodes are
not within communication range of each other.

We use grid topologies with varying number of nodes, N ,
in which a node can only have at most 4 neighbors. For ex-
ample, N = 25 represents a 5 × 5 grid. For each value of
N , we compute the oracle throughput (groupput). Figure 6
presents the oracle throughput, T ∗nc, for grid topologies, and
the throughput achieved by EconCast via simulations with
6This is computed with slot length of 50ms and a beacon
(packet) length of 1ms as was done in [49].



with varying σ. Note that for all the grid topologies consid-
ered, the upper and lower bounds of T ∗nc (see Section 4.3)
are the same, providing the exact oracle throughput.

Figure 6 shows that EconCast achieves 14% − 22% of
the maximum throughput T ∗nc with σ = 0.25. Although
increasing σ leads to lower throughput, it can be observed
that as N increases, the throughput approaches 10% of T ∗nc
with σ = 0.5. Although we cannot obtain the throughput
for σ = 0.1, achieving 10% − 20% of T ∗nc is remarkable
given the fact that EconCast works in a distributed man-
ner in which each node does not have any information of the
properties of other nodes.

8. EXPERIMENTAL EVALUATION
To experimentally evaluate the performance of Econ-

Cast-C,7 we implement it using the Texas Instruments
eZ430-RF2500-SEH node [1].8 In this section, we first de-
scribe the energy measurements performed on the nodes run-
ning EconCast. Then, we describe the method by which
nodes can estimate the number of listening nodes. Finally,
we experimentally evaluate the performance of EconCast.

8.1 Experimental Setup
The TI eZ430-RF2500-SEH node is equipped with: (i)

an ultra-low-power MSP430 microcontroller and a CC2500
wireless transceiver operating at 2.4GHz at 250Kbps, (ii) a
solar energy harvester (SEH-01) that converts ambient light
into electrical energy, and (iii) a 1mF capacitor to power up
the transceiver board. Despite its drawbacks which will be
discussed below, it can be used for evaluation by extending
the length of the shortest allowable data transmission.

We consider power budgets of ρ ∈ {1mW, 5mW}.
From our measurements, a node spends L = 67.08mW in
the listen state and X = 56.29mW in the transmit state.9

The power consumption levels are very similar from node to
node. Recall from Section 7 that the performance of Econ-
Cast depends on the ratio between the power consumption
levels and budget. Therefore, our experimental results will
be similar to experiments when both the power consump-
tion levels and budget are scaled down (e.g., a network of
nodes with ρ ∈ {10 µW, 50 µW}, L = 0.67mW, and
X = 0.56mW).

Each node is programmed with its ρ, L, and X as the
input of EconCast-C. The nodes’ main drawbacks include
(i) inaccurate readings of the energy storage level (i.e., the
voltage of the on-board capacitor) which are sensitive to the
environment, and (ii) the fact that the 1mF capacitor cannot
support multiple packet transmissions. Due to these draw-
backs, we implement (via software) a virtual battery at each
node. The virtual battery emulates the node’s energy stor-
age level based on its sleep, listen, and transmit activities,

7See Section 5.4 the reasons for only implementing Econ-
Cast-C.
8A demonstration of the testbed is presented in [11].
9This corresponds to a −16 dBm transmission power, at
which nodes within the same room typically have little or
no packet loss.

and is used for updating the Lagrange multiplier according
to (17). We show in the following section that in practice,
a node running EconCast-C using this virtual battery is in-
deed consuming power at a rate close to its power budget.

8.2 Energy Consumption Measurements
To accurately measure the power consumption of the

nodes, we disable the on-board solar cell, and attach a large
pre-charged capacitor (Ccap = 5F) that stores energy in ad-
vance (similar power consumption measurements were used
in [55]). The energy consumed is computed by

Econsumed = 0.5Ccap ·
(
V 2
t0 − V

2
t1

)
, (25)

where Vt0 and Vt1 are the measured power voltage values
of the capacitor at t0 and t1. The empirical average power
consumption, P (mW), is then computed by

P = Econsumed/ (t1 − t0) . (26)

Note that even with such a big capacitor, a node with a power
budget of 1mW (5mW) has a lifetime of only 135 (27) min-
utes with Vt0 = 3.6V and Vt1 = 3.0V, which represent its
stable working voltage range.

To measure the power consumption of the nodes, we
charge the capacitor to Vt0 = 3.6V and log the readings
of Vt1 after 30 minutes using a multimeter. The empirical
average power consumption is computed from (25) and (26)
for σ ∈ {0.25, 0.5} and is averaged using 60 runs. Because
L and X do not account for some additional energy usage,10

the actual power consumption, P , is in fact a small fraction
higher than the target power budget, ρ. Irrespective of σ,
the measurement results show that P exceeds ρ by 11% for
ρ = 1mW, and by 4% for ρ = 5mW.

Observing the empirical power consumption of the nodes,
we compute the achievable throughput by solving (P4) using
both the actual power consumption, P , and the target power
budget, ρ, denoted by T σ and T σ , respectively. In Sec-
tion 8.4, we compare the experimental throughput to both
T σ and T σ . Having verified the power consumption of the
nodes, we replace the capacitor with AAA batteries,11 allow-
ing the experiments to run for longer times.

8.3 Practical Pinging
To enable practical pinging in EconCast-C, a short,

fixed-length pinging interval is introduced after each packet
transmission. During this interval, the transmitter listens for
pings and recipients of the previous packet send a short ping
at a random time uniformly distributed within the interval.
The transmitter then estimates the number of listeners, ĉ(t),
by counting the pings it receives, and adjusts the transition
rate, λCxl(t), according to (18e).

Ideally, each ping should be much shorter than both the
pinging interval and the packet length in order to reduce the
collisions between pings, as well as for the transmitter to

10The additional energy usage includes the energy consumed
in powering up the regulator circuitry, etc.

11The constant voltage of AAA batteries limits the ability to
measure the power consumption of the nodes.
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Figure 7: Points marked as “Ideal” (“Relaxed”) represent ratio of experimental throughput normalized to the achievable
throughput obtained by using the target power budget (actual power consumption) and points marked as “Battery Vari-
ance” present the average, minimum, and maximum ratios of power consumption normalized to target power budget, with
N ∈ {5, 10}, ρ ∈ {1mW, 5mW}, and σ ∈ {0.25, 0.5}.

successfully receive it. Therefore, we use pings of length
0.4ms, which is the shortest packet that can be sent by a
node. Based on this, we empirically set the pinging interval
to 8ms and each data packet to 40ms.

8.4 Performance Evaluation
We consider homogeneous networks of size N ∈ {5, 10},

power budgets ρ ∈ {1mW, 5mW}, σ ∈ {0.25, 0.5}, and
nodes that are all located in proximity. One additional lis-
tening node (a 6th or 11th node) is also present but only as
an observer and is connected to a PC via a USB port. Each
data packet contains the node ID and information about the
number of packets it has received from each other node. The
observer node reports all received packets to the PC for stor-
age and post processing. Each experiment is conducted for
up to 24 hours. The experimental throughput is computed
by dividing the duration of successful transmissions by the
experiment duration.
Throughput evaluation: Figure 7 presents the ratio of the
experimentally obtained throughput, T̃ σ , normalized to the
achievable throughput T σ and T σ (see Section 8.2). Sep-
arate charts represent the results for differing power bud-
get, ρ, and number of nodes, N . Points marked “Ideal”
show the experimental throughput normalized to the achiev-
able throughput computed by solving (P4) with the target
power budget ρ (i.e., T̃ σ/T σ). Points marked “Relaxed”
show the experimental throughput normalized to the achiev-
able throughput computed by solving (P4) with the actual
power consumption P (i.e., T̃ σ/T σ). As expected, T σ is
higher than T σ , resulting in a lower throughput ratio.

Figure 7 shows that despite the practical limitations (e.g.,
packet collisions and inaccurate clocks) faced when running
EconCast-C on real hardware, the ratio T̃ σ/T σ is between
57% − 77% (T̃ σ/T σ is between 67% − 81%) for all set-
tings considered. Moreover, Table 3 shows the improvement
of EconCast-C over the throughput of Panda computed ac-
cording to [42], denoted by TPanda, under the same power
consumption levels and budget, with σ = 0.25. It can be
seen that with power budget of ρ = 1mW, the experimen-
tal throughput of EconCast-C outperforms the analytically
computed throughput of Panda by 8x – 11x.

(N, ρ(mW)) (1, 5) (1, 10) (5, 5) (5, 10)

T̃ σ/T σ (%) 66.78 77.96 74.84 80.53
TPanda/T σ (%) 6.24 9.64 19.35 35.63

T̃ σ/TPanda 10.76 8.09 3.87 2.26

Table 3: Experimental throughput of EconCast-C com-
pared to computed throughput of Panda (all normalized to
the achievable throughput T σ), with σ = 0.25 and varying
(N, ρ).

We remark that getting a higher experimental through-
put ratio is limited by the following reasons. First, there is
an 8ms pinging interval (see Section 8.3) after each packet
transmission which effectively reduces the number of bits
delivered. Second, collisions of pings or failed decodings
of pings result in inaccurate estimates of the number of lis-
teners. Third, the low-power clock used by a node during
its sleep state drifts and additionally can be affected by its
environment.
Power consumption: Recall that in the power consumption
measurements described in Section 8.2, we show that the
power consumption of the virtual battery is valid for eval-
uating the actual power consumption of the node. Table 3
also presents the mean, minimum, and maximum power
consumption of the virtual battery normalized to the target
power budget ρ. Specifically, a value of 1 means that a node
consumes power on average at the rate of its power budget
throughout the experiment, and a higher value means that
a node consumes power at the rate which is higher than its
power budget.

The results show that nodes running EconCast-C con-
sume power at rates which are within 7% and 3% of the tar-
get power budget with σ = 0.25 and σ = 0.5, respectively.
This is because smaller value of σ increases the communica-
tion burstiness (see Section 7.4), resulting in larger variance
of the nodes’ virtual battery levels.
Collection of Pings: An important input to EconCast-C
is the estimates of number of active listeners, ĉ(t), based
on which the transmitter decides the probability to contin-
uously transmit. Larger values of ĉ(t) lead to longer av-
erage burst length and can potentially significantly increase
the throughput. For example, receiving 1 ping, the transmit-



# of Listeners 0 1 2 3 4
ρ = 1mW(%) 89.03 9.69 1.28 0.00 0.00
ρ = 5mW(%) 59.21 31.22 8.22 1.24 0.11

Table 4: Distribution of number of pings (active listeners)
received after each packet transmission with N = 5, σ =
0.25, and varying ρ.

ter continuously transmits a packet with probability 0.8647
with σ = 0.5. This probability increases to 0.9817 with
σ = 0.25, which substantially increases the burstiness. Also,
with lower power budget, a successful transmission happens
more rarely and it becomes harder to collect pings.

Table 4 presents the distribution of number of pings
(equivalently, number of active listeners) received by the
transmitter after each packet transmission, during experi-
ments of N = 5, σ = 0.25, and ρ ∈ {1mW, 5mW}. It
can be shown that with a higher power budget, the nodes
are more active and the transmitter has higher probability to
receive more pings. On the other hand, with lower power
budget, the transmitter almost never receives more than 3
pings in a 5 nodes experiment, resulting in lower throughput
as illustrated in Figure 7.

9. CONCLUSION
In this paper, we considered the problem of maximizing

the broadcast groupput and anyput among a set of energy-
constrained nodes with heterogeneous power budgets and
listen and transmit power consumption levels. We provided
methods to obtain oracle groupput and oracle anyput for a
given set of heterogeneous nodes.

We developed the EconCast-C and EconCast-NC dis-
tributed protocols that control the nodes’ transitions among
sleep, listen, and transmit states. We analytically showed
that heterogeneous nodes using the protocols (without any a
priori knowledge regarding the number of nodes, power con-
sumption levels, and budgets) can achieve the oracle group-
put and anyput in a limiting sense (when σ → 0).

Through simulations we evaluated EconCast and com-
pared it to the state of the art. We also considered the trade-
offs in its design as a function of σ, where low values in-
crease both burstiness and throughput, while high values re-
duce both of them. Finally, we experimentally evaluated
EconCast using commercial-off-the-shelf nodes, thereby
demonstrating its practicality.

There are several open future research directions. In par-
ticular, future research will focus on extending the analy-
sis to non-clique toplogies. Moreover, evaluation with cus-
tom designed ultra-low-power nodes (e.g., [41]), that have
improved energy awareness compared to the TI eZ430-
RF2500-SEH nodes, would enable to better assess the trade-
offs related to the protocol design. Finally, considering
unique application characteristics and their relation to group-
put and anyput is an open problem.
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