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Abstract—We consider several distributed collaborative key
agreement and authentication protocols for dynamic peer groups.
There are several important characteristics which make this
problem different from traditional secure group communication.
They are: 1) distributed nature in which there is no centralized
key server; 2) collaborative nature in which the group key is con-
tributory (i.e., each group member will collaboratively contribute
its part to the global group key); and 3) dynamic nature in which
existing members may leave the group while new members may
join. Instead of performing individual rekeying operations, i.e.,
recomputing the group key after every join or leave request, we
discuss an interval-based approach of rekeying. We consider three
interval-based distributed rekeying algorithms, or interval-based
algorithms for short, for updating the group key: 1) the Rebuild
algorithm; 2) the Batch algorithm; and 3) the Queue-batch algo-
rithm. Performance of these three interval-based algorithms under
different settings, such as different join and leave probabilities,
is analyzed. We show that the interval-based algorithms signif-
icantly outperform the individual rekeying approach and that
the Queue-batch algorithm performs the best among the three
interval-based algorithms. More importantly, the Queue-batch
algorithm can substantially reduce the computation and commu-
nication workload in a highly dynamic environment. We further
enhance the interval-based algorithms in two aspects: authentica-
tion and implementation. Authentication focuses on the security
improvement, while implementation realizes the interval-based
algorithms in real network settings. Our work provides a fun-
damental understanding about establishing a group key via a
distributed and collaborative approach for a dynamic peer group.

Index Terms—Authentication, dynamic peer groups, group key
agreement, rekeying, secure group communication, security.

I. INTRODUCTION

WITH the emergence of many group-oriented distributed
applications such as tele/video-conferencing and multi-

player games, there is a need for security services to provide
group-oriented communication privacy and data integrity. To
provide this form of group communication privacy, it is impor-
tant that members of the group can establish a common secret
key for encrypting group communication data. To illustrate the
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utility of this type of applications, consider a group of people in
a peer-to-peer or ad hoc network having a closed and confiden-
tial meeting. Since they do not have a previously agreed upon
common secret key, communication between group members is
susceptible to eavesdropping. To solve the problem, we need a
secure distributed group key agreement and authentication pro-
tocol so that people can establish and authenticate a common
group key for secure and private communication. Note that this
type of key agreement protocols is both distributed and contrib-
utory in nature: each member of the group contributes its part to
the overall group key.

It is important to point out that the type of distributed group
key agreement protocols we study is very different from tradi-
tional centralized group key management protocols. Centralized
protocols rely on a centralized key server to efficiently distribute
the group key. An excellent body of work on centralized key dis-
tribution protocols exists in [14], [16], [21], and [22]. In those ap-
proaches, group members are arranged in a logical key hierarchy
known as a key tree. Using the tree topology, it is easy to dis-
tribute the group key to members whenever there is any change
in the group membership (e.g., a new member joins or an existing
member leaves the group). In the distributed key agreement pro-
tocols we consider, however, there is no centralized key server
available. This arrangement is justified in many situations—e.g.,
in peer-to-peer or ad hoc networks where centralized resources
are not readily available. Moreover, an advantage of distributed
protocols over the centralized protocols is the increase in system
reliability, because the group key is generated in a shared and
contributory fashion and there is no single-point-of-failure.

In the special case of a communication group having only
two members, these members can create a group key using
the Diffie–Hellman key exchange protocol [6]. In the protocol,
members and use a cyclic group of prime order with the
generator . They can generate their secret exponents and

, respectively. Member (resp., ) can compute its public
key (resp., ) and send it to (resp., ). Since both
members know their own exponent, they can each raise the
other party’s public key to the exponent and produce a common
group key . Using the common group key, and can
encrypt their data to prevent eavesdropping by intruders.

In this paper, we propose, based on the tree-based group
Diffie–Hellman protocol [11], several group key agreement
protocols for a dynamic communication group in which mem-
bers are located in a distributed fashion and can join and leave
the group at any time. The contributions of our work are:

• Instead of using individual rekeying operations, we pro-
pose three interval-based distributed rekeying algorithms,
or interval-based algorithms for short, to significantly
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Fig. 1. Key tree used in the tree-based group Diffie–Hellman protocol.

reduce the computation and communication costs of
maintaining the group key. The interval-based approach
provides rekeying efficiency for dynamic peer groups
while preserving both distributed (i.e., no centralized key
server is involved) and contributory (i.e., each member
contributes to the resulting group key) properties.

• We evaluate the performance of our interval-based algo-
rithms through both mathematical and simulation-based
analysis. In particular, we compare their performance with
that of a centralized key distribution approach.

• We propose an authenticated group key agreement pro-
tocol that can be incorporated into the interval-based algo-
rithms. We evaluate the performance of this authenticated
approach and prove its security properties.

• We implemented the SEcure Communication Library
(SEAL) that realizes the interval-based algorithms. The
library provides a programming interface for the develop-
ment of secure group-based applications.

The rest of the paper proceeds as follows. In Section II, we
overview the tree-based group Diffie–Hellman protocol that es-
tablishes a group key with more than two members in a dynamic
peer group. In Section III, we present three interval-based algo-
rithms that establish the group key for a dynamic peer group.
In Section IV, we evaluate the interval-based algorithms under
dynamic joins and leaves. In Section V, we describe an authen-
ticated group key agreement protocol and analyze its security
properties. In Section VI, we provide the implementation de-
tails of the interval-based algorithms. Section VII reviews re-
lated work, and Section VIII concludes.

II. TREE-BASED GROUP DIFFIE–HELLMAN PROTOCOL

To efficiently maintain the group key in a dynamic peer
group with more than two members, we use the tree-based
group Diffie–Hellman (TGDH) protocol proposed in [11].
Each member maintains a set of keys, which are arranged in a
hierarchical binary tree. We assign a node ID to every tree
node. For a given node , we associate a secret (or private)
key and a blinded (or public) key . All arithmetic
operations are performed in a cyclic group of prime order
with the generator . Therefore, the blinded key of node can
be generated by

(1)

Each leaf node in the tree corresponds to the individual secret
and blinded keys of a group member . Every member holds
all the secret keys along its key path starting from its associated
leaf node up to the root node. Therefore, the secret key held by
the root node is shared by all the members and is regarded as the
group key. Fig. 1 illustrates a possible key tree with six members

to . For example, member holds the keys at nodes
7, 3, 1, and 0. The secret key at node 0 is the group key of this
peer group.

The node ID of the root node is set to 0. Each nonleaf node
consists of two child nodes whose node ID’s are given by
and . Based on the Diffie–Hellman protocol [6], the secret
key of a nonleaf node can be generated by the secret key of
one child node of and the blinded key of another child node
of . Mathematically, we have

(2)

Unlike the keys at nonleaf nodes, the secret key at a leaf node
is selected by its corresponding group member through a secure
pseudo random number generator.

Since the blinded keys are publicly known, every member can
compute the keys along its key path to the root node based on
its individual secret key. To illustrate, consider the key tree in
Fig. 1. Every member generates its own secret key and all
the secret keys along the path to the root node. For example,
member generates the secret key and it can request the
blinded key from , from , and from ei-
ther , , or . Given ’s secret key and the blinded
key , can generate the secret key according to (2).
Given the blinded key and the newly generated secret key

, can generate the secret key based on (2). Given the
secret key and the blinded key , can generate the
secret key at the root. From that point on, any communica-
tion in the group can be encrypted based on the secret key (or
group key) .

To provide both backward confidentiality (i.e., joined mem-
bers cannot access previous communication data) and forward
confidentiality (i.e., left members cannot access future com-
munication data), rekeying, which means renewing the keys
associated with the nodes of the key tree, is performed when-
ever there is any group membership change including any new
member joining or any existing member leaving the group. Let
us first consider individual rekeying, meaning that rekeying is
performed after every single join or leave event. Before the
group membership is changed, a special member called the
sponsor is elected to be responsible for updating the keys held
by the new member (in the join case) or departed member
(in the leave case). We use the convention that the rightmost
member under the subtree rooted at the sibling of the join and
leave nodes will take the sponsor role. Note that the existence
of a sponsor does not violate the decentralized requirement of
the group key generation since the sponsor does not add extra
contribution to the group key.

Fig. 2 depicts a member leave event. Suppose that member
leaves the system. Node 11 is then promoted to node 5, and

nodes 2 and 0 become renewed nodes, defined as the nonleaf
nodes whose associated keys in the key tree are renewed. Also,
member becomes the sponsor. It renews the secret keys
and and broadcasts the blinded keys and to all
the members. Members , , and , upon receiving the
blinded key , compute the new group key . Similarly,
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Fig. 2. Illustration of the rekeying operation after a single leave.

Fig. 3. Illustration of the rekeying operation after a single join.

members and , upon receiving , can compute
and then the new group key .

Fig. 3 illustrates a new member that wishes to join the
group. has to first determine the insertion node under which

can be inserted. To add a node, say (or tree, say ) to
the insertion node, a new node, say , is first created. Then the
subtree rooted at the insertion node becomes the left child of
the node , and the node (or the root node of the tree )
becomes the right child of the node . The node will replace
the original location of the insertion node. The insertion node is
either the rightmost shallowest position such that the join does
not increase the tree height, or the root node if the tree is initially
well balanced (in this case, the height of the resulting tree will
be increased by 1). Fig. 3 illustrates this concept. The insertion
node is node 5 and the sponsor is . then broadcasts its
blinded key upon insertion. Given , renews ,

, and , and then broadcasts the blinded keys and
to all members in the group. After receiving the blinded

keys from , all remaining members can rekey all the nodes
along their key paths and compute the new group key .

Based on the above leave and join events in Figs. 2 and 3,
we find that we can reduce one rekeying operation if we can
simply change the association of node 12 from to . In-
terval-based rekeying is thus proposed such that rekeying is per-
formed on a batch of join and leave requests so as to reduce the
number of rekeying operations. Members carry out rekeying op-
erations at regular rekeying intervals. In the following section,
we describe the interval-based approach to manage the rekeying
operations.

III. INTERVAL-BASED DISTRIBUTED REKEYING ALGORITHMS

We develop three interval-based distributed rekeying al-
gorithms (or interval-based algorithms for short), termed the
Rebuild algorithm, the Batch algorithm, and the Queue-batch
algorithm. Interval-based rekeying maintains the rekeying
frequency regardless of the dynamics of join and leave events,
with a tradeoff of weakening both backward and forward
confidentialities as a result of delaying the update of the group

Fig. 4. Pseudo-code of the Rebuild algorithm.

key. The three interval-based algorithms are developed based
on the following assumptions:

• All members are trusted in the key establishment process.
• The group communication satisfies view synchrony [7],

[11] that defines reliable and ordered message delivery
under the same membership view. Intuitively, when a
member broadcasts a message under a membership view,
the message is delivered to same set of members viewed
by the sender. Note that this view-synchrony property is
essential not only for group key agreement, but also for
reliable multipoint-to-multipoint group communication in
which every member can be a sender [11].

• Rekeying operations of all members are synchronized to
be carried out at the beginning of every rekeying interval.

• When a new member sends a join request, it also includes
its individual blinded key.

• All members know the existing key tree structure and all
the blinded keys within the tree.

• To obtain the blinded keys of the renewed nodes, the key
paths of the sponsors should contain those renewed nodes.
Since the interval-based rekeying operations involve nodes
lying on more than one key paths, more than one spon-
sors may be elected. Also, a renewed node may be rekeyed
by more than one sponsor. Therefore, we assume that the
sponsors can coordinate with one another such that the
blinded keys of all the renewed nodes are broadcast only
once.

We adopt the following notations in our description. Let de-
note the existing key tree. Assume that existing members

wish to leave and new members
wish to join the group within a rekeying

interval.

A. Rebuild Algorithm

The motivation of the Rebuild algorithm is to minimize the re-
sulting tree height so that the rekeying operations for each group
member can be reduced. At the beginning of every rekeying in-
terval, we reconstruct the whole key tree with all existing mem-
bers that remain in the communication group, together with the
newly joining members. The resulting tree is a left-complete
tree, in which the depths of the leaf nodes differ by at most one
and those deeper leaf nodes are located at the leftmost positions.
The pseudo-code of the Rebuild algorithm to be performed by
every member is shown in Fig. 4.

Fig. 5 shows the scenario where members , , and
wish to leave and a new member wishes to join the commu-
nication group. Based on the algorithm, the resulting key tree
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Fig. 5. Example of the Rebuild algorithm.

Fig. 6. Pseudo-code of the Batch algorithm.

consists of five members and has all nonleaf nodes renewed.
Besides, the sponsors include all the five members.

Rebuild is suitable for some cases, such as when the member-
ship events are so frequent that we can directly reconstruct the
whole key tree for simplicity, or when some members lose the
rekeying information and the simplest way of recovery is to re-
build the key tree. We can explore the situations where Rebuild
is applicable.

B. Batch Algorithm

The Batch algorithm is based on the centralized approach in
[14], which is now applied to a distributed system without a
centralized key server. The pseudo-code of the Batch algorithm
is given in Fig. 6. Given the numbers of joins and leaves within
a rekeying interval, we attach new group members to different
leaf positions of the key tree in order to keep the key tree as
balanced as possible.

The Batch algorithm is illustrated with two examples. In
Fig. 7, we show the case where . Suppose ,

Fig. 7. Example 1 of the Batch algorithm where L > J > 0.

Fig. 8. Example 2 of the Batch algorithm where J > L > 0.

, and leave and a new member wishes to join.
The following steps are carried out: (i) broadcasts its join
request, including its individual blinded key. (ii) The leaf node
6 associated with is replaced by the node of , and the
leaf nodes 8 and 24 are removed. Nodes 7 and 23 are promoted
to nodes 3 and 11, respectively. (iii) , , , and are
elected to be the sponsors. renews secret keys and ,
and renews , , and . then broadcasts ,
and broadcasts and . and , though having
the sponsor role, do not need to broadcast any blinded keys as

has already broadcast this information. (iv) Finally, every
member computes the new group key based on the received
blinded keys.

Fig. 8 illustrates the case where . Suppose ,
, and join, and and leave. The rekeying process

is: (i) , , and broadcast their join requests together
with their own individual blinded keys. (ii) and form
the subtree and is the only member of . The root of

replaces node 6 and the root of replaces node 8. (iii) The
sponsors are , , , , and . and first need
to compute the secret key , and either one of them computes
and broadcasts the new blinded key . (iv) (or ) re-
news and , and broadcasts and . renews

and broadcasts . (v) Finally, all the members can com-
pute the new group key .

C. Queue-Batch Algorithm

We find that the previous approaches perform all rekeying
steps at the beginning of every rekeying interval. This results in
high processing load during the update instance and thereby de-
lays the start of the secure group communication. Thus, we pro-
pose a more effective algorithm which we call the Queue-batch
algorithm. Its intuition is to reduce the rekeying load by pre-pro-
cessing the joining members during the idle rekeying interval.

The Queue-batch algorithm is divided into two phases,
namely the Queue-subtree phase and the Queue-merge phase.
The first phase occurs whenever a new member joins the
communication group during the rekeying interval. In this case,
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Fig. 9. Pseudo-code of the Queue-subtree phase.

Fig. 10. Pseudo-code of the Queue-merge phase.

Fig. 11. Example of the Queue-merge phase.

we append this new member in a temporary key tree . The
second phase occurs at the beginning of every rekeying interval
and we merge the temporary tree (which contains all newly
joining members) to the existing key tree . The pseudo-codes
of the Queue-subtree phase and the Queue-merge phase are
illustrated in Figs. 9 and 10.

The Queue-batch algorithm is illustrated in Fig. 11, where
members , , and wish to join the communication
group, while and wish to leave. Then the rekeying
process is as follows: (i) In the Queue-subtree phase, the three
new members , , and first form a tree . , in
this case, is elected to be the sponsor. (ii) In the Queue-merge
phase, the tree is added at the highest departed position,
which is at node 6. Also, the blinded key of the root node of

, which is , is broadcast by . (iii) The sponsors ,
, and are elected. renews the secret key and

broadcasts the blinded key . renews the secret key
and broadcasts the blinded key . (iv) Finally, all members
can compute the group key.

IV. PERFORMANCE EVALUATION

To reflect the latency of generating the latest group key
for data confidentiality, we evaluate the performance of the
interval-based algorithms in two aspects: mathematical analysis
and simulation-based experiments. The mathematical analysis
considers the complexity of the algorithms under the assump-
tion that the key tree is completely balanced. Using simulations,
we then study their performance in a more general setting. We
also compare the performance of our interval-based algorithms
and a centralized key distribution approach.

A. Mathematical Analysis

We present the mathematical analysis of the three proposed
algorithms based on two performance measures, namely:

1) Number of exponentiation operations: This metric gives
a measure of the computation load of all members in the
communication group.

2) Number of renewed nodes: As defined in Section II, a node
is said to be renewed if it is a nonleaf node and its associ-
ated keys are renewed. This metric measures the commu-
nication cost since the new blinded keys of the renewed
nodes have to be broadcast to the whole group.

For simplicity, we assume the following in the analysis:
• The existing key tree is completely balanced prior to the

interval-based rekeying event.
• Every existing member has the same leave probability.
• The computation of the blinded group key of the root node

is counted in the blinded key computations. With this as-
sumption, the number of blinded key computations simply
equals the number of renewed nodes, provided that the
blinded key of each renewed node is broadcast only once.

Let be the number of members originally in the commu-
nication group, (where ) be the number of mem-
bers that wish to leave the group, and be the number
of new members that want to join the group. Let denote the
existing tree which contains members. The level of a node

is , where is the node ID, and the max-
imum level of is . Based on the first assumption, i.e., the
key tree is initially balanced, we know that . Also, let

be the number of renewed nodes and be the number
of exponentiations for the particular algorithm . The perfor-
mance measure is composed of two parts: and ,
which respectively represent the number of exponentiations of
calculating the secret keys (which is done by all members) and
that of calculating the blinded keys (which is done by sponsors
only). We have

(3)

Also, we know the number of blinded key computations is

(4)

which is simply the mathematical interpretation of the last
assumption.

In the following subsections, we evaluate the number of
renewed nodes for the three interval-based algorithms.
Readers can refer to [13] for the analysis of the number of
secret key computations .
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Fig. 12. Mathematical analysis: average numbers of exponentiations at different numbers of joins based on mathematical models. (a) J = 128; (b) J = 256;
(c)J = 384.

1) Analysis of the Rebuild Algorithm: Given , and ,
we can obtain the exact expressions for the two performance
measures and . It is important to note that the
derived expressions below are valid even if the existing key tree

is not completely balanced originally.
The resulting number of members is .

Thus, the number of renewed nodes is

if
otherwise.

(5)

2) Analysis of the Batch Algorithm: Since the actual per-
formance of the Batch algorithm depends on the membership
leave positions whenever , we consider only the expected
performance measures rather than the exact ones, although the
exact and expected results are the same when . Our anal-
ysis adopts the convention that the combination equals 0 if

, , or .
We first derive the expected number of renewed nodes. Con-

sider a node at level . In a completely balanced tree, node
has descendants. At a rekeying instance, node can be in
one of the three distinct states: no-change, pruned, and renewed.
Node can be in the “no-change” state if none of its de-
scendants wish to leave. Thus, the probability of node being
in the “no-change” state is

node is no-change (6)

Node is pruned if all its descendants leave, or all descen-
dants of either its left or right subtree (but not both) leave. In
the latter case, node is pruned because it is promoted to its
parent (see Section III-B). Thus, the expected number of re-
newed nodes is

if

otherwise. (7)

The equation exhibits different interpretations depending on
the values of and . If all members leave the group but no
new member joins, then the key tree disappears and hence the
number of renewed nodes is zero. Otherwise, we have two pos-
sibilities. If , then the first term represents the expected

number of (nonleaf) nodes in the original key tree that are re-
newed, and the second term refers to the number of
additional renewed nodes introduced to the key tree. No nodes
are pruned in this case since all leaving leaf nodes are substi-
tuted by the joining ones. On the other hand, if , then
the first term corresponds to the expected number of (nonleaf)
nodes that have at least one leaving descendant. The correctness
of the first term relies on the assumption that the newly joining
members (if ) randomly select leaving leaf nodes for
replacement given that those leaving leaf nodes are at the same
level in a completely balanced tree. The second term then sub-
tracts for the number of nonleaf nodes that are pruned,
and hence the remaining nodes are renewed nodes.

3) Analysis of the Queue-Batch Algorithm: The main idea of
the Queue-batch algorithm exploits the idle rekeying interval
to pre-process some rekeying operations. When we compare
its performance with the Rebuild or Batch algorithms, we only
need to consider the rekeying operations occurring at the begin-
ning of every rekeying interval.

When , Queue-batch is equivalent to Batch in the pure
leave scenario. For , the number of renewed nodes in
Queue-batch during the Queue-merge phase is equivalent to that
of Batch when . Thus, the expected number of renewed
nodes is

if

if

otherwise.

(8)

4) Evaluation: We evaluate the metrics of our three interval-
based algorithms based on the mathematical models. We start
with a well-balanced key tree involving 512 members and then
calculate the metrics with different values of joins and leaves
(i.e., and ).

Figs. 12 and 13 illustrate the average number of exponen-
tiations and the average number of renewed nodes under dif-
ferent numbers of joining and leaving members. We observe
that Queue-batch outperforms the other two interval-based algo-
rithms in all cases. Specifically, we note that there is a significant
computation/communication reduction when the peer group is
very dynamic (i.e., high number of members that wish to join or
leave the communication group). We explain this phenomenon
in Section IV-B.
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Fig. 13. Mathematical analysis: average numbers of renewed nodes at different numbers of joins based on mathematical models. (a) J = 128; (b) J = 256;
(c)J = 384.

Fig. 14. Experiment 1: comparison between individual rekeying and the Queue-batch algorithm. (a) Average number of exponentiations; (b) average number of
renewed nodes.

B. Simulations

The previous subsection quantifies the performance measures
by assuming that the existing key tree is completely balanced.
In this subsection, we perform a more extensive performance
study via simulations under different experimental settings. Our
simulations focus on three performance metrics: (i) number of
exponentiations; (ii) number of renewed nodes; and (iii) number
of rounds required to generate the group key.

In our simulations, we consider a finite population of 1024
users. Out of these 1024 users, there are 512 members origi-
nally in a communication group at the beginning of each ex-
periment. We assume that potential members outside the group
have a tendency to join the group with a fixed join probability.
Similarly, members within the group have a fixed leave proba-
bility of leaving the group. We let and denote the join and
leave probabilities, respectively.

Experiment 1: (Comparison between individual rekeying
and interval-based rekeying). We first demonstrate through
simulations that interval-based rekeying outperforms individual
rekeying. Given a number of join and leave requests, we con-
sider a particular case where the individual rekeying approach
first processes one by one the join requests followed by the leave
requests. We then run the simulations over 300 rekeying inter-
vals and compute the average results.

Fig. 14 illustrates the performance differences between indi-
vidual rekeying and the Queue-batch algorithm. We observe that
Queue-batch perform much better than the individual rekeying
method, especially under high join and high leave probabilities.

Similar results are observed for the comparisons between in-
dividual rekeying and the Rebuild and Batch algorithms, and
readers can refer to [13] for the analysis. Therefore, the in-
terval-based rekeying algorithms can reduce the computation
and communication costs of the a group is highly dynamic.

Experiment 2: (Average analysis at different fixed join
probabilities). In this experiment, we examine the case where
the key tree becomes unbalanced after many intervals of join
and leave events. We vary the join probability to be 0.25,
0.5, and 0.75. Then we evaluate the average performance mea-
sures of the three algorithms under various leave probabilities.

The results are illustrated in Figs. 15 and 16. We observe that
Queue-batch outperforms the other two algorithms in terms of
the costs of exponentiation and renewed nodes in most cases.
The exception is that Queue-batch needs more exponentiations
than Batch when the leave probability is low (smaller than 0.2).
The reason is that attaching the subtree of new members to an
existing tree with few leaves may make the key tree unbalanced,
leading to more computations in subsequent rekeying intervals.
Moreover, the performance of Rebuild is the worst when is
low, but approaches that of Batch when is high (e.g., both al-
gorithms have similar average numbers of exponentiations and
renewed nodes when is higher than 0.6 and 0.8, respectively).
In most situations, Queue-batch outperforms the other two algo-
rithms at different join and leave probabilities. This shows that
the pre-processing of the join requests in Queue-batch can sig-
nificantly reduce the computation and communication loads in
rekeying.
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Fig. 15. Experiment 2: average numbers of exponentiations of Rebuild, Batch, and Queue-batch at different fixed join probabilities. (a) p = 0:25; (b) p = 0:5;
(c) p = 0:75.

Fig. 16. Experiment 2: average numbers of renewed nodes of Rebuild, Batch, and Queue-batch at different fixed join probabilities. (a) p = 0:25; (b) p = 0:5;
(c) p = 0:75.

Fig. 17. Experiment 3: instantaneous numbers of exponentiations of Batch and Queue-batch at different pairs of join and leave probabilities. (a) p = 0:25,
p = 0:25; (b) p = 0:5, p = 0:5; (c) p = 0:75, p = 0:75.

Experiment 3: (Instantaneous analysis at different pairs
of join and leave probabilities). This experiment compares the
instantaneous performance measures of Batch and Queue-batch
over 300 rekeying intervals (we ignore Rebuild because it per-
forms the worst among the three algorithms). We consider dif-
ferent pairs of and that represent different mobility char-
acteristics of the peer group.

Fig. 17 illustrates the instantaneous numbers of exponentia-
tions at different pairs of and . We note that when the group
has high join and leave probabilities, Queue-batch significantly
outperforms the Batch algorithm. Fig. 18 illustrates the instan-
taneous numbers of renewed nodes. As compared to the Batch
algorithm, Queue-batch has a much lower cost in terms of the
number of renewed nodes when both join and leave probabilities
are high. This implies that Queue-batch can reduce the communi-
cation cost significantly in a highly dynamic environment.

Experiment 4: (Performance analysis of Queue-Batch at
different reset intervals). Queue-batch does not reconstruct the
whole key tree as Rebuild during rekeying. Thus, the key tree
may become unbalanced after some rekeying intervals. In this
experiment, we consider how Queue-batch performs if we re-
construct the key tree using the Rebuild algorithm every
rekeying intervals, where is called the reset interval. This
approach keeps the tree balanced at the cost of executing the
Rebuild algorithm. We fixed and , 0.5, and
0.75, and ran the simulations over 1000 rekeying intervals.

Fig. 19 depicts that the performance of Queue-batch remains
approximately constant even at high reset intervals, meaning
that Queue-batch can still preserve its performance without re-
constructing the key tree after a long period of rekeying. This
shows the robustness of the Queue-batch algorithm in main-
taining a relatively balanced tree. This property is important be-
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Fig. 18. Experiment 3: instantaneous numbers of renewed nodes of Batch and Queue-batch at different pairs of join and leave probabilities. (a) p = 0:25,
p = 0:25; (b) p = 0:5, p = 0:5; (c) p = 0:75, p = 0:75.

Fig. 19. Experiment 4: average performance results of Queue-batch at different reset intervals. (a) Average number of exponentiations at p = 0:5; (b) average
number of renewed nodes at p = 0:5.

Fig. 20. Experiment 5: average numbers of rounds of Rebuild, Batch and Queue-batch at different join and leave probabilities. (a) p = 0:25; (b) p = 0:5;
(c) p = 0:75.

cause it can reduce the average costs of exponentiations and re-
newed nodes in the system.

Experiment 5: (Analysis in terms of number of rounds).
We define a round as the period during which the group mem-
bers compute the secret keys as far up the key tree as they can. At
the end of each round, all sponsors have to broadcast the blinded
keys of the renewed nodes that have their secret keys computed
so that other members can proceed with the secret key compu-
tations. In the analysis, we assume that rekeying is performed in
lock-step, meaning that the two steps of secret key computations
and blinded key broadcasts are carried out alternately.

Fig. 20 illustrates the average numbers of rounds required
for Batch and Queue-batch. At high leave probabilities,
Queue-batch saves three to four rounds as compared to Rebuild
and Batch. The savings are due to the preprocessing of join
requests at the Queue-subtree stage. A fewer number of rounds

is preferred as less message overhead is involved in processing
rekeying messages and storing message headers.

Discussion of the experimental results: The experiments
show that the interval-based algorithms outperform the indi-
vidual rekeying approach in terms of both computation and
communication costs and that Queue-batch performs the best
among the three interval-based algorithms. From both mathe-
matical analysis and simulations, Queue-batch performs much
better when the join and leave events occur very frequently.
It also demonstrates its robustness in keeping the key tree
balanced and its capability in minimizing the number of rounds
required to update the group key.

To understand why Queue-batch performs much better than
the other two algorithms when the group is highly dynamic, we
consider two cases: frequent joins and frequent leaves. When
the number of join events is high, Queue-batch benefits signifi-
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cantly from the pre-processing of join events in the Queue-sub-
tree phase. In addition, when the number of leave events is
high, Queue-batch reduces the heights of the existing tree nodes
through node pruning. Batch, however, replaces the leaving leaf
nodes with the joining ones and hence preserves the heights of
tree nodes. This distinction implies that Queue-batch requires
fewer rekeying operations for the members whose associated
leaf nodes are promoted to shallow positions. As a result, the
performance gain of Queue-batch is more significant in the pres-
ence of frequent membership events.

C. Centralized Versus Decentralized Group Key Management

In this subsection, we compare the performance of our
interval-based algorithms and a centralized key management
approach.

We consider the centralized logical key tree (LKT) approach
[14] upon which our Batch algorithm is developed (see Sec-
tion III-B). Similar to the interval-based algorithms, we assume
that the key tree in the LKT approach is a binary tree and that the
keys of the tree nodes are computed based on the TGDH pro-
tocol [11]. Among the group members, we select a group con-
troller that centrally renews the group key at periodic rekeying
intervals. We assume that the group controller knows the keys
of all the nodes in the key tree and that a newly joining member
sends its individual secret key to the group controller via a se-
cure channel. At the beginning of a rekeying interval, the group
controller first rekeys all (nonleaf) renewed nodes using the
TGDH protocol. It then encrypts the updated secret key of each
renewed node with the respective secret keys of the {\em two}
child nodes via any symmetric encryption algorithm. Afterward,
it broadcasts the encrypted keys to the group. Every member,
upon receiving the encrypted keys, decrypts the keys along its
key path with the secret keys it holds.

We use Fig. 7 to illustrate the LKT approach. Suppose
that is the group controller. It first rekeys all
renewed nodes as in the TGDH protocol. It then
broadcasts to the group the following encrypted keys:

,
where refers to the secret key of parent node
encrypted by the secret key of the child node . For
example, in order for member to obtain the group key ,
it first decrypts with , followed by with .

We assume that the group controller broadcasts the encrypted
keys using the view-synchronous communication model as in
the interval-based algorithms. While the group controller can
broadcast the encrypted keys via the point-to-multipoint multi-
cast, such a communication model has two limitations. First,
if the underlying group communication is multipoint-to-mul-
tipoint-based such that every member can be a sender, setting
up an extra multicast channel will be an overhead. Also, it is
possible for the group controller to leave the group. All other
members have to detect the group controller’s departure and in-
stall a new membership view in order to select another group
controller. The group controller’s departure, however, cannot be
detected with the unilateral point-to-multipoint multicast [11].
We point out that view synchrony is essential for reliable mul-
tipoint-to-multipoint group communication regardless of which
group key management approach is being used [11].

TABLE I
PERFORMANCE COMPARISON OF LKT AND QUEUE-BATCH

The performance of the LKT approach can be quantified as
follows. Since the encryption of the updated secret keys can be
achieved with any inexpensive symmetric encryption algorithm,
the computation cost of the LKT approach is mainly due to
the exponentiation operations of renewing the secret keys. Fur-
thermore, since the group controller uses the view-synchronous
communication model as in the interval-based algorithms, the
communication costs of the LKT approach and our interval-
based algorithms mainly differ by the number of keys (either
encrypted or blinded) broadcast to the group and the number of
rounds required to generate the group key.

Table I compares the performance metrics of both LKT
and Queue-batch schemes, where denotes the number of
renewed nodes, and the numbers of exponentiations and rounds
for Queue-batch are estimated based on the simulation results
in Section IV-B. As compared to our interval-based algorithms,
the LKT approach requires fewer exponentiations and only one
round to update the group key. However, all its exponentiations
are carried out within the single group controller, while our
interval-based algorithms scatter the computational load among
all group members. In addition, the LKT approach broadcasts
two encrypted copies of the updated secret key for each renewed
node, while the interval-based algorithms broadcast only the
corresponding blinded key. This implies that the interval-based
algorithms save half of the number of broadcast keys. More
importantly, the interval-based algorithms have better fault
tolerance by eliminating the single-point-of-failure problem
inherent in the centralized LKT approach. Issues of how the
interval-based algorithms can recover from node failures in
actual implementation are discussed in Section VI.

V. AUTHENTICATED TGDH

In this section, we propose the Authenticated Tree-Based
Group Diffie–Hellman (A-TGDH) protocol that provides key
authentication for our interval-based algorithms. The idea is to
couple the session-based group key with the certified permanent
private components of the group members. Each member holds
two types of keys: short-term secret and blinded keys as well
as long-term private and public keys. Short-term keys are ran-
domly generated when a member joins the group and become
expired when the member leaves, while long-term keys remain
permanent across many sessions and are certified by a trusted
CA. Our protocol seeks to satisfy several requirements that are
crucial for key establishment [3]: (i) perfect forward secrecy
(i.e., the compromise of long-term keys does not degrade the
secrecy of past short-term keys); (ii) known-key security (i.e.,
the compromise of past short-term keys does not degrade the
secrecy of future short-term keys); and (iii) key authentication
(i.e., all group members are assured that no outsiders can
identify the group key). Also, our protocol can be implemented
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in a way that satisfies key confirmation (i.e., all group members
are assured that every other member holds the same group key).

A. Description of A-TGDH

We first define the notation. As stated in Section II, every node
in the key tree is associated with a secret key and a blinded

key . We then construct the blinded key set , which,
in general, refers to a number of copies ’s respectively en-
crypted by the long-term private component of every descendant
member of the sibling of node (the mathematical formulation
of is presented below). The set of the descendant mem-
bers of node is given by . The th member, , holds a
short-term secret key and the corresponding blinded key

, as well as a long-term private key and the
corresponding public key , where all arithmetic op-
erations are to be performed on the cyclic group of prime order

with generator . For brevity, we omit the term “ ” in
the following description.

We assume that each member has acquired the certificates of
all other members and hence their long-term public keys from a
trusted CA prior to the key agreement process.

The A-TGDH protocol is based on the two-party, two-pass
authenticated key-agreement (AK) protocol in [18]. Given
two parties, say and , the two-pass AK protocol
works as follows: sends to and sends

to . computes
. Analogous operations are per-

formed by . The agreed session key is then given by
.

The two-pass AK protocol offers a number of advantages. It
involves only two passes and thus saves communication cost.
It achieves key authentication and known-key security [18]. If
it is incorporated with key confirmation, then it gives perfect
forward secrecy as well [4].

We next extend the two-party, two-pass AK protocol to our
proposed A-TGDH protocol. In A-TGDH, we associate a node

with and as follows:
Case 1) If node is a nonleaf node with child nodes

and (assume since we need not broadcast the
blinded group key):

where

(9)

if node is the left child of its parent

if node is the right child of its parent

(10)

Case 2) If node is a leaf node associated with member :

(11)

(12)

Thus, if a given node needs to be renewed, a sponsor can
simply broadcast according to one of our interval-based
algorithms. Also, any member can still include its short-term

Fig. 21. Example of authenticated key agreement involving 4 members.

Fig. 22. Comparison between the nonauthenticated and authenticated
Queue-batch algorithms at p = 0:25. (a) Average number of exponentiations;
(b) average number of broadcast blinded keys.

blinded key (i.e., the blinded key of its corresponding leaf node)
in its join request.

To illustrate how A-TGDH works, we consider a possible
key tree formed after the rekeying process as shown in Fig. 21.
Nodes 0, 1, and 2 are renewed nodes. Also, and are
chosen to be the sponsors. Hence, the members perform the fol-
lowing steps:

• Since the blinded keys of leaf nodes are , for
,2,3 and 4, the secret keys of nodes 1 and 2 are com-

puted as and
.

• The sponsor broadcasts and , and the
sponsor broadcasts and .

• and can retrieve from and ,
respectively. Similarly, and can retrieve .
Therefore, the members can compute the resulting group
key as .

Using the same experimental setting as in Section IV-B, we
compare the nonauthenticated and authenticated Queue-batch
algorithms for a population of size 1024 with a fixed join prob-
ability . Fig. 22 plots the average number of expo-
nentiations of computing and as well as the average
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number of blinded key copies broadcast to the group for
all renewed nodes . It shows that the authenticated version re-
quires about twice the exponentiations and more than 10 times
the blinded key copies as compared to the nonauthenticated one.
Thus, the use of authentication is subject to the tradeoff between
security and performance.

B. Key Confirmation

Key confirmation should be enforced to guarantee all group
members are actually holding the same group key. Providing
complete key confirmation requires every member to demon-
strate its knowledge of the group key to all other members. One
way to achieve this is to ask every member to broadcast the
one-way function result of every newly generated group key.
However, this involves many broadcasts and is not scalable. In
another approach proposed in [9], each member only needs to
prove its knowledge of the group key to its neighbors, provided
that all members are arranged in a ring. However, such an ap-
proach is vulnerable to the collusion attack [9].

We suggest two feasible implementation approaches that sup-
port a moderate level of key confirmation. In the first approach,
we divide a group into several subgroups such that members
only confirm the group key with others within the same sub-
group via broadcast. The subgroup size and the number of sub-
groups are chosen depending on the desired level of security.
In an alternative approach, we appoint a sponsor to broadcast
the blinded group key so that every other member can verify
if its computed blinded group key is identical to the one it re-
ceives. If a member finds that the keys are different, then it will
report the error. This approach is similar to that in [3] except
that it is applied to our tree-based setting. Our implementation
chooses the latter approach. Section VI discusses the implemen-
tation details.

C. Security Analysis

A-TGDH satisfies our stated security goals with the following
assumptions. Since key confirmation is essential for achieving
perfect forward secrecy [4], we assume that it has been im-
plemented as described in Section V-B. Also, we assume that
there exists only a passive adversary that monitors the flow
of blinded key messages. We further assume that cannot solve
the Diffie–Hellman problem [6] (i.e., given only , , ,
and , it is infeasible for to compute )
and the discrete logarithm problem (i.e., given only , , and

, it is infeasible for to compute ). The following
proof is based on [3], [15].

Theorem: A-TGDH satisfies perfect forward secrecy,
known-key security, and key authentication.

Proof Sketch:
1) Perfect forward secrecy. We want to prove that the authen-

ticated short-term keys of all nonleaf nodes remain secret
even the long-term keys are compromised. We prove this
property by induction on the levels of the tree which has
the lowest level .
• Basis. Consider a nonleaf node at level whose

children are both leaf nodes associated with members
and . Given the long-term private keys

and , the adversary cannot compute

, since computing
without the knowledge of or

is infeasible.
• Induction hypothesis. Suppose the keys of nodes

and at some level , where , remain
secret despite the compromise of long-term keys.

• Induction step. Consider the node at level .
Given only the long-term private keys, we cannot de-
duce and (by hypothesis). This implies

cannot be computed as it contains the component
.

Thus, by induction, cannot compute the secret keys (in-
cluding the group key) of any one of the nonleaf nodes
given only the long-term private keys. Perfect forward se-
crecy is achieved.
The remaining properties can also be proved by induction,
although we omit the inductive proofs for brevity.

2) Known-key security. It should be noted that the authenti-
cated group key consists of a secret random component
equivalent to the group key of the nonauthenticated TGDH.
If compromises this authenticated group key , then it
cannot compute the past group keys whose corresponding
secret random components are composed of the short-term
secrets ’s offered by different combinations of mem-
bers, and doing so will require to solve the Diffie–
Hellman problem. If any two past group keys refer to the
same set of members, then they are still different since
each member renews when it re-joins the group.

3) Key authentication. To determine for a nonleaf node
whose children are both leaf nodes corresponding to

members and , the adversary has to know
. However, only observes and .

Thus, it is infeasible for to solve the Diffie–Hellman
problem for . On the other hand, to determine

for a nonleaf node which contains at least one
nonleaf child node, say node , has to know

. However, cannot identify from
the blinded key messages due to the intractability of the
discrete logarithm problem (i.e., given only
and , it is infeasible to compute ). Therefore,
A-TGDH provides key authentication.

VI. IMPLEMENTATION

We implemented the SEcure Communication Library (SEAL)
to realize the interval-based algorithms described in Section III
and to offer a programming interface for the development of
a secure group-based application. In the application, a group
member first invokes SEAL_init to initialize a SEAL session
object that holds all necessary components of the library. Using
SEAL_join, it joins a group and presents its certificate ob-
tained from a certificate authority to the entire group for iden-
tification. It can then send and receive encrypted data messages
with SEAL_send and SEAL_recv, respectively, or read the
membership status withSEAL_read_membership. It leaves
the group with SEAL_leave. It can later either re-join another
or the same group, or terminate by destroying the SEAL session
object with SEAL_destroy. Fig. 23 depicts the flowchart of
using the library.
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Fig. 23. Flowchart of using SEAL in secure group-based applications.

SEAL is built upon the Spread toolkit [2], which provides
view-synchronous message delivery. Every member connects
to a Spread daemon, which maintains an active TCP connec-
tion to all other Spread daemons and keeps track of the cur-
rent membership status of the communication group. When a
member joins or leaves the group, the associated Spread daemon
notifies other daemons to flush the remaining messages to the
original membership view and to block the transmission of new
messages until all Spread daemons and existing group mem-
bers install the updated membership view. Similarly, if a Spread
daemon fails, the associated members are removed from the
membership view by the remaining Spread daemons. Therefore,
every existing group member always holds the latest member-
ship view. Also, all messages are originated from the sender and
delivered to all members under the same membership view, or
equivalently between two consecutive membership events. To
ensure the ordered delivery, the Spread daemons append a time-
stamp to every transmitted message.

SEAL addresses the assumptions made in Section III. Given
the agreed-upon membership view provided by Spread dae-
mons, all group members select the one that stays the longest in
the group as the leader, which is responsible for synchronizing
the rekeying operations. The leader periodically broadcasts a
rekeying message to notify other members to start the rekeying
operation. To enable new members to construct the current key
tree, each rekeying message includes the existing key tree as
well as the join and leave requests in the last rekeying interval.
Note that the leader is not a centralized key server that generates
the group key, so the contributory requirement of our proposed
algorithms still holds. Upon receiving the rekeying message,
each member updates its own key tree and checks whether
it is a sponsor. Any member that becomes the sponsor will
broadcast the updated blinded keys based on the sponsor-coor-
dination algorithm, which ensures that each updated blinded
key is broadcast only once and that no extra communication is
involved in the coordination among the sponsors. Each member
then caches any received blinded keys and computes the new
secret keys along its key path. Finally, one of the sponsors will
broadcast the blinded group key. Every other member then
verifies the blinded group key with the one it has computed (see
Section V-B). If this key confirmation process succeeds, then
the rekeying operation is finished.

We point out that the leader and sponsors can leave the group
during a rekeying operation, and their departures can make the
rekeying operation fail to complete. In SEAL, if the communi-
cation group detects a change of the membership view before
the completion of the rekeying operation (i.e., the group key is
not yet confirmed), it first elects a new leader (if necessary),
and the leader will broadcast another rekeying message imme-
diately to restart the rekeying operation. Any renewed nodes

whose blinded keys have not yet been broadcast remain renewed
in the new rekeying operation. Such a self-stabilizing property
[11] is realized in SEAL.

Here, we implicitly assume that the Spread daemons always
provide trusted membership views. Maintaining an authenti-
cated membership view involves the change of implementation
in Spread and is not the focus of this paper. We pose this problem
as future work.

We experimented the performance of the interval-based algo-
rithms based on SEAL under various join and leave dynamics.
When there are 40 group members connected via eight Spread
daemons in a local area network, the rekeying time generally
takes less than one second. We refer readers to [12] for further
discussion.

VII. RELATED WORK

To achieve secure group communication, Wallner et al. [21]
and Wong et al. [22] propose the key tree approach that asso-
ciates keys in a hierarchical tree and rekeys at each join or leave
event. Li et al. [14] and Yang et al. [23] then apply the periodic
rekeying concept in Kronos [16] to the key tree setting. All the
key-tree-based approaches [14], [21]–[23] require a centralized
key server for key generation.

References [5], [10], [11], and [19] extend the Diffie–
Hellman protocol [6] to group key agreement schemes for
secure communications in a decentralized network. Burmester
and Desmedt [5] propose a computation-efficient protocol at
the expense of high communication overhead. Steiner et al.
[19] propose Cliques, in which every member introduces its key
component into the result generated by its preceding member
and passes the new result to its following member. Cliques is
efficient in rekeying for leave or partition events, but imposes
a high workload on the last member in the chain. Kim et al.
[11] propose TGDH, which arranges keys in a tree structure
(see Section II for details). The setting of TGDH is similar to
that of the One-Way Function Tree (OFT) scheme [17] except
that TGDH uses Diffie–Hellman instead of one-way functions
for the group key generation. Kim et al. [10] also suggest a
variant of TGDH called STR which minimizes the communi-
cation overhead by trading off the computation complexity.
All the above schemes are decentralized and hence avoid the
single-point-of-failure problem in the centralized case, though
they introduce high message traffic due to distributed commu-
nication. References [10], [11], and [19] consider rekeying at
single join, single leave, merge, or partition events. Our work
considers a more general case that consists of a batch of join
and leave events.

Comparison between the centralized and decentralized
rekeying is studied by Amir et al. [1] and Waldvogel et al.
[20]. In particular, Amir et al. [1] suggest a centralized key
distribution scheme based on Cliques [19] and compare the
performance of both schemes. In contrast, our work compares
the centralized and decentralized key management schemes
adapted from a key tree setting.

Rather than emphasize the rekeying efficiency, [3], [9], and
[15] focus on the security issues and develop authenticated
group key agreement schemes based on the Burmester-Desmedt
model, Cliques, and TGDH, respectively. For instance, the
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AGKA-G protocol [15] is an extension of the two-party Gün-
ther scheme [8] to the TGDH protocol. Our A-TGDH protocol
is an authenticated version of our interval-based algorithms.

VIII. CONCLUSION

We consider several distributed collaborative key agreement
protocols for dynamic peer groups. The key agreement setting
is performed in which there is no centralized key server to
maintain or distribute the group key. We show that one can use
the TGDH protocol to achieve such distributive and collabo-
rative key agreement. To reduce the rekeying complexity, we
propose to use an interval-based approach to carry out rekeying
for multiple join and leave requests at the same time, with a
tradeoff between security and performance. In particular, we
show that the Queue-batch algorithm can significantly reduce
both computation and communication costs when there exist
highly frequent membership events. We also address both
authentication and implementation for the interval-based key
agreement algorithms.
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