
Distributed, Self-Stabilizing Placement of Replicated Resources
in Emerging Networks ∗

Bong-Jun Ko Dan Rubenstein
Department of Electrical Engineering, Columbia University

New York, NY
{kobj, danr}@ee.columbia.edu

Abstract

Emerging large scale distributed networking systems,
such as P2P file sharing systems, sensor networks, and ad
hoc wireless networks, require replication of content, func-
tionality, or configuration to enact or optimize communica-
tion tasks. The placement of these replicated resources can
significantly impact performance. We present a novel self-
stabilizing, fully distributed, asynchronous, scalable proto-
col that can be used to place replicated resources such that
each node is “close” to some copy of any object. We de-
scribe our protocol in the context of a graph with colored
nodes, where a node’s color indicates the replica/task that
it is assigned. Our combination of theoretical results and
simulation prove stabilization of the protocol, and evaluate
its performance in the context of convergence time, mes-
sage transmissions, and color distance. Our results show
that the protocol generates colorings that are close to the
optimal under a set of metrics, making such a protocol ideal
for emerging networking systems.

1. Introduction

Emerging large scale distributed networking systems,
such as P2P file sharing systems, wireless ad-hoc and sensor
networks, and utility computing systems utilize replication
of resources, information, and jobs at participating network
nodes to increase the overall performance of the networked
system. For example, P2P file sharing applications [6] repli-
cate content at nodes throughout the network, reducing the
expected retrieval time. In utility computing applications
such as Grid Computing [5], a computing task replicated
among multiple computing nodes not only further extends
the distribution of the computation load, but also reduces

∗ This material was supported in part by the National Science Founda-
tion under Grant No. ANI-0117738 and CAREER Award No. ANI-
0133829, and by a gift from Lucent Technologies. Any opinions, find-
ings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

the time spent transporting tasks to nodes. In multi-channel
wireless networks, the capacity of the network is often in-
creased by assigning channels to nodes such that the dis-
tance between nodes assigned to the same channel is maxi-
mized. In all these systems, the decision of where to repli-
cate particular items, whether the items take the form of in-
formation, tasks, or resources, has a tremendous impact on
the performance of the entire system.

While the use of replication in the different environments
described above addresses a vastly different set of perfor-
mance issues, we make the observation that at an abstract
level, the placement objectives are remarkably similar. In
particular, it is important either to place different items in
the vicinity of each node or to place the identical items as
far away from each other as possible. We note that a place-
ment that achieves one of these objectives also does it well
for the other, i.e., if the distance between two identical re-
sources is increased, it gives room for different resources to
be placed in nearby points, and vice versa.

There are several properties of emerging networks that
complicate the design of a protocol to place or configure
replicated resources:

• The number of participating nodes will often be in the
thousands or millions.

• Participation will be dynamic, with nodes joining and
leaving the network at unpredictable times, making it
difficult to elect “leader” nodes that make decisions for
large portions of the topology.

• Clocks will not be perfectly coordinated, making it
difficult or impossible to perform synchronized ac-
tions among large collections of nodes. Unless care-
fully constructed, in such an environment, a protocol
can enter a livelocked or deadlocked state.

• Transmissions across large distances will incur high
bandwidth costs or will increase the time needed to de-
cide where to place the replicas.

For these reasons, these networks cannot utilize proto-
cols that implement centralized (leader-oriented) computa-
tion, require synchronized messaging, or require communi-
cations between distant nodes.



This paper describes a distributed, hierarchy-free, self-
stabilizing protocol that performs placement of replicated
resources. We address the fundamental problem of placing
multiple copies of resources within the network, in which
each node must hold some resource, such that an arbitrar-
ily chosen resource is reachable over a short path from any
starting point in the network, and that there are large dis-
tances between identical copies. We develop a protocol that
exhibits several desirable properties:

• Self-configuring: no third party is used to coordinate
placement.

• Fully distributed: all nodes are assigned an identical
set of tasks to aid in the decision of the placement.

• Scalable: information exchange is performed within
localized areas.

• Asynchrony: no clocks are required to sequence or co-
ordinate the operations at nodes.

We explore this problem in the context of an arbitrary
graph, where each node is colored with one of k colors,
where each color represents a resource class. The protocol
operates by having each node continually change its color
in a greedy manner to maximize its own distance to a node
of the same color. To this, we add a novel mechanism that
avoids race conditions to ensure that the protocol stabilizes
in asynchronous communication environments indicative of
these emerging networks.

We use both theoretical analysis and simulation to eval-
uate the performance of our protocol. Our theoretical anal-
ysis proves that the protocol always converges to a fixed
coloring. This analysis also formally bounds the distance
that must be traveled from a node to an arbitrarily chosen
color within a factor of three of what can be achieved in an
optimal coloring. The results of discrete-event simulation
demonstrate that for randomly generated graphs, our proto-
col is scalable in that the convergence time and the num-
ber of protocol messages grow slowly with the number of
nodes in the network, and that the coloring is on average
much closer to the optimal allocation than the theoretical
upper bound.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the network model and formally state the
coloring problem. Section 3 describes the distributed pro-
tocol, and Section 4 discusses the issues involved in its ex-
tension and some potential applications. The convergence
to a fixed coloring and theoretical bounds on performance
are presented in Section 5. Section 6 presents performance
evaluation results of the protocol observed through simula-
tion. Section 7 briefly reviews related work, and we con-
clude the paper in Section 8.

2. Model and Problem Formulation

In this section, we introduce the network model and the
optimization goals in the context of that model. Through-

out the description of the model and the protocol, we as-
sume the protocol messages exchanged between a pair of
nodes are reliably delivered in the order they were trans-
mitted, using some existing reliable transfer mechanism
relevant to the particular network system, for exam-
ple, hop-by-hop TCP connections.

We view a distributed networking system as an
undirected, connected graph, G = (N, E), where
N = {1, 2, · · · , n = |N |} is the set of (numbered) nodes of
the graph and E is the set of edges. Each node n is assigned
one of k colors, c1, · · · , ck; each color represents a spe-
cific set of resources being replicated, where a node’s color
can change with time. We assume that the value of k is de-
termined in advance and remains fixed for the duration of
the execution of the protocol. Also, each edge e ∈ E is as-
signed an arbitrary, non-negative weight. The distance be-
tween two nodes x and y, d(x, y), is the sum of the weights
of edges along a shortest path between x and y. The color
of node x at time t is denoted Ct(x).

Node x’s distance to color ci at time t, dt(x, ci) is de-
fined as the distance at time t between x and the closest
node to x of color ci i.e., dt(x, ci) = min1≤j≤n{d(x, j) :
Ct(j) = ci}. Note that dt(x, Ct(x)) = 0, and also that if no
node is assigned to a particular color ci, then dt(x, ci) = ∞.
We define δt(x) to be the distance at time t between x
and the closest other node of the same color, i.e., δt(x) =
min1≤j≤n{dt(x, j) : Ct(j) = Ct(x), j 6= x}.

In the context of this model, there are several different
objective functions whose minimization or maximization
would yield desirable placements of replicated resources
depending on the design principle. For example, one could
argue that the objective function is to:

• minimize maxx maxi6=Ct(x) dt(x, ci),

• minimize
∑

x

∑

i6=Ct(x) dt(x, ci), or

• maximize
∑

x δt(x).

The first two objective functions are used to place col-
ors so that each node has a short distance through the graph
(i.e., network) to reach any other color. Such placement is
useful when it is desirable to have replicated contents or
tasks (represented by colors) near to any arbitrarily chosen
point in the network. With the last objective, we would like
to place colors so that each node is far from nodes of the
same color. Such placement is useful when nearby place-
ment of identically-configured nodes causes a conflict, such
as assigning two nodes to transmit upon the same wireless
channels. Note that these two types of objectives fit natu-
rally together: placing the same color far away makes room
for other colors nearby.

Unfortunately, the above optimization problems are NP-
hard[1]. Hence, we focus on developing a distributed proto-
col that computes approximations to these problems.



3. The Asynchronous Distributed Color-
ing Protocol

In this section, we describe our Asynchronous Dis-
tributed Coloring (ADC) protocol and the procedure that
each node performs. Our focus in this section is the de-
velopment of a decentralized protocol with which each
node learns of its nearby nodes’ colors and how it se-
lects and changes its own color without causing race condi-
tions.

Since up-to-date color information about a node y takes
time to reach node x, it will be important to distinguish be-
tween the perception that node x has about the current col-
oring and the actual coloring of the graph. We use d̂t(x, ci),
and δ̂t(x) to denote the distances to the closest node of color
ci and Ct(x) respectively as perceived by node x at time
t based on the most recent coloring information it has re-
ceived. The real distances (i.e., as perceived by an oracle
that knows every node’s actual color at time t) remain de-
noted by dt(x, ci) and δt(x).

We say that a node x is locally stable at time t if
d̂t(x, ci) ≤ δ̂t(x) for all 1 ≤ i ≤ k, i.e., x perceives that
no color is further from it than the closest node whose color
matches its own. Otherwise, the node is locally unstable.
If dt(x, ci) ≤ δt(x) for all 1 ≤ i ≤ k, then at time t, x is
said to be stable, and is otherwise unstable. A graph color-
ing is said to be stable when all nodes in the graph are sta-
ble.

3.1. Coloring Rule

We begin by describing the process used to adjust the
color of a node. Each node is responsible for selecting its
own color. We assume for now that, with the color change
propagation protocol described in the next subsection, each
node continually receives updated information of the col-
ors of nearby nodes. More specifically, at any time t, a node
x keeps d̂t(x, ci) for all colors ci, 1 ≤ i ≤ k and δ̂t(x) and
applies the following simple color changing rule.

The color change rule : At any time t, a locally stable
node keeps its color fixed. However, any locally unsta-
ble node will change its color to a color ci that satisfies
d̂t(x, ci) ≥ d̂t(x, cj) for all 1 ≤ j ≤ k.

In other words, a node seeks to change its color to ci if
it perceives that the closest node of color ci is further from
it than the closest other node of its current color. Changing
color in this manner is desirable in that it increases δ̂t(x),
decreases

∑

i d̂t(x, ci) (i.e., average distance to a color),
and does not increase but often decreases maxi d̂t(x, ci)
(i.e., distance to the furthest color).

Figure 1 provides an illustrative example of a node x that
starts as color c1 at time t and completes its change to color
c2 at time t′ > t. Nodes x and x′ are initially colored c1

and nodes z and z′ are initially colored c2. In this exam-

z:c2x:c1

x’:c1

z’:c2

(a) Before: time t

z’:c2

z:c2

x’:c1

x:c1

(b) After: time t
′

Figure 1. x changes color from c1 to c2

ple we use Euclidean distance to indicate the distance be-
tween nodes. In Figure 1(a), x′ is the closest node to x of
color c1, and z is the closest node to x of color c2. Since
δt(x) < dt(x, c2), x can increase its distance to a node of
the same color by changing its color from c1 to c2. The re-
sult is depicted in Figure 1(b). We see that the shaded re-
gion around x (i.e., the minimum distance to the same color)
has grown. Note that the color change by x is not neces-
sarily favorable for other nodes in the graph. For instance,
the change by x to color c2 substantially shrinks the dis-
tance from node z to a node of its same color, c2. Because
of this, it is not immediately obvious that repeated applica-
tion of our coloring rule will lead to a stable coloring. This
stability is proven in the next section.

An important characteristic of this coloring rule is that a
node only needs the knowledge of the distance to the clos-
est node of each color r, i.e., the required information ex-
change is often available within a local region.

We now describe the messages exchanged by neighbor-
ing nodes to implement the ADC protocol. The messages
exchanged between neighbors perform two essential func-
tions. First, nearby nodes exchange information that de-
scribes the color configuration of nodes within a local area.
Second, nodes seek approval from nearby neighbors before
changing their colors to guard against a small set of changes
which, if performed by nodes simultaneously, could live-
lock or deadlock the protocol before it reaches a stable con-
figuration.

3.2. Color Propagation

A node needs to be continually updated about any
changes in coloring at other nodes that affect its mini-
mum distance to a color, since its own “desired” color
is based on these values. We have devised a distributed
method we call Colored Bellman-Ford or CBF for short,
which exchanges the necessary information among nodes.
Our description here assumes that the reader is famil-
iar with the Bellman-Ford algorithm[4].

As in the Bellman-Ford algorithm, each node in CBF
learns the distances to other nodes by exchanging a distance
update message with each of its neighbor nodes. The dif-
ference is, while Bellman-Ford updates each node with the
distances to all other nodes in the network, CBF updates in-
formation only about the distances to the closest nodes of
all other colors, localizing the scope of the propagation of



update messages. In CBF, a node maintains a distance vec-
tor table, storing information about the closest node of each
color. When a node running CBF receives an update from a
neighboring node, like Bellman-Ford, it updates its (color)
distance table in the respective entry and forwards update
messages to all of its neighbors containing shortest path in-
formation (length and node ID) for any color to which its
shortest distance has changed.

The one limitation of the above method is that a node
x will often not learn about the closest other node of the
same color, Ct(x), when its neighbors all point to x as their
closest node of that color. This problem is resolved by hav-
ing each node store information pertaining to the two clos-
est nodes of each color that can be reached through each
neighbor. The information about these two closest nodes is
also forwarded to neighbors when an update changes either
member of this closest pair, and hence a node’s table en-
try for the same color must contain at least one node other
than itself.

Clearly, CBF will continue to send updates as long as
nodes continue to change their colors, since color changes
affect the distances stored in the distance tables. We have
proven the following result which will be used later to prove
that our distributed protocol stabilizes to a coloring. The
proof is not included due to the lack of space, and can be
found in a technical report version of this paper[11].

Claim 1 When nodes cease to change their colors, i.e.,
∃t, ∀x, ∀τ > t, Cτ (x) = Ct(x), CBF will terminate trans-
mitting messages, and each node x will have accurate in-
formation about the distance to and the identity of the two
closest nodes of each color ci 6= C(x), and of the closest
node other than itself of color C(x).

CBF, coupled with the color-changing rule, allows nodes
to change their colors and deliver their new color infor-
mation to those nodes whose own color decisions are af-
fected by that information. However, when nodes are ac-
tively changing their colors, the lag in time it takes for a
node to learn about another node’s color change can lead to
anomalous situations in which the procedure does not sta-
bilize. A simple illustration of this phenomenon involves a
graph to be colored with two colors, where all nodes are ini-
tially colored c1, and propagation delays between all pairs
of nodes takes one unit of time. Since each node’s distance
to c2 is infinite, all nodes simultaneously change to c2 and
propagate their change information around the graph. Upon
learning in the next time unit that their nearest neighbors
are now colored c2, all nodes return to color c1, and the pro-
cess repeats indefinitely.

Our goal here is to prevent this anomalous behavior, but
we would like to permit as many locally unstable nodes to
change their colors simultaneously when these simultane-
ous changes cause no such conflict.

3.3. Asynchronous Color Change Procedure

Coping with the asynchrony and handling possi-
ble anomalous behaviors is done by a 3-way handshake
exchange using four types of protocol messages: re-
quest, accept, reject, and decision. These messages are
used to ensure that the graph will converge to a stable col-
oring in which all nodes are stable. Before describing how
these messages are used, we begin by looking at a mono-
tonicity property, one of the critical properties that our
protocol will satisfy to prove convergence.

3.3.1. Monotonicity Property Later in the paper, we will
show that the protocol produces a stable coloring as long
as δt(x) increases whenever node x changes its color. For
δt(x) to increase, it is sufficient to change node x from c1

at time t to c2 at time t′ when the following two conditions
hold:

• There exists a node (other than x) at distance δ̂t(x)
from x that is color c1 at time t′, ensuring that δt(x) ≤

δ̂t(x).

• There is no node of color c2 within distance δ̂t(x) from
x at time t′, ensuring that dt(x, c2) > δ̂t(x).

Clearly, if these two conditions are satisfied, then so is
δt(x) < dt(x, c2). Hence, by changing to color c2 at time
t′, we have δt′(x) > δt(x). Note that x’s decision uses only
perceived distance information since this is the only infor-
mation that is available to the node.

Now let us present our distributed protocol, beginning by
describing at a high level how the messages are passed be-
tween nodes .

3.3.2. Protocol Messages When x of color c1 “perceives”
(by CBF) that it can change its color to c2 by the color-
ing rule, i.e., when δ̂t(x) < d̂t(x, c2), it broadcasts a re-
quest message to all nodes whose distance lies within δ̂t(x)
of x. We refer to this set of nodes as x’s time t disk. 1 The re-
quest message states x’s desire to change from color c1 to
color c2, and requests that one of the nodes in x’s time t disk
maintain color c1 and none of these nodes change to color
c2.

A node y that receives a request message from x re-
sponds either with an accept or reject message as follows.
Node y immediately sends x a reject message if y satis-
fies either of the following properties:

• y is of color c2.

• y is the node that x “thinks” is of color c1, but y is in
fact no longer of color c1.

1 There are several ways to scalably implement scoped broadcasting of
messages within a node’s time t disk and the corresponding feedback
mechanism. We do not cover this issue here, but more discussion can
be found in [11].



Note that the former of the above two conditions, under
which y rejects x’s request, means that x’s perception of
having no nodes of color c2 in its disk was incorrect, such
that color c2 is at least as close as the closest other node of
c1 that is known by x. The latter condition means that the
node that x depended on as the node of color c1 is no longer
of that color, hence c1 may be further away from x than x
had anticipated.

If neither of these properties hold, y sends x an accept
message. If y accepts x’s request to change from c1 to c2,
then y is prohibited from changing from c1 or changing to
c2 until it receives x’s decision message.

Now, if any node rejects x’s request, x aborts the color
change. If all nodes accept x’s request, then x changes its
color. Whether x changes its color or aborts, it sends a de-
cision message to the same set of nodes to which it had sent
a request, removing the color-change restriction that was
placed on these other nodes.

3.3.3. Handling Deadlock/Livelock Network propaga-
tion delays are problematic when trying to coordinate mes-
sage requests within the network. In particular, we must
address the possibility that two nodes, x and y, each wish-
ing to change color, request one another to hold their
colors fixed until further notice. Nodes cannot simply ac-
cept the other’s change requests when such conflict arises,
as this could lead to a livelocking phenomenon, caus-
ing both to keep changing their colors. Both cannot
simply reject the other - this leads to a livelock, prevent-
ing one another from changing to a “better” color. If both
hold each other’s request until they receive accept or re-
ject to their own requests, a deadlock situation will arise.
Also, it will often be the case that the distances over
which x’s and y’s messages travel will differ. In partic-
ular, it could be the case that δ̂t(x) < d(x, y) < δ̂t(y).
Hence, even applying a simple tie-breaking rule be-
tween x and y is difficult, because one of the nodes may
not even be aware of the conflict.

We address this dilemma by having each node transi-
tion between two states: STALLED and MOVING. Each
node also maintains three sets that hold requests that it re-
ceives from other nodes: stalling, master, and slave. These
messages are removed from a set only after the outcome of
the request is known (i.e., the request was rejected, or the
response corresponding to the request was received). Fur-
thermore, we assign arbitrary, unique identifiers that can be
used to impose a well-defined ordering among nodes. We
write i > j to indicate that node i is ordered before node j.
Figure 2 presents the state diagram relevant to these proce-
dures, which are described as follows.

Initially, a node is in the STALLED state. Upon sending
a request, a node transitions to the MOVING state, and tran-
sitions back to the STALLED state immediately after send-
ing a decision message corresponding to the request that
caused it to enter the MOVING state.

When in the STALLED state, a node x places in its
stalling set any request that it accepts. x cannot transition

Figure 2. State diagram for handling protocol
messages

to the MOVING state (i.e., cannot issue a change request)
if its stalling set has an entry that conflicts with x’s desired
color change. In particular, x cannot change from color c1

to color c2 if there is a request in its stalling set asking to
change to color c2, or there is at least one node y that de-
pends on x to be color c1.

When in the MOVING state (x has issued a request), x
places a node y’s request in its stalling set if the request
does not conflict with its own intended color change. How-
ever, if y’s request does conflict, it differentiates the request
based on the order of x and y as follows. If x > y, then x
places y’s request in its slave set without accepting or reject-
ing the request. On the other hand, if x < y, then x places
y’s request in its master set and immediately accepts the re-
quest. x will not change its color while its master set is non-
empty. A message in x’s master set is deleted when x re-
ceives the decision regarding the message.

If x’s request is accepted by all nodes and its master set
is empty, it rejects (and removes) all messages in the slave
set, sends a decision message, changes its color, and transi-
tions to the STALLED state. If x’s request is rejected, it ac-
cepts and removes all messages in its slave set, transfers all
messages in the master set into the stalling set, and transi-
tions to the STALLED state without changing its color.

This prioritized STALLED/MOVING procedure pre-
vents race conditions by having requests from lower-
priority nodes “frozen” until nodes of higher order com-
plete their decision of whether or not to change. The proto-
col does not deadlock because the node with the highest or-
der that is in the MOVING state will never be “frozen”
by another node. A formal proof of this claim is pre-
sented in Section 5.1.

To summarize the ADC protocol, nodes use the
distributed CBF method to exchange updates with neigh-
bor nodes of nearest colorings. When a node wishes to
change its color, it broadcasts and receives messages



about this color change that respectively travel no fur-
ther than the distance to the closest node perceived to be
the same color. Since these procedures occur within local-
ized regions and have a small set of restrictions that pre-
vent two nodes from simultaneously changing color, many
of the color changes can occur simultaneously. This mas-
sive parallelism significantly reduces the time to reach
a stable coloring in comparison to a protocol that per-
mits only a single color change at a time.

4. Discussion

In this section, we present some variations and exten-
sions of the graph coloring problem that may be of use in
practice. For each extension we can show that the ADC pro-
tocol will still converge. Next, we discuss practical applica-
tions, for which our protocol can offer useful solutions ei-
ther directly or via one of the forementioned extensions.

4.1. Extensions and Variations

4.1.1. Hardwired nodes We can relax the assumption that
all nodes participate in the ADC protocol and allow some
nodes to fix their colors during the execution of the proto-
col. This is useful, for instance, in networks where there is
an original source of information from which replicas are
copied, and the point of origin of the information retains
the original copy.

4.1.2. Assigning multiple colors to a node Each node
can be assigned an arbitrary number of colors that it can
store. This can be done by mapping the graph to another
graph where a node that can store ` colors in the original
graph is mapped to an `-clique of nodes that can each store
one color, where the edges between nodes in the `-clique
have length zero. Our coloring protocol can be immedi-
ately used without modification if each node with ` colors
in the original graph performs the procedure for ` indepen-
dent nodes in the converted graph. The proof and all sup-
porting results follow trivially.

This can be of use in practice, when some node has larger
capacity than the others, for example, nodes with big stor-
age, a wireless node supporting multiple channels, etc.

4.1.3. Variable Density Coloring Each color ci can be
assigned a density, βi such that a node y of color c1 is con-
sidered to be “closer” to x than a node z of color c2 when-
ever β1dt(y, x) < β2dt(z, x). Nodes of colors with larger
density will more densely populate the graph. For instance,
consider coloring a given graph with two colors c1 of den-
sity ε and c2 of density 1/ε as ε → 0. Having a single node
x of color c1 in the graph is sufficient, since no matter how
physically far this node is from another node y in the graph,
β1d(x, y) is infinitesimally small.

4.2. Applications

4.2.1. Wireless Channel Allocation In multi-channel
wireless networks, transmissions can still conflict un-
der conventional channel allocation mechanisms that assign
different channels to nodes that share a common communi-
cation neighbor. This is because the interference range of a
node is typically greater than its transmission range. More-
over, nodes’ mobility in such networks gives rise to a
need to re-configure the channel assignment as the topol-
ogy changes.

Our graph coloring protocol creates long distances be-
tween nodes utilizing the same channel (represented by
color) given a fixed number of channels. This reduces both
the interference level and the frequency of channel recon-
figuration. Even when the allocation by our coloring needs
to be re-configured, this can be done quickly as the simu-
lation results in Section 6 indicate. However, a more thor-
ough evaluation in highly dynamic environments is yet to
be done.

4.2.2. Distributed Leader Election Leader election algo-
rithms are useful building blocks in network protocols that
impose a hierarchical structure, e.g., in hierarchical routing
in large scale ad-hoc networks. One challenge in those pro-
tocols is to distribute the burden of being leader. Using the
method for assigning multiple colors to a node, our color-
ing protocol can be applied in this environment such that
each node can find a node of every other color in some of
its neighbors. Once the protocol stabilizes, the leader re-
election problem simplifies to having each node take its turn
for being the leader.

4.2.3. Distributed Resource Directory Service In large
scale distributed networks that require decentralized direc-
tory services, the cost of using the directory is reduced if
the directory information is accessible at nearby nodes. Our
protocol can be used to map each index of the resource (or
content) to a specific color using a predetermined method
such as a hash function, allowing the index to be stored at
a nearby node. An additional benefit of our protocol is that,
while determining the location of resources, the direction
that a search should take to reach the closest copy of the in-
dex is computed at each hop (by CBF). This makes it triv-
ial to design a search that heads directly toward the closest
copy of the index.

5. Analysis

In this section, we prove the convergence of our ADC
protocol, and provide formal results about its performance
in comparison to “optimal” colorings.

5.1. Convergence

We begin by proving that the ADC protocol always con-
verges to a stable coloring, i.e., nodes all reach a point



where they cease changing their color and therefore cease
sending messages. Proofs of several stated claims are omit-
ted here, but can be found in [11].

Claim 2 If x is in the STALLED state and y has an accu-
rate view of node colors (in particular, δ̂t(y) = δt(y) and
d̂t(y, ci) = dt(y, ci) for all 1 ≤ i ≤ k), then x will not pre-
vent y from changing color (i.e., x does not “freeze” y’s
messages).

Claim 3 If the graph is unstable, then there exists a node
that is or will be in the MOVING state.

Lemma 1 (Liveness) If the graph is unstable, then some
node will eventually successfully change its color.

Proof: Our proof is by contradiction. Assume the graph is
unstable but no node ever changes color. By Claim 1, all
nodes eventually have correct view of graph coloring. Since
the graph is unstable, by Claim 3, there exists a node that is
or will be in the MOVING state. Let v be the node of high-
est order among those in the MOVING state. Since v’s or-
der is higher than any other nodes in the MOVING state,
v is not in the slave set of any other node (only nodes in
the MOVING state may have a non-empty slave set, and
all such nodes have lower order than v). Furthermore, since
v has the correct view of graph coloring, v’s request can-
not be rejected. Hence nothing can stop v from changing its
color, which contradicts the assumption that no node ever
changes color.

Our final lemma, before proving our first main result, is
similar in flavor to a lemma in [10] that proves the con-
vergence of the coloring rule on a graph whose edges have
identical length. The proof in this lemma requires that we
consider a vector V (t) =

〈

δt(n1), δt(n2), · · · , δt(n|N |)
〉

,
where {n1, n2, · · · , n|N |} are all the nodes of the graph,
ordered such that δt(ni) ≤ δt(ni+1) for all 1 ≤ i <
|N |, i.e., V (t) is an ordered |N |-component vector whose
components are the δt(x) for all nodes x. We say vector
V (t) < V (t′) when V (t) is lexicographically ordered be-
fore V (t′), i.e., if V (t) =

〈

v1, v2, · · · , v|N |

〉

and V (t′) =
〈

w1, w2, · · · , w|N |

〉

then there is some 0 < i ≤ |N | where
vj = wj for all j < i and vi < wi.

Claim 4 If x is the only node that changes color between
time t and t′, then δt′(x) > δt(x).

Proof: Let x changes from color c1 to color c2 at time
τ, t < τ < t′.2 By the 3-way handshaking protocol, x
can change its color only when its request to change from
c1 to c2 has been accepted by all nodes within distance
δ̂t(x), which means that at time t, there is at least one node
of color c1 at distance δ̂t(x) and no node of color c2 in
x’s time t disk. Hence x changes color after ensuring that

2 If two nodes change at exactly the same time, clearly the result is
the same as in a system where the difference in time is positive but
bounded below any ε. We can then choose t and t

′ such that their dif-
ference is less than ε.

δ̂t(x) = δt(x) and dt(x, c2) > δ̂t(x). Since no other node
in x’s time t disk changes color between times t and t′,
δt′(x) > δ̂t(x), and hence δt′(x) > δt(x).

Lemma 2 (Monotonicity) When one node changes color
between times t and t′, then V (t) < V (t′).

Proof: Let x be the one node that changes from color c1 to
color c2. We have δt′(x) > δt(x) from Claim 4. Consider
any node y where δt′(y) < δt(y). For this decrease to occur,
some node that at time t was not colored Ct(y) = Ct′(y)
must have changed to Ct′(y) by time t′. Since only x
changed its color during this time interval, the node must be
x and Ct′(y) = c2. Since x is no closer than δt′(x) to a node
of the same color at time t′ and x is now the closest node of
color c2 to y, we have that δt′(y) = d(y, x) ≥ δt′(x). Thus,
δt(x) < δt′(x) ≤ δt′(y), i.e., some component of V (t)
increased to yield V (t′) (in this case, the component con-
tributed by node x), and any decreasing components remain
larger than the final value of the increased component (for
instance, y’s component). This is clearly a lexicographic in-
crease, hence V (t) < V (t′).

Theorem 1 (Convergence) ADC Protocol converges to a
stable coloring.

Proof: If the graph is unstable, by Lemma 1, there will
always be at least one node which changes its color, and
whenever a node changes its color, by Lemma 2, there is a
lexicographic increase in V (t). Since each component is ei-
ther bounded by the maximum diameter of the graph or else
equals ∞, we must reach a time T where V (t) is fixed for
all T > t. This means that nodes cease changing their col-
ors, and therefore the coloring is stable.

5.2. Formal Bounds

Now we prove some theoretical bounds on color dis-
tances generated by our distributed protocol. For the pur-
pose of evaluating the performance of a stable coloring, we
define the super-optimal distance of a node as follows.

Definition 1 The super-optimal distance of a node x in a
graph that is colored with k colors, dopt(x), is the distance
to the k-th closest node to x including x.

The super-optimal distance is the minimum distance for
which there exists a coloring in which a node can reach
all k colors (including its own color). We coin the term as
“super-optimal” because for a large number of graphs, there
is no single coloring in which each node can reach all col-
ors within its super-optimal distance.

Theorem 2 If the graph is stable, then for each node x,
dt(x, ci) ≤ 3dopt(x) for all i = 1, · · · , k. This is a tight
bound.

Proof: Consider an arbitrary coloring of a graph in which
there is a node x and a color ci where d(x, ci) > 3dopt(x).
Let y be the closest node to x of color ci. Since there are at
least k nodes within distance dopt(x) from x, none of which



W Z YX X

Z X W

Z W

Figure 3. An example of stable coloring :
max d(x, Ci) = 3 dopt(x)

is color ci, there are two nodes w and z within this distance
that are both the same color, cj . Since both of these nodes
are within distance dopt(x) from x, they are at most dis-
tance 2dopt(x) from one another, and more than distance
2dopt(x) from any node of color ci. It follows that neither
w nor z is stable, hence the graph is not stable.

We note that this bound is tight, i.e., that there can ex-
ist a stable coloring in which d(x, ci) = 3dopt(x) for some
color ci. Figure 3 demonstrates this, where all edges in the
figure have weight 1 and nodes are labeled by their colors.
The node colored Y has super-optimal distance of 1, the col-
oring of the graph is stable, and a distance of 3 is needed to
reach color W .

Our next result extends the k-hop bound Lemma for unit-
length edge graphs in [10] to graphs whose edge lengths are
arbitrary.

Lemma 3 Let Dk(x) be the minimum distance from node
x to a node that is k hops from x. Then for any color ci 6=
Ct(x), dt(x, ci) ≤ Dk(x) in a stable coloring.

The above bound is tight when applied to the general
class of connected graphs, since equality holds for the case
of a chain containing k nodes and k − 1 unit-length edges.
Last, we present a Lemma that lower-bounds the distance
between nodes of the same color.

Lemma 4 δt(x) ≥ dopt(x) in a stable coloring.

Proofs of these lemmas are also available in [11].

6. Performance Evaluation

In this section, we evaluate the performance of our pro-
tocol via discrete event-driven simulations, measuring its
transient behavior (time to converge to a stable coloring,
number of messages per node) as well as the quality of
the colorings produced in the context of the distances to
colors. Each simulation run is performed on a connected,
undirected graph, which is generated randomly as follows.
Given a set of nodes, edges are added to the graph be-
tween pairs of nodes chosen uniformly, and edge weights
are selected uniformly at random within the interval [1, 10].
We vary the number of edges that are added and only se-
lect graphs that are connected (we add additional edges at
random when the graph is not connected). We then clas-
sify graphs by the average degree of the nodes. Results pre-
sented here, unless explicitly stated otherwise, are based on
graphs whose average degree is rounded to 5, i.e., between
4.5 and 5.5.

0

250

500

750

0 50 100 150 200

co
nv

er
ge

nc
e 

tim
e

# nodes

k=2
k=5
k=10
k=20
k=50

Figure 4. Convergence time

We vary the number of nodes, n, that make up the graph
and generate 100 different random graphs for each value
of n considered. For each graph, we vary k, the number of
colors that are used to color nodes in the graph, and run a
separate simulation for each value of k and each graph. At
the start of the simulation, a node is assigned a color (from
the k) at random and all nodes transmit CBF update mes-
sages. The simulation terminates when there is no outstand-
ing message from any node, meaning the graph is stable.
The message propagation delays along the edges are pro-
portional to the weight of the edge. We choose proportional
delays as a starting point for the simulations since often the
edge weights are simply a measure of delay. We reiterate
that the protocol will converge regardless of what drives the
temporal or spatial dependence of the edge delays.

6.1. Transient Behavior

We evaluate the transient behavior of the protocol by
measuring convergence time, the number of color changes
and messages sent or forwarded per node. The convergence
time is measured as the time elapsed until the graph enters a
stable state, starting from the instance that every node is as-
signed a randomly chosen color.

Figure 4 depicts the average convergence time with 95%
confidence intervals from the simulations. We vary the num-
ber of nodes along the x-axis, with each curve fixing the
number of colors used in that set of simulations. We see
that as n grows large, the increase in time grows in a log-
arithmic manner. Clearly the time is more sensitive to the
number of colors than it is to the number of nodes.

Next, we turn our attention to the number of times a node
changes its color. Figures 5(a) plots the average number of
color changes per node as a function of the number of nodes
in the graph and of the number of colors used to color the
graph. We see the average number of changes per node is
between 0 and 2. These preliminary results suggest that the
number of color changes, while somewhat sensitive to the
number of colors, appears to grow slowly in both the num-
ber of nodes and colors.

Figure 5(b) plots the average number of messages trans-
mitted over all types of messages, including those used in
CBF update messages, which account for roughly 2/3 of
the total number of messages. While the total number of



0

1

2

0 50 100 150 200

# 
co

lo
r 

ch
an

ge
s/

no
de

# nodes

k=2
k=5
k=10
k=20
k=50

(a) Number of color change per node

0

1000

2000

3000

0 50 100 150 200

# 
m

es
sa

ge
s/

no
de

# nodes

k=2
k=5
k=10
k=20
k=50

(b) Number of messages per node

Figure 5. Number of color changes and mes-
sages per node

messages at first glance seems high for large values of k,
we suspect the number is negligible in comparison to the
number of messages that these same environments will re-
quire as part of the routing protocol, or in comparison to
the amounts of data that will be transmitted. In addition,
we have made no attempts to optimize the number of mes-
sages and suspect that aggregation and randomized suppres-
sion techniques can significantly lower the number of mes-
sages transmitted (for example, we could “fuse” some up-
date messages with decision messages).

6.2. Coloring Distance

We evaluate the performance of our protocol by com-
paring the color distances in stable graphs generated by the
protocol to the super-optimal distances and to distances in
graphs where each node chooses its color uniformly at ran-
dom.

Figure 6(a) plots the node’s distance to its furthest color
normalized by its super-optimal distance in the graph, i.e.,
max1≤i≤k d(x,ci)

dopt(x) . While we have shown that this value can
be as high but no higher than 3, in practice we find the value
no higher than 1.2 on average. This is quite impressive when
one considers the fact that this value cannot be less than 1
and often there is no coloring for which this value is 1 si-
multaneously for all nodes.

Finally, we compare the coloring distance of the proto-
col to that of random colorings in which nodes select their
colors uniformly at random. Figure 6(b) plots the fraction of

1

1.1

1.2

0 50 100 150 200

m
ax

 d
(x

,C
i) 

/ d
op

t

# nodes

k=2
k=5
k=10
k=20
k=50

(a) Max distance to super optimal distance

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

normalized distance

ADCA
Random

(b) max d(x,ci)
dopt(x)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

normalized distance

ADCA
Random

(c) δ(x)
dopt(x)

Figure 6. Color distance comparison: Dis-
tributed Coloring Algorithm vs Random col-
oring

nodes over all simulation runs whose distance to the clos-
est node of the furthest color is less than x times the super-
optimal distance for both colorings generated by our proto-
col and those generated at random, where x is varied along
the x-axis. The results are taken from all simulations with
n = 200 and k = 20. The gain obtained by using our mech-
anism is clear. For example, almost 80% of nodes in col-
orings generated by our protocol have minimum distances
to their furthest color within a factor of 1.25 of their super-
optimal distances, while only 10% of nodes are within this
factor in a random coloring. Figure 6(c) plots the fraction
of nodes whose distance to the closest node of the same
color is within a factor of x of the super-optimal distance.
As proven in Lemma 4, this factor never falls below one,
whereas in a random coloring, this factor is less than one
for more than 50% of the nodes. This significant improve-
ment on color distance is observed in all the other sets of



simulations with different parameters.

7. Related Work

In [10], we presented a very preliminary centralized ver-
sion of the greedy coloring protocol used here. The work
makes multiple simplifying assumptions that preclude its
use in practical networking environments. First, it was as-
sumed that only one node could change its color at a time -
a difficult property to ensure in a distributed, asynchronous
medium. Second, it was assumed that each node could ob-
tain from an oracle the current coloring of all other nodes
within the rest of the graph. Last, all graph edges were as-
sumed to be unit length. The solution in this paper relaxes
all of these assumptions.

Our goal of optimizing distance to the nearby copy of re-
source shares many similarities with the optimal facility lo-
cation problems. There have been numerous results in this
area, such as polynomial-time, constant-factor approxima-
tion algorithms [13, 3, 7], and greedy methods [8] that fur-
ther improve upon previous approximations. [2] is proba-
bly the most closely related to our work in the sense that it
solves the problem of placing replicated objects in arbitrary
nodes in the network, but it uses an off-line, centralized al-
gorithm, and to our best knowledge, there has been no ex-
ploration of simple distributed approaches that address the
problem in our context.

A large body of work has also looked at the problem of
placing replicas within peer-to-peer overlays [9, 12]. How-
ever, these works differ from ours in that the focus is on
identifying content that is popular and ensuring that this
content is placed nearby. Our goal, in contrast, is to find
a placement strategy that minimizes the distance that needs
to be searched to find an arbitrarily chosen piece of con-
tent.

8. Conclusion

We have presented a decentralized, fully distributed,
scalable protocol that places replicated resources in a net-
work of arbitrary topology such that the furthest distance
one must travel to find a particular copy of a resource is
only slightly larger than optimal, and the distance between
identical copies is large. Simulation results suggest that run-
ning time, messages, and the number of color changes for
a node scale logarithmically in the number of nodes in the
graph and colors used to color the graph. These properties
make the protocol ideal for assigning locations of replicated
resources that are needed in emerging networking environ-
ments such as ad-hoc, sensor, and overlay networks.

There are a number of interesting problems of both a the-
oretical and practical nature. First, it remains an open ques-
tion as to whether the convergence time of the distributed
protocol is polynomial in the number of colors and nodes of
the graph. Simulation results suggest this to be the case, but
we have not yet been successful in demonstrating this for-

mally. Another challenge is dealing with frequent changes
in topology, either due to node movement, node failure,
or joining and leaving of participants, which is a common
characteristic of these emerging networking environments.
Since our protocol converges quickly starting from a ran-
dom coloring, we suspect it will also quickly adapt to such
changes. However, shifting of replicated resources may be
expensive and so the practical details of such shifts must be
considered.

References

[1] M. Adler. personal communication.
[2] I. D. Baev and R. Rajaraman. Approximation algorithms

for data placement in arbitrary networks. In Proceedings of
the 12th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, Washington, DC, January 2001.

[3] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys. A
constant-factor approximation algorithm for the k -median
problem (extended abstract). In ACM Symposium on The-
ory of Computing (STOC), pages 1–10, Atlanta, GA, May
1999.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. In-
troduction to Algorithms. MIT Press, second edition, 2001.

[5] I. Foster and C. Kesselman, editors. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann, 1999.

[6] Gnutella. http://www.gnutella.co.uk/.
[7] A. Goel, P. Indyk, and K. R. Varadarajan. Reductions among

high dimensional proximity problems. In Symposium on Dis-
crete Algorithms (SODA), pages 769–778, Washington DC,
2001.

[8] Guha and Khuller. Greedy strikes back: Improved facility
location algorithms. In Symposium on Discrete Algorithms
(SODA), San Francisco, CA, January 1998.

[9] J. Kangasharju, K. W. Ross, and D. A. Turner. Optimal Con-
tent Replication in P2P Communities. in submission, 2002.

[10] B. Ko and D. Rubenstein. A greedy approach to replicated
content placement using graph coloring. In SPIE ITCom
Conference on Scalability and Traffic Control in IP Networks
II, July 2002.

[11] B.-J. Ko and D. Rubenstein. Replica placement for emerg-
ing networks via an asynchronous, decentralized, graph-
coloring algorithm. Technical report, Columbia University,
May 2003.

[12] L. Qiu, V. Padmanabham, and G. Voelker. Replication Strate-
gies in Unstructured Peer-to-Peer Networks. In Proceedings
of the ACM SIGCOMM ’01, August 2002.

[13] D. B. Shmoys, E. Tardos, and K. Aardal. Approximation al-
gorithms for facility location problems (extended abstract).
In ACM Symposium on Theory of Computing (STOC), pages
265–274, El Paso, TX, May 1997.


