
A Modeling Approach to Classifying Malicious Cloud
Users via Shuffling ∗

Yudong Yang
Columbia University

yyd@cs.columbia.edu

Vishal Misra
Columbia University

misra@cs.columbia.edu

Dan Rubenstein
Columbia University

danr@cs.columbia.edu

ABSTRACT
DDoS attacks are still a serious security issue on the Inter-
net. We explore a distributed Cloud setting in which users
are mapped to servers where malicious users mapped to the
same server can thwart the performance of legitimate users.
By periodically shuffling the mapping of users to servers and
observing how this affects successfully attacked servers, the
malicious users can be identified. We use simple models to
understand how to best score these observations to identify
malicious users with well-defined levels of confidence.

1. INTRODUCTION
The mapping between client and server can depend on

many factors, but in an environment in which there are
denial-of-service attacks, one factor driving the mapping is
to separate “legitimate” sessions from “attackers”, the lat-
ter of whom are attempting to prevent continual access by
the legitimate sessions. Attackers have various methods to
cause an interruption.

Without knowing a priori the subset of sessions who are
attackers and the remaining subset that are legitimate, the
system must monitor the existing sessions, identify servers
that are overloaded, and through this identification, try and
assess which sessions are behaving maliciously. After form-
ing a hypothesis regarding how to classify sessions as ma-
licious and legitimate, the system can re-map sessions to
servers such that the malicious sessions are “honey-potted”:
all sent to a small collecion of servers where they continue
their attack in the belief that they are thwarting legitimate
communication. However, the system, if working success-
fully, will have assigned legitimate sessions to a separate set
of servers so that they can continue their communications
in an uninterrupted fashion.

One way to formulate such a hypothesis is to periodically
shuffle the mapping of sessions to servers, and monitor the
communication performance of connections after the shuf-
fle[1, 2]. This shuffle can be used to score sessions based on
classification of the server on which they reside. Attacking
sessions, by their own nature, should reside more frequently
on servers identified being attacked than sessions that are

∗This work is supported in part by AFRL Contract HR0011-
16-C-0055. Opinions, findings, conclusions, and recommen-
dations expressed in this material are those of the authors
and do not necessarily reflect the views of DARPA or the
US Government.

Copyright is held by author/owner(s).

Figure 1: Client sessions map to servers through
network proxys.

legitimate. Over time, the scores of these two classes of
sessions should diverge, in effect revealing the attackers.

This paper investigates the scoring process, and uses sim-
ple models to understand how effectively the shuffling pro-
cess is able to identify the attackers.

2. MODEL AND ANALYSIS
We assume a collection ofM servers andN sessions, where

sessions are mapped to servers such that each server sup-
ports approximately the same number of sessions (i.e., N/M
for the case where all sessions get mapped to servers). Let
K < N be the number of sessions in the attacking class,
who have malicious intentions. The remaining N −K ses-
sions fall within the legitimate class.

Our initial model assumes that sessions within a class are
homogeneous, i.e., each legitimate session adds a load of 1
to a server, while each attacker adds an additional load of
ρ > 0 (i.e., an attacker’s load is 1 + ρ.) A server who hosts
v sessions, ` of which are attackers, has a load of v + `ρ.
A server identifies that it is being attacked when its load
exceeds some threshold τ . If a server is capable of hosting
M legitimate sessions, then clearly τ > M .

Since tracking resource usage per client significantly com-
plicates difficulties system design [1], servers generally only
report back whether their workloads are under or over τ , but
do not report back the amount. Hence, we do not use the
distance from τ as an estimator for the number of attackers:
we have only a boolean value for the configuration of the

server: attacked or not attacked. We define A =
⌊
τ−v
ρ

⌋
to

be the server’s attacking sensitivity, meaning the maximum
number of attack sessions before a server can identify being
attacked. Note the model leaves open the possibility that a
mix of (attacker and legitimate) sessions may result in an
allocation that is above or below the threshold, i.e., some-
times attackers may be mapped in such a way that their
attack lies “below the radar”.



Note that in this model, a server that has no attackers
should always have its load fall below τ , and a server who
serves only attackers should have a load v(1+ρ) > τ . If this
were not the case, then either the system would always be
attacked, or would never be attacked.

2.1 Shuffling Process
Our shuffling process is inspired by previous work pro-

posed by Jia et al[1, 2] as Shuffling-based moving-target de-
fense. Their idea is to shuffle the clients on compromised
servers expecting the attackers will segregate to a smaller
subset of servers. This method is further studied in [3],
where the cost of moving sessions around is considered into
optimization. In [4], the authors study the numerical evalu-
ation of shuffling-scoring defenses by decreasing overloaded
server scores by 1, otherwise increases by 1, which is a spe-
cial case of our work.

We consider a simple shuffling process in which the map-
ping of sessions to servers is effectively uniformly random.
Note that it may be possible to perform subsequent shuf-
flings based on the results of earlier shuffles. However, this
“stateful” approach is significantly more complex, and we
believe that studying the simpler process to provide a base-
line is essential before considering more sophisticated state-
ful mappings.

As the shuffling process proceeds, after s shuffles, each
session i can be described by an s-dimensional vector vi =〈
xi1, x

i
2, · · · , xis

〉
, with xij ∈ {0, 1} with xij = 1 indicating

that session i was placed on a server that was attacked
(above threshold) during the jth shuffle.

After each shuffle, session i can be assigned a score, γ, a
function whose input is the session’s vector, e.g., γ(xij) =

2xij − 1, i.e., adding 1 for shuffle over threshold, subtracting

1 for each shuffle under. For simplicity, since xij is a boolean
variable, we denote γ0 and γ1 to be the value of γ(0) and
γ(1). In order to differentiate the sessions, we require γ0 6=
γ1, and for simplicity, we assume w.l.o.g. γ1 > γ0. After
s shuffles, the score of session i is γi =

∑s
j=1 γ(xij). We

show in Sec.2.5 that the selection of γ does not affect the
estimation.

Since attackers should appear with (perhaps slightly) higher
frequency upon servers over threshold, the scores of attack-
ers should, over time, diverge from the scores of non-attackers.
For the remainder of this paper, we propose answers to the
following question:

• What is the right scoring function to use?

• For a given choice of set size (number of sessions) and
scoring function, how many shuffles are needed to dis-
tinguish the attacking from legitimate sessions?

• Given a threshold value, what is the optimal set size
that should be mapped to a server?

2.2 Probablities of identifying attacks
In each shuffle, we first define a(v, k,N,K) to be the prob-

ability of having k attackers in a random selected subset of
v sessions from a set of size N sessions (with K attacking

sessions and U = N −K legitimate sessions). We have

a(v, k,N,K) =

(
v

k

)
K

N

K − 1

N − 1
· · · K − k + 1

N − k + 1

U

N −K
U − 1

N −K − 1
· · · U − v + k + 1

N − v + 1

=

(
v

k

)(
N − v
K − k

)
/

(
N

K

) (1)

A server can identify as being attacked when the number
of attacking sessions is greater than A. For a given attacking
session i, the probability that i is shuffled to a non-identified
server (xij = 0) is

qA =

A−1∑
k=0

a(v − 1, k, U,K − 1)

while the probability that i is shuffled to a attacked server
(xij = 1) is pA = 1− qA.

For a given legitimate session i, we have the probability
of xij = 0 to be

qB =

A∑
k=0

a(v − 1, k, U − 1,K)

and the probability of xij = 1 to be pB = 1− qB . It is easy
to see that pA > pB , as the attacking sessions have higher
probability than legitimate sessions of being detected by the
server.

2.3 Random walk model of the scores
We model the process of each session’s reputation score as

a random walk. Initially, all the sessions have score 0. There
are two types of random walk: the attacking sessions PA and
the legitimate sessions PB . After each shuffle, an attacking
session add its score by γ1 with probability pA, and γ0 with
probability qA respectively. A legitimate session will add γ1
to its score with probability pB and γ0 with probability qB
respectively.

We denote PA(s,R) (or PB(s,R)) to be the transition
probability of an attacking (or legitimate) session has repu-
tation score R after s rounds of shuffles.

PA(s,R) = pAPA(s− 1, R− γ1) + qAPA(s− 1, R− γ0)

PB(s,R) = pBPB(s− 1, R− γ1) + qBPB(s− 1, R− γ0)

and PA(0, 0) = PB(0, 0) = 1.
Denote µA, µB to be the mean score E[γ(xij)] of one shuf-

fle. For distribution PA, after s rounds of shuffles, this score
is

µsA = sµA = s(pAγ1 + qAγ0) (2)

with variance

(σsA)2 = spAqA(γ0 − γ1)2. (3)

For process PB , we have similar results:

µsB = sµB = s(pBγ1 + qBγ0) (4)

and the variance is

(σsB)2 = spBqB(γ0 − γ1)2 (5)



2.4 Accuracy level
Each time we shuffle, processes PA and PB drift at rate

µA and µB . Assume w.l.o.g. γ1 > γ0, and thus µA > µB .
As shuffling proceeds, the sessions in PA and PB can be sep-
arated using a decision threshold β. For each session i,
if the score γi > β, then we can estimate the session to at-
tacking class; otherwise γi ≤ β and the session is estimated
to legitimate class.

We introduce the accuracy level cA and cB of the thresh-
old estimation, defined as the probability of a given attack-
ing session (or a legitimate session) classified correctly, e.g.,
cA = 0.99 meaning that each attacking session have been
classified to attacking class with probability 0.99, while the
remaining 0.01 probability is being classified to legitimate
class by mistake.

As the shuffle process proceeds, the distribution of scores
converges to a Gaussian distribution[5]. We estimate the
accuracy level using its standard deviation:

cA = Φ

(
µsA − β
σsA

)
, cB = Φ

(
β − µsB
σsB

)
where Φ is the CDF of the standard normal distribution.

2.5 Distinguish scores
In this section, we first answer the question of how many

shuffles are needed to separate the attacking and legitimate
session.

For given accuracy levels cA and cB , we need to find the
minimum number of shuffles s and the according decision
threshold β which satisfy the accuracy requirements. We
define the problem as

min s

s.t. s > 0

βA = µsA − Φ−1(cA)σsA

βB = µsB + Φ−1(cB)σsB

βA ≥ βB

where βA and βB are two decision thresholds respectively
determined by the accuracy level cA and cB , e.g., for cA =
cB = 97.7%, we have βA = µsA − 2σsA and βB = µsB +
2σsB . Note that the intervals (∞, βA) and (βB ,−∞) are the
confidence intervals for the attacking and legitimate sessions
respectively. When βA ≥ βB , we can conclude that these
intervals do not overlap, and there exists a β, βA ≥ β ≥ βB
that satisfies both accuracy requirements.

By solving s and substituting (3)(5), we have the solution
of s is

s∗ = (γ1−γ0)2
(

Φ−1(cA)
√
pAqA + Φ−1(cB)

√
pBqB

µA − µB

)2

(6)

and the associated decision threshold β is solved by

β∗ = µsA − Φ−1(cA)σsA = µsB + Φ−1(cB)σsB (7)

For the scoring function, we investigate by changing the
value of score function γ and see how it impacts the solu-
tion s∗. Let C0 = (Φ−1(cA)

√
pAqA + Φ−1(cB)

√
pBqB)2 and

substitute (2)(4) to (6):

s∗ = C0

(
γ1 − γ0

(pA − pB)γ1 + (qA − qB)γ0

)2

(8)

Figure 2: Estimating using s∗ and β∗

An immediate observation is that γ is scaling equivalent,
i.e., ∀k 6= 0, scaling γ0, γ1 to kγ0, kγ1 will have the same
solution for s∗. Thus, we fix γ1 = 1 and take the derivative

∂s∗

∂γ0
=

(γ0 − 1)(pA + qA − pB − qB)

(pA − pB) + (qA − qB)γ0

Because pA + qA = pB + qB = 1 by definition, we always
have ∂s∗

∂γ0
= 0. This result indicates that for any γ0 6= γ1,

the solutions are the same.
Now we consider the question of scaling the number of

servers/containers M . Intuitively, too many or too less
servers will result in no server or all server detect attack-
ing, which make the attacking sessions less differentiated.
Let M∗ be the optimal number of servers that minimize the
number of shuffles. We define the optimization problem as

min s∗(M∗)

s.t. 1 ≤M∗ ≤ N

where s∗ is defined in (6), but now as a function of M∗. The
probabilities pA, qA, pB , qB in (6) are also functions of M∗.

3. SIMULATION RESULT
we study a special case where N = 12000,K = 2000,M =

1000, γ1 = 1, γ0 = −1. A server can detect attacking when
there are more than A = 2 attacking sessions. cA = cB =
0.977, thus Φ−1(cA) = Φ−1(cB) ≈ 2. The number of shuffles

needed is s∗ =
(√

pAqA+
√
pBqB

pA−pB

)2
≈ 41 and β∗ ≈ −6.98. We

plot the score distributions (y-axis) and number of shuffles
(x-axis) in Fig.2.

4. REFERENCES
[1] Q. Jia, K. Sun, and A. Stavrou. Motag: Moving target

defense against internet denial of service attacks. In
Computer Communications and Networks (ICCCN),
2013 22nd International Conference on, pages 1–9.
IEEE, 2013.

[2] Q. Jia, H. Wang, D. Fleck, F. Li, A. Stavrou, and
W. Powell. Catch me if you can: a cloud-enabled ddos
defense. In Dependable Systems and Networks (DSN),
2014 44th Annual IEEE/IFIP International Conference
on, pages 264–275. IEEE, 2014.

[3] Y.-H. Lin, J.-J. Kuo, D.-N. Yang, and W.-T. Chen. A
cost-effective shuffling-based defense against http ddos
attacks with sdn/nfv. In Communications (ICC), 2017
IEEE International Conference on, pages 1–7. IEEE,
2017.

[4] Y. Shan, G. Kesidis, and D. Fleck. Cloud-side shuffling
defenses against ddos attacks on proxied multiserver
systems. In Proceedings of the 2017 on Cloud
Computing Security Workshop, pages 1–10. ACM, 2017.

[5] T. Yamane. Statistics: An introductory analysis. 1973.


